
Challenges of Event-based Streaming and Queuing
as Data Exchange for Network Digital Twins

Sebastian Rieger, Leon-Niklas Lux, Sven Schickentanz, David Hermann, Thomas Mott, Moritz Freund
Applied Computer Science Department

University of Applied Sciences Fulda, Germany
{sebastian.rieger, leon-niklas.lux, sven.schickentanz1, david.hermann, thomas.mott, moritz.freund}@cs.hs-fulda.de

Abstract—Network digital twins offer great potential for net-
work management and monitoring, as they allow to use virtual
representations of a real network, e.g., for risk-less tests and
what-if analysis regarding fault, configuration, performance and
security management. The digital twins take existing network
emulation and simulation that is already established for these
tasks a step further by allowing contiguous bidirectional state
synchronization between the twins and the real network, ideally
close to real-time. However, particularly in large networks, this
holds significant challenges regarding the volume and velocity of
the data to be exchanged between the twins and especially the
real network. This paper presents an extension to the DigSiNet
network digital twin environment to support message queues
and event streaming platforms as scalable near real-time data
exchange for the twins. Challenges for different common network
management and monitoring data types are identified in an
experimental setup and discussed regarding their application in
use cases for network digital twins and the DigSiNet prototype.
The implementation is provided as an open-source repository.

Index Terms—Network Management, Network Automation,
Network Digital Twin, Event Streaming, Message Queues

I. INTRODUCTION

Network Digital Twins (NDT) have been suggested to im-
prove several areas of network and related service management
scenarios. Although these concepts can take advantage of ex-
isting and well-established network emulation and simulation
platforms to implement twins [1], the core requirement of
NDTs is to be able to bidirectionally and quickly (i.e., even
in near real time) synchronize the state of twins and the
connected real network. Computer networking is considered
special in this regard, as a lot of data is available and an
unsolved question is how these data can be used effectively in
NDTs. Especially, this poses challenges regarding the volume
and velocity of data to be continuously transferred between
the models. The challenges are further amplified by the fact
that to replicate the live state of the network, different layers
have to be considered. While the replication of configuration
state and related changes is feasible and leads to relatively
low data volume, synchronizing monitoring or even traffic data
between the real network and its twins is challenging at best or
close to impossible. This stems not only from the volume and
velocity of the data, but also from the fact that, for example,
stateful connections would only be replicable by snapshotting
the state of the entire network and connected hosts’ states
(i.e., TCP states) that would have already changed in reality
while being synchronized to the twin. Even more complex in

volume regarding the synchronization of the twins’ states is
the redundancy of data being sent across the network. Identical
monitoring data, traffic flows and packets traverse multiple
links and nodes within the network that would need to be
replicated and sent to the twins.

To tackle these problems, we developed an extension of
our previously presented prototype [1] that is able to run
multiple NDT as so called siblings in individual virtual
network environments (VNE). Compared to these VNE and
network emulators or simulators, the prototype allows to run
multiple network topologies supporting a continuous bidirec-
tional exchange of network management and monitoring data.
The proposed enhancements are twofold. First, an adaptive
selection and synchronization of only a small set of relevant or
desired state data is developed and presented. Second, scalable
event-based streaming and queuing solutions are evaluated and
adapted for use with NDT state synchronization, including
the discussion of potential deduplication and correlation of
transferred data. The developed extensions are discussed and
evaluated by pulling network management and monitoring data
of different granularity from the real network and its siblings,
effectively synchronizing parts of the state and characteristics
of the network to be able to use them for experiments, e.g., in
fault, configuration, administration, performance and security
management in the twin networks. As state-of-the-art solutions
for event-based streaming and queuing, Apache Kafka and
RabbitMQ are used in our prototype. By using these standards,
external connections to and from the sibling networks and its
contained network elements are enabled. The implementation
is provided as open-source in a public GitHub repository1.

