
QoE for Interactive Services in 5G Networks:
Data-driven Analysis and ML-based Prediction

Stefania Zinno†, Giuseppe Caso‡, Nicola Pasquino†, Alessio Botta†, Anna Brunstrom‡ and Giorgio Ventre†
†DISS, DIETI
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Abstract—Nowadays, the focus in 5G networks has shifted
from Quality of Service (QoS) to Quality of Experience (QoE)
characterisation and prediction. As a matter of fact, mobile oper-
ators are increasingly interested in measuring and/or predicting
QoE Key Performance Indicators (KPIs) on their 5G networks.
In this context, a recent methodology by the International
Telecommunication Union Telecommunication Standardization
Sector (ITU-T) allows to characterize the level of interactivity
achievable by real-time services on 5G networks, by computing a
synthetic QoE KPI referred to as interactivity score (i-score). The i-
score, defined as the measurable latency, continuity, and reliability
of a given service, is computed by using a model that takes into
account three QoS KPIs, i.e., packet trip time, jitter, and loss rate.
In this paper, aiming at assessing the effectiveness of the ITU-
T methodology in characterizing 5G network performance, we
analyze a large-scale measurement campaign executed over two
commercial 5G Non-Standalone (NSA) deployments in the city of
Rome, Italy. During this campaign, traces related to radio coverage
and service performance (i.e., the i-score and corresponding KPIs
needed to compute it) were collected in parallel. Therefore, we
use the dataset to characterize the observed i-score performance,
and demonstrate that it is possible to successfully predict this KPI
with machine learning techniques, using radio layer parameters
and power measurements. Mobile operators could take advantage
of our findings, minimizing the need for time/resource-consuming
QoE tests. Ensemble methods in fact achieve an accuracy spanning
from 0.79 to 0.83, with Random Forest as one of the best algorithm
to predict the i-score from radio layer parameters.

Index Terms—5G, Interactivity Score, Machine Learning,
Quality of Experience, Quality of Service

I. INTRODUCTION

Nowadays, 5G networks are able to improve their 4G
counterpart, offering an average data rate in downlink of
100Mbps with peaks up to 20Gbps, a reliability of 99,9999%,
and a full support for high traffic densities of devices [1]. By
the end of 2029, 5G is anticipated to become the leading mobile
access technology, with 5G mobile subscriptions projected to
reach nearly 5.6 billion by that time [2]. The 5G systems
standardized by the 3rd Generation Partnership Project (3GPP)
are designed to address the Quality of Service (QoS) and
Quality of Experience (QoE) requirements of massive Machine
Type Communication (mMTC), enhanced Mobile Broadband
(eMBB), and Ultra-Reliable Low Latency Communication
(URLLC) applications [3]. Evaluating QoE is vitally important,

given the enormous reach and widespread acceptance of 5G
networks and the promises standards are making.

QoE of a telecommunications service is defined in multiple
documents as: “The degree of satisfaction of the user of an
application or service. It results from the fulfilment of his or
her expectations with respect to the utility or enjoyment of
the application or service in light of the user’s personality
and current state” [4], “The degree of delight or annoyance
of the user of an application or service” [5], and “The
overall acceptability of an application or service as perceived
subjectively by the end- user” [6].

Due to the nature of QoE and since it strongly depends on
network conditions, most approaches attempt to construct QoE
models based on network-specific Key Performance Indicators
(KPIs). Moreover, Machine Learning (ML) is pictured today as
a key tool for predicting QoE [7]. As a matter of fact, ML is be-
ing considered for optimizing several 5G and Beyond-5G (B5G)
network aspects and operations, particularly when complex
problems cannot be addressed using traditional approaches or
models [8]. ML is also revolutionizing the development of QoE
prediction models, emphasizing the individualized experience
of end-users. A survey examining ML-based QoE predictive
models for multimedia service quality in extended reality and
video gaming applications can be found in [9].

Some network applications, in fact, significantly suffer from
radio layer rapidly changing conditions. As an example, online
gaming services can be strongly impacted by 5G channel
variations, ultimately affecting players’ QoE significantly,
especially when dealing with cloud gaming. In this case, QoE
models for cloud gaming could be constructed to understand
how 5G network conditions affect QoE cloud gaming, through
practical tests on players’ subjective and objective data [10].

