
Generating Commit Messages for Configuration
Files in 5G Network Deployment Using LLMs

YANG Beining∗†, SAMBA Alassane∗, FRAYSSE Guillaume∗, CHERRARED Sihem∗
∗ Orange Innovation, France, † Université Grenoble Alpes

{beining.yang, alassane.samba, guillaume.fraysse, sihem.cherrared}@orange.com

Abstract—Network automation is crucial for improving net-
work performance. Commit messages describes the different
actions of the modification of network configuration files and
deployments. This paper presents experiments and studies on
automated commit message generation in the deployment of
5G networks. We extracted data from repositories of various
projects engineered in Orange’s 5G network. We then developed
five prompts for experiments to identify the most suitable
methods for this task. To select large language models, we used
an in-house GPT-4 interface provided by Orange, and locally
deployed popular large models such as Llama3, Mistral. We
used both automated and human evaluation methods, selecting
BLEU, ROUGE, and METEOR as our metrics for automated
assessment. Our experiments shows that commit messages for
configuration files generated by Large Language Models (LLMs)
have better scores when using one-shot and Retrieval-Augmented
Generation (RAG) technologies, for messages generated both by
humans and bots.

Index Terms—Commit Message Generation, Large Language
Model, network automation

I. INTRODUCTION

In recent years, the technology sector has increasingly
focused on network automation due to the growing complexity
of network configuration and management [1], [2].Automation
technologies not only enhance efficiency but also help to
minimize human errors in large-scale network deployments.
In this evolving landscape, advancements in Deep Learning
(DL) and Large Language Models (LLMs) have opened new
avenues in network automation [3]–[6]. This paper specifically
investigates the use of LLMs to automate the generation of
network configuration files, with a particular emphasis on 5th
Generation (5G) network deployments.

While the application of LLMs in generating commit mes-
sages for software development has been explored, there
remains a notable gap in research focusing on their use for 5G-
specific network files [7], [8]. Currently, network configuration
processes predominantly rely on manually crafted scripts and
templates. Although these traditional methods are somewhat
effective, they require considerable expertise and extensive
time investment. The emergence of advanced language models
presents a significant opportunity to streamline these tasks in
network automation. This paper aims to bridge the existing
research gap by evaluating the effectiveness of LLMs in au-
tomating the creation of 5G network configurations, potentially
transforming how networks are managed and deployed.

This research presents a case study centering particularly
on the automation of commit messages in 5G network de-
ployments. By extracting data from a real 5G network project
deployed by Orange, we constructed a dataset containing
Secure Hash Algorithm (SHA) values, authors, diffs, and
commit messages. Based on this dataset, we designed several
experiments to explore the most suitable LLM application
methods for this task. The experiments used various ad-
vanced technologies, including Retrieval-Augmented Genera-
tion (Retrieval-Augmented Generation (RAG)) [9], and various
large language models such as Llama3 [10] and Mistral [11].
RAG combines the capabilities of generative language models
with a powerful retrieval mechanism, allowing the model to
refer to a large amount of relevant historical data before
generating responses. In this project, we used RAG technology
to improve the precision of automatically generated commit
messages for network configurations.

The primary objective of this study is to examine the
ability of LLMs to automatically generate meaningful commit
messages that are not only technically accurate but also
contextually appropriate for network automation. To vali-
date the models’ effectiveness, we used a combination of
automated and manual evaluation methods. The automated
evaluation included metrics such as BLEU [12], ROUGE
[13], and METEOR [14], providing a quantitative measure of
the models’ performance. Meanwhile, the manual evaluation
involved a detailed review by project staff, using a scale to
rate the accuracy, integrity, readability, and applicability of the
generated messages. This comprehensive approach allowed us
to assess the practical utility of automated evaluations in real-
world settings.

II. CONTEXT AND PROBLEM STATEMENT

This section explores the context of automating Network as
Code (NAC) workflows using LLMs to generate informative
commit messages. It establishes the importance of NaC in
modern network management, introduces LLMs and their text
processing capabilities, and defines the problem of automat-
ically generating accurate commit messages for NaC using
LLMs.