II. RELATED WORK

Digital Twins (DT) have proven to be a valuable tool,
enabling abstraction and optimization of complex real world
systems [2] and efforts are made to apply the concept of DT
to network management [3] [4] [5]. However, cloning a real
network into a VNE is hardly feasible for networks at scale [1].
To address this issue, the DigSiNet architecture [1] combines
multiple DTs that emulate subsets of the properties of the real
network as so-called siblings, leveraging the individual bene-
fits [6] of different VNE types and platforms. A key challenge
for DT and hence DigSiNet is data acquisition and processing

1https://github.com/srieger1/digsinet

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



[3]. As a network grows, the amount of accumulating data
grows too, thus increasing the performance demands of the
DT [7] [8]. Using RabbitMQ and Apache Kafka to tackle this
challenge is proposed in [9] for optical network telemetry and
5G network digital twins in [10]. Compared to this related
work, this paper holds the following contributions:

• Practical testbed with a real-world prototype that can be
used to evaluate the practicability of NDT data exchange
volume and velocity.

• Assessment of using the prototype for multiple NDT-
based network management and monitoring use cases.

• Modular and extensible open-source repository [1] to be
used for NDT experiments.

III. DIGSINET NETWORK DIGITAL TWIN ENVIRONMENT

Figure 1 shows the DigSiNet architecture that was initially
presented in [1] and extended for this paper.

Fig. 1. Event-based Data Exchange for Network Digital Twins in DigSiNet

DigSiNet’s architecture consists of a Real Network (e.g.,
physical or virtual reference network) and multiple Siblings
that mimic, emulate or simulate (depending on the used VNE)
parts and individual characteristics of the real network in the
form of twins. Further components of the DigSiNet architec-
ture are Controllers, that manage and monitor the siblings
and the state of the real network. Tasks and functionality
of controllers can be influenced by user-defined Applications
that the controllers run, similar to northbound applications in
SDN controllers. For example, an application can react on
a certain change or event in the real network or a sibling
and modify the state or configuration of other siblings or the
real network. Changes and events are detected by Interfaces

as another component of DigSiNet. Currently gNMI2 is sup-
ported as an interface to detect state and configuration changes
in the real network and/or its siblings. However, DigSiNet
offers a modular architecture, meaning that custom interfaces,
controllers, applications etc. can be implemented besides the
ones provided by default (e.g. SNMP, CLI interfaces etc.).

The final additional component in the DigSiNet architecture
are Queues. While initially Python queues were used in the
prototype for the data exchange between Python multiprocess-
ing processes, the extensions presented in this paper implement
a modular approach, utilizing RabbitMQ or Apache Kafka
to enable event-based streaming and queuing. This way, a
core requirement for NDT regarding efficient and scalable
data acquisition and processing [3] is addressed. Also, by
leveraging state-of-the-art message queues and event streaming
platforms, DigSiNet NDTs can now access external resources
or vice-versa be controlled by them. For example, sibling
configuration or state can now be reported to external network
management platforms as well as accessed by them. Further-
more, especially state-of-the-art event streaming platforms like
Apache Kafka, do not only support collecting current but
also persist and process historical data. Therefore, previous
state and configuration data of the network can be used to
leverage the siblings for fault or performance analysis or what-
if experiments as well as configuration drift assessment.

Keeping the siblings and the real network in sync is chal-
lenging if not only low volume and velocity configuration
data is to be synchronized, but rather also monitoring, state
and traffic data. Ensuring timely and proper state transfer
between the siblings and the real network is essential regarding
the twins’ fidelity and accuracy of the desired use case
and network model. This includes being able to change the
simulation or emulation in the sibling and restore an old state
of the network or inject traffic patterns, e.g., to detect and
forecast anomalies or simulate effects of potential changes in
what-if or fault analysis scenarios. As a result, bulk updates of
the siblings’ network models have to be supported to simulate
a state of the real network or reconcile drift between them.
To avoid drift, continuous feedback loops can be established
to reconcile the siblings’ and the real network. By extending
DigSiNet to support message queues and event streaming, it
can be used as a testbed to assess the applicability of NDT for
the synchronization of network management and monitoring as
well as traffic data. A corresponding testbed and its functional
components are described in the following subsections.