In our previous research [11], we measured QoE and QoS
relying on Round Trip Time (RTT), which can be seen as a
simple way to evaluate how 5G affects users’ QoE [12]. We
thus developed our custom methodology based on real-time
data collection through a smartphone, and adopted ML to
predict RTT performance based on 5G radio layer parameters.

Currently, our research has shifted towards a more synthetic
parameter, referred to as interactivity score (i-score), defined in
a testing methodology recently standardized by the International
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Telecommunication Union Telecommunication Standardization
Sector (ITU-T) in Recommendation G.1051 [13]. In particular,
using measurements collected during so-called interactivity
tests [14], we aim at studying how channel conditions encoun-
tered on 5G networks affect the QoE of real-time services, e.g.,
cloud gaming applications. In this work, we thus present an
in-depth characterization and analysis of the i-score [15], and
demonstrate that i-score prediction can be carried out through
ML techniques, which in turn can be easily implemented as part
of the Radio Access Network (RAN), e.g., in a 5G gNode-B.

The rest of the paper is structured as follows: we describe
the i-score model in Section II and present the experimental
campaign in Section III. Section IV provides a brief analysis
and characterization of the i-score perfomance observed during
a specific measurement campaign, while Section V introduces
the use of ML for i-score prediction, and shows the obtained
results. Section VI concludes the paper.

II. QOE TESTING FOR INTERACTIVE SERVICES:
THE i-score CONCEPT

The definition of performance testing methodologies for
interactive services is key towards enabling reproducible tests
and understanding achievable performance on 5G and B5G
networks [16]. This requires to measure QoS KPIs related
to service latency, stability, and continuity, and define QoE
KPIs that quantify service interactivity performance. Within
this context, the ITU-T has issued Recommendation G.1051 in
2023, where it provides guidelines for defining traffic patterns,
measuring QoS KPIs, and evaluating a QoE KPI, referred to
as i-score, as a function of the measured QoS KPIs [13].

The ITU-T methodology requires to instantiate a down-
link/uplink (DL/UL) data traffic flow between a client-server
pair, e.g., over a 5G network. Traffic characteristics should
resemble the data exchange from real services; therefore, it is
assumed that the client generates packets (the size of which
can change over time) at a given rate, and the server reflects
each packet with same or different size, depending on the need
for emulating DL/UL-symmetric vs. asymmetric flows. The
methodology specifies using User Datagram Protocol (UDP)
as the transport protocol; moreover, it recommends using Two-
Way Active Measurement Protocol (TWAMP) [17] at the higher
layer, which enables same-size packet reflection and can be
extended for DL/UL-asymmetric traffic.

Once a traffic pattern is defined, the methodology recom-
mends measuring three QoS KPIs for quantifying service
latency, stability, and continuity. The first KPI is obtained
by measuring the RTT for each packet pair. The second KPI
is evaluated by measuring the Packet Delay Variation (PDV)
experienced by the packet pairs [18]. The third KPI is evaluated
by measuring the Packet Loss Rate (PLR), i.e., the ratio between
disqualified packets and the total number of client-generated
packets. Packets are considered disqualified if not sent or not
received during the test duration, or if they are received at the
client side but after a service-dependent RTT budget.

On top of the QoS KPIs, the i-score can be then evaluated.
The i-score model is service-agnostic but the parameters used

Figure 1: eGaming real-time traffic pattern.

in the model are service-specific, so as to reflect different
requirements. When deriving the i-score model, it is assumed
that the higher the latency, the lower the interactivity, with a
logistic function with service-specific parameters representing
such relationship. This allows for transforming RTTs from
non-disqualified packet into [%] values, the average of which
defines the i-score RTT-dependent term, scoreRTT. PDV and
PLR KPIs are then included via the scorePDV and scorePLR
terms, each obtained from the corresponding QoS KPIs after
simple transformations embedding service-specific parameters.
Finally, the i-score is measured as follows:

i-score = scoreRTT × scorePDV × scorePLR. (1)

We refer to [13], [19]–[21] for additional details on the
i-score model as a function of RTT, PDV, and PLR KPIs, and
on the service-specific parameters.

Figure 1 shows the traffic pattern used for the analyses
reported in this paper, referred to as eGaming real-time. The
pattern is compliant to the ITU-T methodology and emulates
a DL/UL-symmetric interaction between a user and a server
running an online gaming application, thus representing a
relevant example of highly interactive, cloud-based services
supported by 5G systems. Phases with different data rates
emulate various levels of interaction, under the assumptions
that client and server only exchange status information, and
heavy video processing is locally performed at the client side.
The data rates are obtained by using 100-byte packets, with
125 to 1250 packets generated per second. The RTT budget is
100ms, following 3GPP specifications [22].