A. Network as code

In modern network management, the concept of is becom-
ing increasingly popular. At its core, Network as Code (NAC)

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



Gitops
engine

K8S add-ons
(security,

observability,
. . . )

Cloud Native
ToolboxOperator

Intents

Vendor
Intents

Trusted registries
and Git sources

Vendors

BP

Operator
integrators and

operationals

BP

Kubernetes Infrastructure Kubernetes
Infrastructure

Git platform

Deployed NF

Deployed NF

Deployed NF

Fig. 1: Network as code

employs software development methodologies to manage and
configure network devices and services [15]. It allows network
configurations to be managed via version control systems and
implemented through automated tools and processes, akin to
operations in software development. This approach not only
enhances operational efficiency and reduces human errors but
also accelerates the deployment of network configurations. The
introduction of NAC significantly improves the consistency,
traceability, and replicability of network configurations, thus
offering unprecedented flexibility and control in network op-
erations.

Our study on NAC concentrates on the leftmost part of
Fig. 1, integrating vendor intentions and operations into a
network configuration system that includes the Open Con-
tainer Initiative (OCI) registry and Git for source control.
This system segment manages ”Vendor Intents,” which are
specific configuration requirements from external suppliers,
and ”Operator Intents,” representing internal configurations
set by operator’s network management team. We create and
manage these intents through code, aiming for systematic,
traceable, and efficient deployment and modification of net-
work configurations, thereby enhancing efficiency, consistency,
and flexibility in network operations.

B. LLM for network automation
LLMs leverage deep learning techniques to automate and

enhance various computational processes, including network
management. Central to these models is the transformer archi-
tecture that uses an attention mechanism to understand con-
textual relationships in text, which is crucial for interpreting
complex network configurations and aiding in coding tasks for
NAC practices.

The development of LLMs typically involves two crucial
phases: pre-training and fine-tuning. During pre-training, the
model learns from a vast corpus to grasp the language’s
structure, context, and semantics broadly. Fine-tuning then
adapts the model to specialized tasks by training on narrower
data sets, enhancing its proficiency in specific fields such as
legal, medical, or technical domains.

C. Problem Statement: commit message suggestion
In network configuration management, accurate commit

messages are crucial for version control and subsequent audit

trails. However, manually crafting these messages can be
tedious and error-prone. LLMs can automatically suggest
descriptive and precise commit messages based on changes
in configuration files, thus improving documentation quality
and operational transparency.

III. COMMIT REPRESENTATION

The representation of commits, how tools and technologies
display and understand code changes, is key to improving
the efficiency and accuracy of code reviews. In collaborative
projects, a clear representation of commits can help team
members quickly grasp the core content of changes, promoting
more efficient communication and faster decision-making pro-
cesses. Currently, many tools and platforms still have room for
improvement, especially in how they clearly display complex
code changes and conflict resolution solutions. The git diff
command is an essential Git command that shows differences
between two commits or between the working directory and
the index. It follows the de-facto standard format introduced
by the diff tool introduced in the 5th edition of Unix in 1974.
It details changes in file content, such as added, deleted, and
modified lines, and is an indispensable tool in code review and
version control. This command allows developers to precisely
see the specific details of code changes through intuitive
symbols; a ”-” symbol indicates deleted lines, while a ”+”
symbol denotes added lines.

SHA 9e6ffb0e4f2647aab5dbdb1c03bab1650e894137
diff –git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 3d85993..de7e42e 100644
− − − a/.gitlab-ci.yml
+ + + b/.gitlab-ci.yml
@@ -34,8 +34,8 @@ include:

- project: ’oln/nif/cd/tools/renovate’
file: ’gitlab-ci-renovate-lint-mr.yml’

- project: ’oln/nif/cd/tools/template-template’
− ref: 1.6.18
+ ref: 1.6.19

file: ’templates/gitlab-ci-template.yaml’
- project: ’oln/nif/cd/tools/template-template’

− ref: 1.6.18
+ ref: 1.6.19

file: ’templates/gitlab-ci-template-allow-push-to-main-branch.yaml’

Fig. 2: Example of diff ommit message.
Fig. 2 displays a the output of a git diff for the .gitlab-

ci.yml file, illustrating changes committed in a recent update.
The SHA identifier at the top specifies the unique commit
hash. Differences between the old version (a/.gitlab-ci.yml)
and the new version (b/.gitlab-ci.yml) are clearly outlined.
The diff indicates modifications in the Continuous Integra-
tion (CI) configuration, specifically the removal of an older
project and file references (project: ’oln/nif/cd/tools/renovate’
and file: ’gitlab-ci-renovate-lint-mr.yml’ with version 1.6.18),
and the addition of new template files (templates/gitlab-
ci-template.yaml, templates/gitlab-ci-template-allow-push-to-
main-branch.yaml) under a new project reference (project:
’oln/nif/cd/tools/template-template’) with an updated version
1.6.19. This example highlights how version control systems
like Git help manage changes in software projects by providing
a detailed record of code modifications.