A. Network Modeling and Interfaces

Applying the concept of DTs to the networking domain
poses unique challenges [11]. While the degree of digitaliza-
tion that is present on network components allows for rather
easy acquisition of real-time data necessary for implementing
DTs, the amount of data that large-scale networks produce is
hard to manage [3]. DigSiNet attempts to provide a solution to

2https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-
specification.md

2024 20th International Conference on Network and Service Management (CNSM)



this problem following a divide-and-conquer approach: instead
of trying to emulate the network as a whole, it attempts to
emulate siblings that focus on a distinct characteristic as a part
of the real network that is relevant to a corresponding use case.
As an example, a sibling that is designed to perform security
related experiments could aim to replicate configuration of
the devices that form the network as accurately as possible,
without trying to emulate traffic-related characteristics [1].
Multiple Siblings can be combined to gain insights that expand
on the simulated aspects of individual siblings. Consequently,
each sibling in DigSiNet can use an individual network topol-
ogy (e.g., only a minimal part of the network that is essential
for the sibling’s use case). DigSiNet currently uses the network
model used by containerlab and is able to add or remove nodes
and links for each sibling on the fly, as well as fold parts of the
network to abstract and handle complex network architecture
while focusing on available sibling resources and the intended
use case and experiments in the sibling.

B. Data Collection and Exchange

Existing, standardized interfaces for managing and moni-
toring network devices, such as gNMI, allow the collection of
real-time data from the physical network [3]. DigSiNet aims to
be interface-agnostic, providing an abstract interface that can
be used to implement different management interfaces besides
the included reference implementation for gNMI [1]. Data can
be acquired from network hardware by either polling (pull)
it in a defined interval or by subscribing (push) to specified
gNMI paths, automatically receiving updates as changes occur.
As it is possible that data arrives quicker than DigSiNet can
process it, an event broker extension was implemented, to
allow scalable queuing of events.

C. Event-based Streaming and Message Queuing

Two reference implementations have been developed for
the event broker. First, RabbitMQ was implemented as a
state-of-the-art scalable, flexible and reliable distributed mes-
sage queuing solution. Second, an Apache Kafka connector
was implemented, with Kafka being a de facto standard in
scalable distributed event streaming platforms, including data
processing and persistence. Both solutions allow decoupling
and scale-out of DigSiNet, especially for the siblings. Also,
as they are prevalent standard tools, siblings can now connect
to external network management and monitoring services and
vice versa. By using two different implementations (RabbitMQ
and Apache Kafka), more external network management solu-
tions can be connected to DigSiNet. Also, RabbitMQ is better
suited for task-oriented sibling interconnections while Apache
Kafka offers better support for persistence and data processing.
For Apache Kafka, network telemetry streaming standards are
also being developed in the IETF, i.e., YANG Push.

D. Experimental Setup

To test the applicability of the proposed event broker for
NDT and evaluate possible use cases, a Ubuntu 22.04 VM

(10GB RAM, 4 vCPU) running DigSiNet and containerlab3

was set up. The real network is running as a virtual network
using a minimalistic topology with 2 switches connected
directly to each other in containerlab. The switches run Arista
containerized Extensible Operating System (cEOS) 4.30.1F.
Containerlab also supports importing real network topologies4.

Three siblings are automatically created as twin topologies
in containerlab by DigSiNet, as shown in 1. These siblings
run adapted network topologies5, with the first sibling (named
continuous integration) replacing a switch and link in the
topology and the second sibling (named: security) removing
one switch and replacing it with a Linux container while the
third sibling (named: traffic engineering) is not automatically
started for the experiments, as previously presented in [1].
While the real network intentionally uses a simplistic network
topology, this still leads to 5 running cEOS containers (2 in the
real network, 2 in continuous integration and 1 in the security
sibling) requiring approx. 5 GB of RAM in total. Additionally,
a single-node Kafka and Zookeeper container setup is running
in the VM, accounting for about 2 GB of RAM. DigSiNet runs
as a Python process that uses the proposed event broker exten-
sions to connect to Kafka with topics for the 3 siblings and the
real network. Additionally, 3 controllers and 5 gNMI interface
subscription handler processes for each cEOS container are
running. Remaining CPU and memory resources are enough to
prevent capping and swapping during experiment runs. Besides
CPU and memory resources, latency of change notifications
received using gNMI subscribe on paths of the cEOS nodes
are sampled, measured and tracked during experiment runs.

While the topology is intentionally simplistic and Kafka as
well as DigSiNet are using a single node, measurements were
reproducible without significant deviations. Consequently, as-
sumptions regarding requirements and challenges for the data
exchange between the twins and the real network are also
applicable to larger topologies by scaling out the containerlab,
Kafka and DigSiNet environment. Based on the number of
events and transferred data described in the next section, an
extrapolation to larger and common real-world networks is
possible. Also, especially based on the observed changes, the
load for bidirectional state transfer can be estimated.