Empirical characterizations leveraging the execution of
eGaming real-time tests on 5G Non-Standalone (NSA) commer-
cial networks can be found in [23]–[26], which indeed represent
some of the first attempts of using the ITU-T methodology for
QoS/QoE performance testing on 5G networks.

III. EXPERIMENTAL CAMPAIGN

In this paper, we carry out our i-score characterisation and
prediction by leveraging samples collected while performing
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a measurement campaign of seven weeks in Rome, Italy. We
thus leverage the data open-sourced in [14] in order to a)
analyze a specific campaign and characterise the i-score trends
throughout time and while moving around the city of Rome,
and b) apply deeper data-driven analyses that set the basis for
our proposed ML-based i-score prediction scheme, as further
detailed in the following sections.

As detailed in [14], the campaign was conducted with a
Samsung S20 5G-capable device. Samples were collected on the
5G NSA networks deployed by two Italian operators (Op1 and
Op2) in the mid band (Band n78, 3300-3800 MHz), in different
mobility scenarios: Indoor Static (IS), Outdoor Driving (OD),
and Outdoor Walking (OW). The campaign was conducted
by following the methodology presented in Section II, i.e.,
by performing interactivity tests with the eGaming real-time
traffic pattern, thus meeting the requirements of the ITU-T
Recommendation G.1051 [13]. We further observe that the
collected measurements are suitable for a comparison with the
analyses reported in [15], since the same instruments were
adopted and the same parameters were measured (i.e., i-score,
RTT, PDV, and PLR) .

As in [15], in Fig. 2 and in Fig. 3 we analyse the relationship
between i-score and RTT across all gaming tests, among
different scenarios and with/without 5G capabilities enabled.

Figure 2 shows the i-score measured among OW, OD, and
IS scenarios. We observe that the i-score decreases with higher
values of RTT, and reaches zero from around 80ms in all cases.
IS shows a consistent trend with little variability, maintaining
high scores for lower RTTs, and reaching zero first. From 45ms
to 60ms, all the scenarios exhibit the same trend, while from
30ms to 45ms, OW shows lower i-score values, suggesting
that, in this case, other factors such as PDV and PLR may
have played a more relevant role in lowering the i-score.

Figure 3 shows that the i-score exhibits similar behaviours
with/without 5G capabilities enabled, suggesting that, compared
to 4G, 5G NSA infrastructures may not bring clear benefits
in terms of QoE for real-time interactive services, which
are indeed expected to gain more from 5G Standalone (SA)
deployments. Also, for the two mobile operators involved in
the campaign, Fig. 4 shows similar i-score values, with a slight
better performance carried out by Op2 for high i-score values.

IV. i-score CHARACTERISATION

We provide an additional characterization of the i-score
by selecting one campaign out of all the campaigns in [14],
referred to as Campaign 6. Campaign 6 is well represented
by a large number of samples, and the User Equipment (UE)
mode was 5G-enabled, meaning the UE was able to take
advantage of both 5G and 4G capabilities. Moreover, this
campaign was executed on the 5G NSA network of Op1, in the
OD scenario, i.e., while driving around the city of Rome. Figure
5 shows the relationship between i-score and the number of
lost packets (from which PLR can be inferred), PDV, and RTT.
Eventually, we also present the throughput observed over both
4G and 5G networks during the campaign (note that, thanks
to the 5G NSA infrastructure, UEs can use dual-connectivity
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Figure 2: i-score [%] across Indoor Static (IS), Outdoor Driving
(OD), and Outdoor Walking (OW) scenarios as a function of
RTT [ms], for all the campaigns in [14].
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Figure 3: i-score [%] in 5G-enabled and 5G-disabled UE Mode
as a function of RTT [ms], for all the campaigns in [14].
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Figure 4: i-score ECDF across Operators (Op1 and Op2), for
all the campaigns in [14].
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(a) i-score vs. Lost Packets.
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(b) i-score vs. PDV.
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(c) i-score vs. RTT.
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(d) i-score ECDF.
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(e) 4G/5G PHY layer downlink throughput observed during the campaign.