2024 20th International Conference on Network and Service Management (CNSM)



IV. DATASETS

Our datasets are sourced from a comprehensive collection
of commits across various Git projects related to real-world
5G deployments conducted by Orange Group. The dataset is
structured into two primary components: the first part focuses
on performance evaluation of the generated commit messages,
while the second part serves as the training set aimed at
refining prompts and enhancing the generation process.

A. Evaluation Dataset

We meticulously extracted data from a total of 581 commits,
out of which 168 were authored by human developers, and
413 were generated by automated systems (i.e., bots). This
dataset encompassed a variety of information, including the
differences between commits (i.e., diffs), commit messages,
authorship details, and unique SHA identifiers for each com-
mit. Such comprehensive data capture facilitates an in-depth
analysis of the project’s evolutionary development and the
incremental modifications made over time.

Each commit was systematically archived into JSON files, a
format that supports hierarchical and complex data structures.
This choice of data format enhances compatibility with diverse
programming environments and simplifies the integration with
various data processing and analysis tools. In each JSON
object, we stored detailed commit data including:

- diff: A textual representation of the changes made in the
commit.

- message: The commit message that describes the intent
and content of the changes.

- author: Information about the commit’s author, which is
crucial for understanding the context of the changes.

- sha: A unique identifier assigned to each commit, ensuring
the traceability of every change within the repository.

B. Training Dataset for RAG

The training dataset is composed of 577 commits including
both bot and human commits.

The training dataset for the RAG model was constructed
to bolster the model’s proficiency in producing relevant and
accurate commit messages. Automated scripts navigated and
extracted data from Git repositories, performing the following
steps:

• Data Extraction and Processing: Retrieved all com-
mits from each repository, extracted SHA identifiers,
and computed diffs between consecutive commits using
Git’s native diff function. Commit metadata, including
anonymized author details, messages, and diffs, was
collected.

• Data Structuring and JSON Storage: Compiled the
extracted data into JSON objects, encapsulating each
commit’s SHA, message, anonymized author, and diff,
facilitating straightforward access during model training.

This structured dataset enhances the RAG model’s training,
focusing on synthesizing commit messages that reflect the nu-
ances of software development workflows, thereby advancing
the efficacy and precision of automated software engineering

tools. Since the messages from bot commits are already
automated, the inclusion of these commits in both the eval-
uation and training datasets provides deterministic reference
commit messages. This allows for the assessment of the LLM’s
capabilities, combined with prompt engineering techniques, to
identify the desired message patterns and content.

V. MODELS AND PROMPT ENGINEERING

We used several base models to which we applied several
prompt engineering methods, including RAG.

A. Base models used

In our research, we used a generative AI chat software,
developed internally by Orange, which supports multiple
types of model selections, including GPT, Mistral, Gemini,
among others. Additionally, we locally deployed other large
models including Llama3 [10], Mistral [11]. Our experiments
primarily focused on how to effectively use the different
configurations of these models to optimize the quality and
relevance of the generated commit messages. Below are the
model parameters we selected and a preliminary analysis of
the results:

• GPT-4: used the GPT4-128k version, with a temperature
setting of 0.6.

• Llama3: Employed the Llama3 8B version, with a tem-
perature setting also at 0.6.

• Mistral: Used the Mistral 7B v0.2 version.

B. Prompt engineering

In our study, we explored the application of prompt en-
gineering in automatically generating code commit messages
by designing and implementing five different prompts. Each
prompt contained distinct elements and instructions, aimed
at evaluating their effects on improving the quality of the
generated results. Below are the detailed designs of each
prompt:

Background: You are a bot producing commit messages.

Task: Write a commit message that follows the Conventional
Commits format (’<type>[optional scope]: <description>’) based
on the provided changes description as Input.