IV. EVALUATION

Figure 2 and 3 show the results from the experiments as
gNMI event rate and cumulative throughput in a logarithmic
scale using Grafana visualizations. The legend shows five
cEOS (2 in the real network, 2 in the continuous integration
and 1 in the security sibling, as presented previously in [1])
nodes that were continuously monitored for changes. All
presented experiments were run 10 times without significant
deviations compared to the measurements shown in the figures.
Samples are collected over 5 minutes, followed by a 2 minute
cool-down, forming each sample block in the figure. The first
sample block around timestamp 8:51 in the diagram uses

3https://containerlab.dev
4https://github.com/jbemmel/netsandbox
5https://github.com/srieger1/digsinet/blob/60e5b373/digsinet.yml#L33-L89

2024 20th International Conference on Network and Service Management (CNSM)



gNMI get to pull all configuration values (gNMI path: /, data
type: config) from the 5 running cEOS nodes, sends the gNMI
notifications to three Apache Kafka topics (realnet, continu-
ous integration and security) and reports the measurements
shown in the figure to metrics in Prometheus as a time series
database and monitoring system. gNMI get was used to pull
the samples from the nodes every second. Consequently, the
first four sample blocks that used gNMI get show 5 events per
second (one poll for each node) in Figure 2.

Fig. 2. Number of events measured using gNMI get versus subscribe.

In the second run starting at 8:58, again gNMI get was used
to pull the information, but in this case only state/monitoring
data was polled (path: /, type: state). Third run starting around
9:05 pulled the operational state (interface status, etc.) from
the nodes (path: /, type: operational). The fourth run, starting
shortly before 9:12, pulled all data types from the nodes (path:
/, type: all). For the fifth block at 9:19, gNMI subscribe was
used with a subscription to push all information from a node
each second (path: /, subscription mode: sample, delay: 1s).

As can be observed in Figure 2, the notifications for the
subscription contain separate updates for each subscribed
information. The last, sixth block starting 9:26 used gNMI
subscribe to only receive values that have changed (path: /,
subscription mode: on change). Consequently, the number of
events as well as their size shown in Figure 3 are significantly
lower and fluctuate as only changes for dynamic values (i.e.,
primarily state and operational values as config values are
typically constant during runtime) are received. This also
relates to the load on the Kafka topics and their increase in
size as the throughput defines the ingestion rate of events.

Fig. 3. Size of collected gNMI notifications from real network and siblings.

Fig. 4. CPU load during the data transfer between real network and siblings.

The CPU load of the host running the virtual net-
works, Kafka and Prometheus, is shown in Figure 4.
Lastly, Figure 5 shows the latency of gNMI changes
between the real network and the siblings. To mea-
sure the latency, a change in an interface description
containing a timestamp is made on clab-realnet-ceos1
using gNMI set. Another process waits for incoming
changes in the description using gNMI subscribe (path: in-
terfaces/interface[name=Ethernet1]/config/description, mode:
on change). As soon as the change with the timestamp comes
in, the process measures the delay and sends it to Prometheus.

Fig. 5. Latency of gNMI operations during data transfer to and from siblings.

As expected, the samples using gNMI subscribe show a
significantly higher event rate compared to pulling the infor-
mation using gNMI get. Also, the size of subscribed events in
bytes is only a small fraction (around 1/64) of the amount of
bytes to be transferred and stored in the topics when polling
the same gNMI path with gNMI get. This does not only
compress the data to be stored in the topics, but also increases
the performance by filtering redundant data when setting the
sibling network to a historical state consumed from Kafka.

However, subscription only reports state delta, so a full
view of the network’s state requires also gathering unchanged
static data for config, state and operational values. Since the
CPU load is less when using subscribe-based push instead
of pulling, a solution for this is a low-frequency (e.g., every
5 minutes) sample-based subscription, as shown in the fifth
sample block around 9:19 in Figure 2, together with a more
frequent on change subscription. This way, the highest CPU
load (and gNMI ”ping” latency) will only occur during the
initial setup of the full subscription and not for subsequent
samples coming in every 5 minutes. Lower CPU load would
especially be valuable for real-world physical network devices
compared to the experimental virtual setup used in this paper,
as transferring data to the twins increases the load on control
plane resources, especially CPU.