Figure 5: Performance observed during Campaign 6 (Scenario: OD, UE Mode: 5G-enabled, Operator: Op1).

and exploit 4G/5G networks simultaneously). The aim of this
characterisation is to understand whether i-score is able to
capture the network functioning/not functioning properly in a
real scenario. In Fig. 5a, the relationship between i-score and
the number of Lost Packets is shown. The i-score decreases

when the number of lost packets increases (when more than
250 packets in a test are lost, the i-score is actually zero).
Hence, network performance in terms of packet losses are
well reflected in the i-score values. By comparing Fig. 5b
and Fig. 5c with the theoretical i-score models reported in
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[15], we observe that, as expected, our curves are affected
by delay variation and loss encountered on real networks. In
particular, Figure 5b represents i-score vs. PDV, and shows
higher i-score values when PDV is under 25ms. In general,
low i-score values correspond to high PDV values, which
confirms the ability of summarizing network performance in
terms of latency variation via the i-score parameter. Finally,
Fig. 5c presents the variation of i-score as a function of RTT,
exhibiting a well-expected decreasing trend and thus the ability
of reflecting network performance in terms of latency into
i-score values. To summarize, results in Fig. 5 confirm the
ability of the i-score to properly describe almost all selected
KPIs synthetically.

In [27], good values of i-score are considered ranging from
75% and 85% in a 4G network, and from 85% to 90% in a 5G
network. For the aforementioned values, a fair to good real-
time eGaming experience can be met. In our case, as shown
in Fig. 5d, the i-score for the selected campaign spans from
40% to beyond 80%. It gradually grows up to 40%, increasing
rapidly afterwards, with the majority of sample spanning from
40% to 80%. Following the aforementioned ranges, the network
under study seems to provide medium-to-good performance.

In Fig. 5e, we observe that the throughput measured during
Campaign 6 on the 4G and 5G Physical (PHY) layer is coherent
with 5G NSA architecture, where 5G comes in support of a
well established 4G connection. Overall, the relatively low
PHY throughput observed during the experiments is limited by
the actual application data rate of the traffic pattern (Figure 1);
5G still exhibits a higher PHY throughput (up to 15Mbit s−1)
compared to 4G (up to 6Mbit s−1).

V. ML-BASED i-score PREDICTION

In this section, we test the ability of different supervised ML
algorithms in solving a binary classification problem defined
on our dataset. In particular, we tried to predict good vs. bad
i-score values by only looking at radio layer quality and power
parameters. Therefore, a threshold was selected and the i-score
was split among two classes, good values of i-score and bad
values of i-score. The threshold was chosen in order to obtain
a balanced dataset and following Fig. 4, and set as the median
value, i.e., 70%. Several features from the radio layer were
collected during the experimental campaign, as further detailed
in the following. For the ML techniques to use, we focused
on ensemble methods, considering that, compared to other
methods, they provided the best performance in our previous
studies, where the goal was to predict RTT in 5G NSA networks
[11], [28]–[35].

A. Features and Target

The dataset presents ∼ 8400 rows with 12 features:
• 5G Synchronization Signal Reference Signal Received

Power (SS-RSRP)
• 5G Synchronization Signal Reference Signal Received

Quality (SS-RSRQ)
• 5G Synchronization Signal Reference

Signal to Interference plus Noise Ratio (SS-SINR)

• 4G Reference Signal Received Power (RSRP)
• 4G Reference Signal Received Quality (RSRQ)
• 4G Signal-to-Interference-plus-Noise Ratio (SINR)
• 5G PHY layer DL Throughput
• 4G PHY layer DL Throughput
• UEMode 5G-enabled
• Scenario OD
• Scenario OW
• Operator Op2

Table I: P-Value and F-Score.

Feature P-value F-score

SS-RSRP 7.4988e-110 462.82
SS-RSRQ 2.4944e-99 167.77
SS-SINR 4.9240e-83 383.24
RSRP 1.0311e-39 139.38
RSRQ 1.0975e-39 176.08
SINR 6.4595e-38 71.349
5G Tr 7.4922e-32 514.70
4G Tr 5.9772e-20 0.0018
UEMode 5G-enabled 3.6332e-17 84.156
Scenario OD 8.9180e-08 28.659
Scenario OW 0.15826 176.21
Operator Op2 0.96615 1.9913

To discover which among these features were able to predict
better the i-score we carried out a feature importance analysis.
As shown in Table I, quality and power parameters as RSRP,
RSRQ and SINR for both 4G and 5G play a key role in
predicting the target, confirming that it is possible to predict
i-score performance from those features.