Input:

Change details:
[Repository Tree] + [DIFF]

Output:

Using the Conventional Commits as a format(’<type>[optional
scope]: <description>’)

Fig. 3: Prompt1 structure.

• Prompt 1: Basic Prompt with a background field to
explain the role we want the model to consider when
answering, the task, the input, and finally the output that
contains the desired output format of the commit message
as showcased in Figure 3.

2024 20th International Conference on Network and Service Management (CNSM)



• Prompt 2: Prompt with Negative Instruction
This prompt adds a negative instruction to Prompt 1.
(Your output must be strictly in one line and in the format
’<type>[optional scope]: <description>’ without any
extra text like ’this is the commit message:’ etc., neither
before, nor after). The purpose of the negative instruc-
tion is to guide the model to avoid generating commit
messages that do not meet the task requirements, such as
avoiding unclear or overly simplistic statements.

• Prompt 3: Prompt without Repository Tree
Prompt 3 removes information related to the code repos-
itory tree from Prompt 2. This change aims to test the
model’s performance without specific code organizational
structure information, thereby assessing the model’s sen-
sitivity to environmental dependencies.

• Prompt 4: Prompt with one-shot
Prompt 4 adds a specific commit message example (one-
shot) to Prompt 2. This method helps the model learn how
to construct commit messages through a concrete exam-
ple, potentially improving the accuracy and relevance of
the generated information.

• Prompt 5: Prompt with RAG
Prompt 5 integrates RAG into Prompt 2. through RAG
technology, the model queries related documents or exist-
ing data before generating commit messages, enhancing
the accuracy and richness of the generated content.

Prompt1: background + instruction +
input data + output indicator

Prompt2: Prompt1 + negative prompting
Prompt3: Prompt2 - Repository tree
Prompt4: Prompt2 + one-shot
Prompt5: Prompt2 + RAG

C. RAG

Query: diff
Embedding

model:
BERT

Vector
store index

Database RAG

Prompt: enriched context

LLM Answer: Commit message

Fig. 4: Applied RAG architecture.

RAG enhances commit messages generation by integrating
information retrieval with a generative model [9]. RAG oper-
ates in two stages: first, the model retrieves relevant data from
a large dataset based on the input query; second, it combines
this retrieved data with the input to generate the final output.
This approach ensures that generated commit messages are
accurate and contextually relevant.

In our research, RAG presented in Figure 4 is employed to
refine commit message generation for version control systems,
as explained in the following:

Information Retrieval: The model retrieves relevant histor-
ical commit data based on code changes, ensuring the context
is well-understood.

Text Generation: The retrieved data is synthesized with
the input to produce the final commit message, ensuring it is
detailed and contextually accurate.

The implementation involves:
• Embedding Model Selection: We use the BERT model

to convert textual data into embeddings, capturing the
nuances of code changes.

• Embedding Generation: BERT generates embeddings
for each code diff, representing the data in a machine-
learning-friendly format.

• Retrieval Mechanism: Cosine similarity is used to find
the most relevant historical commits, ensuring new mes-
sages align with successful past logs.

• Message Generation: The final commit message is
generated using the combined input and retrieved data,
ensuring accuracy and relevance.

VI. EVALUATION

In this study, to comprehensively assess the performance
of the different AI models GPT-4, Llama3 and Mistral, as
detailed in Section V, in generating code commit messages,
we used both automated and manual evaluation methods. Each
evaluation method has its advantages: automated evaluation
provides quantifiable, comparable metrics, while manual eval-
uation allows for a deeper analysis of the practical usability
and contextual adaptability of the generated text.

A. Automated Evaluation Methods

To quantitatively assess the efficiency of our generative
models in creating commit messages that are consistent and
contextually appropriate, we use three established metrics,
these metrics typically range from 0 to 1. However, to enhance
the visibility of differences between the results, we multiply
all scores by 100. These scores are computed by comparing
each generated commit message against a reference message
: BLEU [12], ROUGE [13], and METEOR [14].

BLEU (Bilingual Evaluation Understudy) is used to measure
the correspondence between a machine’s output and a set of
reference texts, primarily focusing on the accuracy of word
sequences.

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) assesses the overlap of n-grams between the generated
text and the reference texts, emphasizing the recall of content.