As can be seen in the figure for the first three sample blocks

2024 20th International Conference on Network and Service Management (CNSM)



using polling, exporting mostly static config data has the
lowest CPU load, operational data causes a slightly higher one
and state data accounts for the highest CPU load. Depending
on the use case of the sibling, also only full state and/or
operational data can be subscribed to. Operational data (e.g.,
port status) has the smallest size and throughput, followed
by config (settings on the virtual switch), with state data
(packet, error, byte counter of interfaces, etc.) accounting for
the biggest size, as shown in the figure.

For the fidelity of the twins, besides these challenges
regarding the granularity of exported data with respect to
its volume and velocity, also the latency for changes in the
real network to be detected and propagated to the siblings is
relevant, especially if near real-time operation is desired, e.g.,
to detect fault, performance or security issues and evaluate
as well as mitigate them using the siblings. Baseline for this
latency was approx. 0.6s in the experimental testbed, when no
other gNMI operations were performed. When pulling gNMI
data, the ping went up to 1.3s. While pulling state instead
of config data, spikes to 1.0s occurred significantly more fre-
quently. Pulling only operational data from the nodes kept the
latency close to its baseline around 0.7s, consequently allowing
high-frequency operational data updates (e.g., more frequent
updates of overall link status compared to individual fine-
grained counters). During the initial setup of the subscription
to all available gNMI data from the nodes in the beginning
of the fifth sample block, the latency briefly increased to a
maximum of 1.96s in the experiments.

Experimental results were used for an assessment of the
challenges of NDT data exchange. Different data types, as
already stated in this section for config, state and operational
data, have to be differentiated regarding their volume and
velocity. This is not only important to evaluate the feasibility
of transmitting them near real-time between the real network
and the sibling networks, but also when setting the twins
to a historical network state based on these data, e.g., to
perform fault, configuration, performance or security analysis.
The same holds true when setting the sibling networks to
an artificially generated state for test or benchmark scenarios
(e.g., traffic engineering or prediction). As explained above,
differential state data serves as a significant compression, also
removing duplicate data. However, also static data is needed
to present a complete representation of the network’s state. In
the experiments, this full state data accounted for approx. 2
MiB/s, as shown in Figure 3, though in our experiments only
5 nodes were exporting data and the network was nearly idle.
This suggests that, as discussed in [1], only small portions of
real-world networks’ state can be used timely and accurately
in siblings especially with limited hardware resources.

As experiments were run in a virtual testbed, traffic in the
network was not measured and exported to the siblings, which
is considered as a next step. However, as previously shown
for real-world campus network traffic in [12], flow and packet
level data is even more redundant and volumetric given the
average size of flows and current network bandwidths.

V. DISCUSSION

The experimental setup of DigSiNet using the event broker
implementation presented in this paper was used to assess the
performance and applicability of message queues and event-
based streaming using gNMI in NDT scenarios. Based on the
preliminary evaluation results, the DigSiNet environment can
be used to evaluate the fidelity and scalability of the siblings,
e.g., to measure the data exchange volume and velocity for
different network management and monitoring use cases. As
the testbed is using real-world network operating systems
(NOS) in containerlab, this allows to assess the practical
application and value of NDT and characteristics that can be
transferred to physical networks and devices. Especially, for
challenges inherently connected to NDT data exchange like
latency of state changes and possibilities to reconcile diverging
state of siblings and the real network. This divergence can be
intentionally, e.g., while carrying out what-if or troubleshoot-
ing analysis in which the current or a historical state of the
real network should be imported as a bulk update.

TABLE I
DATA TYPE ASSESSMENT FOR PRACTICAL NDT DATA EXCHANGE

Data Type Volume Velocity Use Case
Configuration Data low very low synchronization, repli-

cation, action
Monitoring Data medium medium partial replication, ac-

tion (partially redun-
dant)

Aggregated Traffic high medium traffic emulation & si-
mulation, action (re-
dundant)

Packet-level Traffic very high very high partial traffic emulation
& simulation (infeasi-
ble for real-world traf-
fic / only initial packets,
highly redundant)

During the implementation and the experiments, we iden-
tified and assessed 4 types of management and monitoring
data to be considered in NDT scenario. Table I shows a
classification of these data exchange types. Regarding the
fidelity and applicability of the siblings compared to the real
network, the challenges we identified again primarily relate to
the volume and velocity of the exchanged data. The higher
either volume, velocity or both, the higher the challenge to
use this data type in the practical setup of NDT.