B. Data Processing
As also reported in [14], the collected dataset presents

the symbol ? (question mark) to indicate unaltered values.
Indeed, new numerical values appear in the dataset only when
actually measured by the system, therefore, ? indicates that
the oldest measured value for that feature is still valid, since a
new value has not been recorded yet. Therefore, the ffill
method1 was selected to replace all ? values, with respect of
the Campaign ID. To strengthen the process, we shuffle the
dataset and encoded categorical variables such as Operator,
UEMode, and Scenario with Scikit-Learn’s One Hot Encoder.2

Variables were thus encoded by dropping the first column of
all new created variables to reduce collinearity. This resulted
in 12 original features to be used in our ML-based analysis.
Data was also standardized to ensure all algorithms to function
smoothly through Scikit-Learn’s Standard Scaler3 before our
i-score binary classification. Performance statistics, together
with all radio layer parameters, were collected with the UE
in 5G-enabled mode, which allows for simultaneously using
4G and 5G access networks, as previously discussed. We also
filtered all values of RTT equal to 0ms, since they can be
accounted as lost packets or wrong collected measurements.

1https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ffill.html
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

OneHotEncoder.html
3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html

2024 20th International Conference on Network and Service Management (CNSM)



Table II: Best parameters for each algorithm.

Algorithm Best Parameters

Decision Tree max depth: 10
min samples split: 2
min samples leaf: 1
criterion: gini

Random Forest num estimators: 300
max depth: 20
min samples split: 2
min samples leaf: 2

Gradient Boosting num estimators: 300
max depth: 40
min samples split: 10
min samples leaf: 4

C. ML Algorithms and Performance

We adopted Decision Tree (DT), Gradient Boosting (GB),
and Random Forest (RF) after fine-tuning them through search
grid, which resulted in the configurations shown in Table II.

We evaluate the performance of all the aforementioned
algorithms in the i-score binary classification task, in terms
of accuracy, recall and F1-score, as reported in Table III. We
observe that GB and RF achieve the same performance, with RF
performing slightly better in terms of accuracy for Class 1 (good
i-score values). DT accuracy is below the other techniques,
probably due to the nature of this algorithm, which adopts
a single classification tree compared to GB and RF, which
instead take advantage of the combination of multiple trees.

To further confirm and analyze the performance of the
selected algorithms, we report Precision Recall curves in
Fig. 6a, which ultimately show RF and GB as best performing
techniques, with an Average Precision (AP) around 0.90. In
Fig. 6b, Receiver Operating Characteristic Curves (ROCs) are
depicted, where again DT is outperformed by the other two
algorithms with an Area Under the Curve (AUC) of 0.84.
Eventually, RF results the best performing algorithm for our
i-score classification. Achieved performances are overall of a
good quality, based on the need for less complexity or a higher
accuracy, one algorithm can be chosen among the others.

Table III: Precision, Recall, and F1-Score.

Algorithm Precision Recall F1-score Accuracy Class

GB 0.81 0.84 0.82 0.83 0
0.84 0.81 0.83 1

RF 0.81 0.84 0.83 0.83 0
0.84 0.82 0.83 1

DT 0.77 0.81 0.79 0.79 0
0.81 0.76 0.79 1

VI. CONCLUSIONS

This paper provides an empirical analysis and ML-based
prediction of QoE on 5G networks, particularly focusing on the
i-score parameter, a synthetic QoE KPI recently standardized
by ITU-T. By exploiting a large-scale measurement campaign
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Figure 6: ML-based i-score classification: Performance of RF,
GB, and DT algorithms.

carried out in Rome on two 5G NSA deployments, we character-
ize the observed i-score, confirming its ability to synthetically
describe QoS KPIs commonly used to understand real-time
service performance, i.e., RTT, PDV, and PLR. Additionally, we
propose a ML-based approach to predict i-score classes based
on radio layer parameters. Results confirms the validity of our
approach, which can be used to infer QoE performance rather
than executing time/resource-consuming tests. In particular,
the RF algorithm provides one of the best performance in
the classification task, with an accuracy of 0.83, precision
recall AP of 0.92, and ROC AUC of 0.91. In future work, we
plan to move towards deep learning schemes aiming to further
improving the classification accuracy, while also considering
the creation of i-score models based on radio layer parameters
through regression and/or forecasting approaches.
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