METEOR (Metric for Evaluation of Translation with Ex-
plicit ORdering) evaluates translation output by considering
a range of factors including exact word matches, synonym
matches, and the order of words, aiming for a more balanced
assessment of both precision and recall.

B. Human evaluation methods

In addition to automated evaluation, we conducted a thor-
ough manual evaluation to complement the automated metrics.
This manual evaluation was performed by four human eval-
uators, all of whom are staff members associated with the
project. They assessed a random selection of 10% of the total
commits, which included 50 different commits. Each commit

2024 20th International Conference on Network and Service Management (CNSM)



was evaluated 11 times, resulting in a total of 550 individual
assessments. Among these, 30 commits were manually written
by humans, and 20 were generated by machines. Given that
the large-scale GPT series developed by OpenAI is not open-
source, we chose to manually employ the GPT-4 model for our
studies to ensure information security. But in the end, we only
conducted the experiment for prompt 1. Due to the limitations
of the chat platform, we couldn’t automate the retrieval of
commit messages; instead, we had to manually input them
and generate many at the same time. Therefore, the method
of experimentation was different from other models and was
very time-consuming.

The evaluators rated the commit messages generated under
different prompts using a scoring scale from 1 to 3, defined
as follows:

• 1 Point: Does not meet standards.
• 2 Points: Meets basic standards.
• 3 Points: Fully meets standards.

Ratings were based on the following five criteria:
• Accuracy: Evaluates whether the generated commit mes-

sage accurately reflects the content of the code changes.
• Integrity-What: Assesses whether the commit message

completely describes the changes made.
• Integrity-Why: Evaluates whether the commit message

explains the reasons for the changes.
• Readability: Assesses whether the language of the com-

mit message is clear and the format is correct.
• Applicability: Evaluates whether the commit message is

applicable in a real software development environment.

VII. RESULTS AND DISCUSSION

A. Metrics evaluation results

The performance of different models across various prompts
was quantitatively assessed using three metrics: BLEU,
ROUGE (ROU), and METEOR (MET). Table I summarizes
the results for both human and bot-generated commits.

The evaluation across various prompts shows that the
Llama3 consistently outperforms the others, particularly in
bot-generated commits where it achieved the highest scores
in BLEU, ROUGE, and METEOR metrics. Mistral also per-
formed well, especially in METEOR and ROUGE scores,
making it a strong contender. GPT-4, while only evaluated on
a single prompt, showed potential but requires further testing
across more prompts to fully assess its capabilities. Overall,
Llama3 stands out as more effective model across both human
and bot-generated commits.

However, when focusing on the prompt techniques, we
observe that for bot commits, Prompt 5, enhanced with RAG
techniques, consistently performs the best across different
models. In contrast, for human commits, there are instances
where Prompt 4 also performs very well. This suggests that
human commits allow for greater flexibility; even though
Prompt 4 might not provide the most suitable examples for
the model, it can still produce commendable commits. On
the other hand, because bot commits are more structured,

providing the model with examples that closely match the
required format results in higher scores for the generated
commits.

B. Human evaluation results

Based on the human evaluation data, this section provides
a comprehensive analysis of the performance of three AI
language models (i.e., GPT-4, Llama 3, and Mistral) across
various evaluation metrics. The radar charts presented in
Figure 5 compares the models under different prompts and
evaluation criteria. Here we only compare the models llama3
and mistral. Table II, presents the numerical scores for each
model under different prompts. These scores are consistent
with the observations from the radar charts but offer more
granular insights:

• Llama 3: For Llama3, whether it’s human commits or bot
commits, prompt5 consistently performs the best in all
aspects, demonstrating that RAG technology significantly
enhances Llama3’s performance.

• Mistral: Mistral shows a very balanced distribution of
scores across different prompts, indicating that the per-
formance of commits generated by Mistral does not vary
significantly from one prompt to another.

These findings suggest that while all models are capable
of producing high-quality outputs, their performance may
vary significantly depending on the nature of the prompt and
specific evaluation metrics. Notably, Llama 3 performs best in
human evaluations after the application of RAG techniques.

C. Comparing human evaluation and objective metrics

In Fig. 6 we compare human evaluation results with objec-
tive metrics by ranking.