Based on the observed amount of data in our experi-
ments and the resulting classification, we derived possible
use cases shown in the last column in Table I. Synchro-
nizing the data between the real network and its siblings
using gNMI was only possible for Configuration Data as
its volume and velocity (frequency of changes within the
data) are low. Configuration Data of the cEOS nodes (e.g.,
openconfig:interfaces/interface/config, /subinterfaces etc.) is
collected using gNMI get or subscribe and synchronized using
gNMI set with nodes in the sibling based on filters defined
in DigSiNet’s config file. As the OpenConfig specification
currently does not support explicitly filtering config values in

2024 20th International Conference on Network and Service Management (CNSM)



subscriptions, though an extension was suggested, a config-
urable filter to achieve this was implemented in DigSiNet.
For Monitoring Data that has larger volume and velocity,
partial replication is possible. In DigSiNet, this is achieved
using gNMI subscribe on paths holding state data (e.g.,
openconfig:interfaces/interface/state, port state, in / out bytes
& packets, link utilization, error count, device CPU, memory
utilization, etc.), and persisting it in the relevant sibling topics
in Kafka. This also allows processing the data by consuming
it from the topics instantly or streaming historical data for
subsequent analysis. Besides replication, both aforementioned
data types can be used to trigger actions in the siblings or
the real network. The remaining two data types identified
for NDT data exchange are related to traffic being sent over
the links. Aggregated Traffic can be collected on the nodes,
e.g., using NetFlow/IPFIX. This way, consecutive packets
belonging to the same traffic context can be collected as
flows, e.g., periodically (active flows) or after their termination
(inactive flows). Even Aggregated Traffic already leads to a
high traffic volume in real networks like our University’s
campus network as, e.g., evaluated in [12].

Depending on the active and inactive timeout for flow
exports from the switches, the frequency and hence velocity
of the data is also at least medium compared to the other data
types. However, traffic flows can be used to create artificial
packets and resulting transfers in the NDTs as traffic emulation
or simulation. Another use case is again to use this data
to perform an action in the siblings or, if the Aggregated
Traffic data was received from tests in the sibling, also on
the real network. Lastly, we observed and assessed Packet-
level Traffic to be considered as data being exchanged between
real network and siblings. However, this traffic has very high
volume and velocity and is highly redundant. If high-speed
transfers are carried out over multiple switches in the real
network, to transfer them to the NDTs running in the siblings
would require multiple times the bandwidth of the entire real
network and as the packets are sent over the switches, the
same data would be repeatedly transferred. Therefore, Packet-
level Traffic can only be used for partial traffic emulation or
simulation based on a small size of sampled packets (e.g.,
initial packets of a flow, in-band network telemetry data, attack
detection traffic samples etc.).

Consequently, the main challenge we assessed regarding
data exchange between twin networks themselves and espe-
cially between twins and the real network was posed by the
desired granularity and redundancy of the data type based
on the desired NDT use case. While state-of-the-art message
queues and event streaming platforms are designed for high
volume and velocity of data, the amount, especially of traffic
data in real-world scenarios [12], is already too large for the
export. Therefore, mechanisms have to be implemented as
extensions for DigSiNet to sample only initial packets of a
flow based on previously filtered transfers being relevant for
sibling use cases. Also, inter- and intra-switch deduplication
mechanisms for exported partial traffic (e.g., based on bloom
and cuckoo filters) are possible and required.

A. Use Cases

DigSiNet can be used for several use cases within the
FCAPS network management paradigm. However, it is partic-
ularly suited for fault and configuration management as NDTs
offer ways of testing or troubleshooting a network with less
risk. For example, it allows performing diagnosis/isolation and
correlation/aggregation steps of the aforementioned paradigm
on the NDT instead of the real network. This way, the
twin allows network administrators to verify the part of the
network that is causing the problem as well as simulate
future consequences of the fault. DigSiNet can also be used
for configuration management use cases, particularly testing
software updates and device configuration changes before
deploying them to the real network. This reduces the risk of
potential, unnecessary downtime or maintenance.

Another particular use case that DigSiNet was developed
for is training and higher education courses. In this setting,
DigSiNet allows learners and operators to load a specific state
of a real network topology into a learning lab and run ex-
periments (e.g., what-if scenarios or fault analysis). As stated
above, this can also be used to test/evaluate new firmware,
features or protocols in a safe environment. Besides learning
labs, a similar concept can be used as an onboarding tool for
new employees or trainees. The learning environment frontend
being developed for DigSiNet supports multiple views on the
same topology. It can display the current state of the real
network and also provide multiple variants of a virtualized
version of this network running in the siblings. The variants
can be selected in the form of layers (also supporting sub-
layers for topology information, e.g., on layer 2, VLANs,
overlay networks, etc.) and tabs on a web-based dashboard,
that also allows to display streaming context information like
counters and historical network state or configuration data.
As DigSiNet supports different backends, i.e., VNEs, for
each sibling, different variants can use individual network
emulation or simulation environments best fitting the purpose
of the twin’s use case. This way, simulators can be used for
exact and deterministic timing, e.g., of network traffic, while
emulators can be used to realistically mimic the network de-
vices’ behavior and connect to external networks and network
management, automation, monitoring and operations tools.

B. Data Visualization

The visualization of network data is a critical aspect of fully
leveraging the potential of NDTs. Although DigSiNet does not
yet offer comprehensive visualization capabilities in its current
form, the underlying technology presents the potential for the
development of advanced dashboards. Such dashboards are
already being adopted in the enterprise sector, as demonstrated
by the Nokia Digital Twin project, where they are used to
display network architectures and data flows in real-time,
thereby supporting improved decision-making and problem
analysis. By integrating event-based streaming and message
queues, it is possible to create dynamic network maps that are
continuously updated. These maps can not only visualize the

2024 20th International Conference on Network and Service Management (CNSM)



current structure of the network, but also make the impact of
configuration changes and network events traceable.

A possible extension of this technology could be the imple-
mentation of a ”network time machine”. This feature could en-
able the visualization of past network states to analyze changes
over time. This would be particularly useful for fault diagnosis
and performance evaluation, as it would allow administrators
to investigate the sequence of events and their impacts in
detail. Furthermore, such visualizations could provide context-
sensitive information that adapts depending on the selected
network segment or data point. This would enable deeper
exploration and analysis of specific events as well as their
causes and effects. The development of such visualization tools
could establish DigSiNet not only as a monitoring platform but
also as a comprehensive solution for active problem-solving,
network optimization or training scenarios. Figure 6 shows
DigSiNet’s dashboard with gNMI state data for 2 cEOS nodes,
including historical data for openconfig-interfaces:in-octets.

Fig. 6. DigSiNet dashboard showing state data of traffic engineering sibling.

VI. CONCLUSION AND FUTURE WORK

The presented assessment of using message queues (e.g.,
RabbitMQ) and event streaming solutions (e.g., Apache
Kafka) as extension for the DigSiNet digital twin environ-
ment revealed different use cases and challenges for the
data exchange in NDT scenarios. Implemented event broker
extensions for the prototype that are able to run multiple
twins of a real network concentrating on individual parts and
characteristics to be analyzed in each twin (so called sibling)
are available as a public open source repository. Use cases
of the DigSiNet environment leveraging the data exchange
discussed in this paper are network management and monitor-
ing tasks like configuration, fault and performance, as well as
security management, e.g., using continuous integration testing
for configuration changes, fault or performance analysis within
the siblings or security tests to detect vulnerabilities in the twin
and mitigate them accordingly in the real network. The main
challenge regarding the data exchange for NDT identified in
our experiments was posed by the granularity and redundancy
of transferred state and config data between the network
twins and the real network. As discussed, four different data
types were classified regarding their challenges and use cases
based on configuration, monitoring (state and operational) and