The Llama3 model demonstrates relatively stable scores
across both human evaluations and objective metrics, indicat-
ing a certain level of consistency between human preferences
and automated scoring methods. For human commits, prompt5
or occasionally prompt4 perform the best, while for bot
commits, prompt5 consistently shows the best performance.
This indicates that across all metrics, prompt5, or sometimes
prompt4, is the best.

Mistral shows some discrepancies between human evalua-
tions and objective metrics, particularly in bot commits. While
objective metrics show extremely high scores in Prompt 5,
human evaluations, although still high, are not as extreme. This
suggests that while Mistral may excel in specific automated
metrics, human evaluators perceive its outputs differently,
potentially due to nuances that metrics like BLEU, ROUGE,
and METEOR may not fully capture.

The Integrity why score is almost always 2, and shows that
the models is not able to fully apprehend the context of the
changes. Also the Applicability score is around 2 except for
Bot commit with Llama3, and shows that the models are not
fully ready to be used without human intervention.

2024 20th International Conference on Network and Service Management (CNSM)



Accuracy

Integrity-What

Integrity-WhyReadability

Applicability
0.5

1.0

1.5

2.0

2.5

3.0

Human Evaluation - Human commit - Llama3
prompt1
prompt2
prompt3
prompt4
prompt5

Accuracy

Integrity-What

Integrity-WhyReadability

Applicability
0.5

1.0

1.5

2.0

2.5

3.0

Human Evaluation - Human commit - Mistral
prompt1
prompt2
prompt3
prompt4
prompt5

Accuracy

Integrity-What

Integrity-WhyReadability

Applicability
0.5

1.0

1.5

2.0

2.5

3.0

Human Evaluation - Bot commit - Llama3
prompt1
prompt2
prompt3
prompt4
prompt5

Accuracy

Integrity-What

Integrity-WhyReadability

Applicability
0.5

1.0

1.5

2.0

2.5

3.0

Human Evaluation - Bot commit - Mistral
prompt1
prompt2
prompt3
prompt4
prompt5

Fig. 5: Human evaluation results

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
0

1

2

3

4

5

Ra
nk

Llama3 - human commit
BLEU
ROUGE
METEOR
Human Evaluation

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
0

1

2

3

4

5

Ra
nk

Mistral - human commit
BLEU
ROUGE
METEOR
Human Evaluation

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
0

1

2

3

4

5

Ra
nk

Llama3 - bot commit
BLEU
ROUGE
METEOR
Human Evaluation

Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
0

1

2

3

4

5

Ra
nk

Mistral - bot commit
BLEU
ROUGE
METEOR
Human Evaluation

Fig. 6: Comparing human evaluation and objective metrics

2024 20th International Conference on Network and Service Management (CNSM)



TABLE I: Objective metrics evaluation results (multiplied by 100 for readability)

Model Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5
BLEU ROU MET BLEU ROU MET BLEU ROU MET BLEU ROU MET BLEU ROU MET

Human Commit
Llama3 8B Instruct 0.48 10.85 17.23 2.13 26.6 21.92 2.27 26.09 25.57 4.99 42.58 36.99 3.99 38.56 38.62

Mistral 7B Instruct v0 2 0.68 12.49 14.56 1.57 21.1 17.89 1.76 22.13 18.18 2.17 22.08 32.27 3.63 29.66 27.5
Bot Commit

Llama3 8B Instruct 0.28 10.15 14.66 2.64 27.64 20.02 2.0 25.13 25.23 3.02 28.73 15.83 63.02 83.38 85.65
Mistral 7B Instruct v0 2 1.11 25.98 23.46 2.14 25.25 27.85 1.93 24.53 27.34 1.84 24.81 28.45 8.06 44.45 35.57

TABLE II: Human evaluation results

Model Prompt1 Prompt2 Prompt3 Prompt4 Prompt5
Human Commit

GPT4 10.47 - - - -
Llama3 7.98 11.00 11.11 10.67 11.81
Mistral 10.62 10.25 10.56 9.88 10.99