aggregated/packet-level traffic data using gNMI interfaces to
pull and push data from the network devices. Though state-
of-the-art event streaming and message queue solutions are
designed for performance and scalability, the exchange of
this raw state data, especially with respect to traffic data, is
not only close to infeasible, given the growing bandwidth of
network links, but also not useful, as it is highly redundant,
as discussed in the paper. To address this challenge, we
will extend our experiments and DigSiNet to evaluate further
filtering and especially deduplication techniques, leveraging,
e.g., bloom and cuckoo filters that track upcoming traffic
flows and disseminate them across the network to prevent data
from being collected and sent to the event broker and siblings
multiple times. In order to provide overall better scalability,
a dedicated service that performs data retrieval on network
devices and submission to a corresponding message queue
could be promising, as it provides the ability to scale this
critical part of the experimental setup as needed. This will also
allow for bigger networks and use cases like traffic engineering
analysis in a sibling to be further evaluated.

REFERENCES

[1] S. Rieger, L.-N. Lux, J. Schmitt, and M. Stiemerling, “DigSiNet: Using
Multiple Digital Twins to Provide Rhythmic Network Consistency,” in
NOMS 2024-2024 IEEE Network Operations and Management Sympo-
sium, 2024, pp. 1–5.

[2] C. Semeraro, M. Lezoche, H. Panetto, and M. Dassisti, “Digital twin
paradigm: A systematic literature review,” Computers in Industry, vol.
130, p. 103469, 2021.

[3] C. Zhou, H. Yang, X. Duan, D. Lopez, A. Pastor, Q. Wu,
M. Boucadair, and C. Jacquenet, “Network Digital Twin: Concepts
and Reference Architecture,” Internet Research Task Force, Tech.
Rep. [Online]. Available: https://datatracker.ietf.org/doc/draft-irtf-nmrg-
network-digital-twin-arch/06/

[4] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
D. López, A. A. P. Perales, P. Harvey, L. Ciavaglia, L. Wong et al., “Net-
work Digital Twin: Context, enabling technologies, and opportunities,”
IEEE Communications Magazine, vol. 60, no. 11, pp. 22–27, 2022.

[5] A. Hakiri, A. Gokhale, S. B. Yahia, and N. Mellouli, “A comprehensive
survey on digital twin for future networks and emerging internet of
things industry,” Computer Networks, p. 110350, 2024.

[6] J. A. Gomez Gaona, E. Kfoury, J. Crichigno, and G. Srivastava, “A
survey on network simulators, emulators, and testbeds used for research
and education,” 2023, last accessed: 2023-06-04. [Online]. Available:
http://dx.doi.org/10.2139/ssrn.4457366

[7] P. Almasan, M. Ferriol-Galmés, J. Paillisse, J. Suárez-Varela, D. Perino,
D. López, A. A. Pastor Perales, P. Harvey, L. Ciavaglia, L. Wong et al.,
“Digital twin network: Opportunities and challenges,” 2022. [Online].
Available: https://arxiv.org/abs/2201.01144

[8] M. Liebsch, M. Stiemerling, and N. Schark, “Challenge: Network
Digital Twin - Practical Considerations and Thoughts,” Internet Research
Task Force, Tech. Rep. [Online]. Available: https://datatracker.ietf.org/
doc/draft-liest-nmrg-ndt-challenges/00/

[9] R. Vilalta, R. Casellas, R. Martı́nez, R. Muñoz, A. González-Muñiz, and
J. Fernández-Palacios, “Optical network telemetry with streaming mech-
anisms using transport API and Kafka,” in 2021 European Conference
on Optical Communication (ECOC). IEEE, 2021, pp. 1–4.

[10] M. S. Rodrigo, D. Rivera, J. I. Moreno, M. Àlvarez-Campana, and D. R.
López, “Digital twins for 5G networks: A modeling and deployment
methodology,” IEEE Access, vol. 11, pp. 38 112–38 126, 2023.

[11] W. Hu, T. Zhang, X. Deng, Z. Liu, and J. Tan, “Digital twin: A state-of-
the-art review of its enabling technologies, applications and challenges,”
Journal of Intell. Manuf. and Special Equip., vol. 2, no. 1, 2021.

[12] C. Hardegen, B. Pfülb, S. Rieger, and A. Gepperth, “Predicting network
flow characteristics using deep learning and real-world network traffic,”
IEEE Transactions on Network and Service Management, vol. 17, no. 4,
pp. 2662–2676, 2020.

2024 20th International Conference on Network and Service Management (CNSM)