Bot Commit
GPT4 10.35 - - - -

Llama3 7.01 10.00 9.68 8.92 13.17
Mistral 9.92 10.57 10.32 9.43 9.87

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the application of LLMs for
network commit messages automation. Overall, LLMs gen-
erally perform well in tasks involving automatically gener-
ated commits messages, particularly with Llama 3 after the
application of RAG techniques. The bot commits generated
by Llama 3, enhanced by RAG, exhibit strong performance
in both automated and human evaluations. This is likely
due to Llama 3’s enhanced capability to produce content
that is already well-structured and formatted. In contrast, the
evaluation scores for human commits are more balanced and
consistent across different models and prompt methods. We
have also observed that automated metrics are not stable
when assessing commit message generation. For instance, in
evaluating the Mistral model, there is a significant discrepancy
between the results of automated assessments and human
evaluations, indicating inconsistency. Therefore, traditional
natural language processing metrics such as BLEU, ROUGE,
and METEOR are not particularly effective in evaluating the
generation of commit messages. Consequently, it is crucial
to identify and develop appropriate evaluation metrics for
different tasks related to large language models. Low score
on the human evaluation of the Integrity why criteria could
benefit from additional information either in the prompt or
using an additional component to gather context information.

Moreover, in addition to commit messages automation,
LLMs are poised to revolutionize network management by
understanding and automating network changes based on both
developer and business intents. Similarly, LLMs can bridge
the gap between high-level business requirements and network
operations. This dual capability enables seamless integration
of business strategies and technical execution, streamlining the
process of network configuration. However, these applications
need to be further addressed and will open up future research
directions.

REFERENCES

[1] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav,
“Deepconf: Automating data center network topologies management
with machine learning,” in Proceedings of the 2018 Workshop on
Network Meets AI & ML, ser. NetAI’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 8–14. [Online].
Available: https://doi.org/10.1145/3229543.3229554

[2] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi,
“Deep learning for physical-layer 5g wireless techniques: Opportunities,
challenges and solutions,” IEEE Wireless Communications, vol. 27,
no. 1, pp. 214–222, 2020.

[3] D. M. Manias, A. Chouman, and A. Shami, “Towards intent-based
network management: Large language models for intent extraction in 5g
core networks,” in 2024 20th International Conference on the Design of
Reliable Communication Networks (DRCN), 2024, pp. 1–6.

[4] H. Zhang, A. B. Sediq, A. Afana, and M. Erol-Kantarci, “Large
language models in wireless application design: In-context learning-
enhanced automatic network intrusion detection,” 2024. [Online].
Available: https://arxiv.org/abs/2405.11002

[5] P. Sikorski, L. Schrader, K. Yu, L. Billadeau, J. Meenakshi,
N. Mutharasan, F. Esposito, H. AliAkbarpour, and M. Babaiasl,
“Deployment of nlp and llm techniques to control mobile robots at the
edge: A case study using gpt-4-turbo and llama 2,” 2024. [Online].
Available: https://arxiv.org/abs/2405.17670

[6] Y. Kim, D. Kim, J. Choi, J. Park, N. Oh, and D. Park, “A
survey on integration of large language models with intelligent
robots,” Intelligent Service Robotics, Aug. 2024. [Online]. Available:
http://dx.doi.org/10.1007/s11370-024-00550-5

[7] P. Xue, L. Wu, Z. Yu, Z. Jin, Z. Yang, X. Li, Z. Yang, and
Y. Tan, “Automated commit message generation with large language
models: An empirical study and beyond,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.14824

[8] L. Zhang, J. Zhao, C. Wang, and P. Liang, “Using large language
models for commit message generation: A preliminary study,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.05926

[9] T. Zhang, S. G. Patil, N. Jain, S. Shen, M. Zaharia, I. Stoica, and J. E.
Gonzalez, “Raft: Adapting language model to domain specific rag,”
2024. [Online]. Available: https://arxiv.org/abs/2403.10131

[10] W. Huang, X. Zheng, X. Ma, H. Qin, C. Lv, H. Chen, J. Luo,
X. Qi, X. Liu, and M. Magno, “An empirical study of llama3
quantization: From llms to mllms,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.14047

[11] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7b,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.06825

[12] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[13] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[14] B.-K. Lee, C. W. Kim, B. Park, and Y. M. Ro, “Meteor: Mamba-based
traversal of rationale for large language and vision models,” 2024.
[Online]. Available: https://arxiv.org/abs/2405.15574

[15] J. A. Shah and D. Dubaria, “Netdevops: A new era towards networking
& devops,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electron-
ics & Mobile Communication Conference (UEMCON). IEEE, 2019,
pp. 0775–0779.

2024 20th International Conference on Network and Service Management (CNSM)


