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Abstract—To enable robust wireless communications towards
the future Cyber Physical System by optimizing beamforming
in real time, it is essential to quickly estimate changes in
the radio environment map (REM) after altering the beam
direction. In addition, because of the difficulty to predict detailed
REMs with high accuracy, especially for millimeter waves, a
probabilistic REM, which estimates the radio signal strength
at any point as a probability distribution rather than as a
deterministic value, is expected. In this paper, to enable fast
and probabilistic REM estimation, we propose a scheme that
divides the estimation formula into a linear term and a Gaussian
Process Regression (GPR) term to minimize the recalculation
time associated with beam adjustments. We also propose a GPR
kernel that uses polar coordinates centered on the base station
angle to better capture the characteristics of narrow beams
like millimeter waves. We evaluated the proposed scheme using
Kullback-Leibler Divergence (KLD) to compare the measured
and estimated distributions of the radio signal strength. In the
REM estimation after beam adjustment, an accurate distribution
is estimated at 29 out of 35 points with a KLD of 0.5 or lower. The
proposed method achieved approximately 50 times faster REM
reconstruction compared to a simple REM using GPR, enabling
dynamic beam-forming optimization in mm-wave environment.

Index Terms—Radio Environment Maps, mm-wave, Cyber-
Physical Systems, Beamforming, Gaussian Process Regression

I. INTRODUCTION

Research on Cyber Physical Systems (CPS) is actively
progressing toward a future advanced society, where remote
controlled robots, drones, and cars co-exist with humans and
help each other safely and efficiently. In these systems, robots
acquire information about their surroundings via wireless
communication, and control is carried out based on that
information, thus stable wireless communication is crucial.
If wireless communication is disrupted for any reason, there
is a risk that robots may behave unexpectedly or remote
operations may be interrupted, posing potential dangers to
both humans and robots. Therefore, it is expected that active

network control, such as beamforming [1], will optimize radio
conditions according to robot movements.

To provide stable wireless communication at all times in
any situation, it is important to accurately understand the
geographical condition of radio communication in the area,
which is called Radio Environment Maps (REM), or the digital
twin of the radio communication environment. In addition,
there is another digital twin that represents a real space where
robots and humans collaborate. By combining these digital
twins, a safe remote robot control becomes available. However,
because of constraints such as sensor placement and costs,
it is not realistic to directly observe the radio conditions of
the entire area. Therefore, there have been many studies to
estimate the radio wave conditions in the entire area based on
data acquired from a part of the area [2]–[10]. However, in a
dynamic beamforming environment, it is still challenging to
estimate the REM after changing the beam in real time.

The use of millimeter waves to collect large amounts
of real-time information from sensors (such as LiDAR and
high-resolution cameras) makes REM estimation even more
difficult. In millimeter wave communications, the strength
of the received signal is significantly affected even by a
few centimeters of difference in the location of the terminal
device and the orientation of its antenna. Since predicting
detailed REMs with high accuracy is unrealistic in such an
environment, we discuss Probabilistic REM, which gives a
probability distribution of the signal strength at arbitrary points
on a map, rather than a deterministic value. The variance of
the distribution indicates the stability of the signal strength
and the certainty of the estimations. Thus, probabilistic REM
allows for robust estimation of the wireless radio environment
by analyzing the tail of the probability distribution of the
predicted radio strength.

The probabilistic representation of digital twins, introduced
in [11], for both REM and real space work together and
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help to improve the robustness of CPS. For example, a robot
can avoid a path where the signal strength is estimated to
be high but its variance is wider and choose a path where
the variance is small. On the other hand, if we look at
computational complexity, probabilistic REM requires a large
computational effort for probability calculations, and real-time
calculations are not easy. Therefore, in this paper, we propose
a method for real-time reconstruction of REMs in millimeter
wave environment with dynamic beamforming. Specifically,
the objectives of our study are as follows:

• Proposing a method that allows for fast recalculation of
the REM in response to changes in the beam direction.

• Proposing a method that provides prediction intervals
to account for differences in terminal orientation and
movements of a few centimeters.

To meet these requirements, we propose a probabilistic REM
estimation method that divides the estimation formula into a
linear term and a GPR (Gaussian Process Regression) term.
When the beam direction is changed, only the linear terms are
recalculated, allowing fast REM updates. The GPR term, on
the other hand, gives the probability distribution of the signal
strength and is fixed for the beam direction. We also propose a
GPR kernel based on an Automatic Relevance Determination
(ARD) inspired by an angular coordinate system centered on
the direction the base station is facing, rather than using Eu-
clidean distances in a Cartesian coordinate system. In general,
GPR assumes that the closer two points are in space, the higher
the correlation. However, in millimeter waves, this correlation
is not uniform in any direction in space, and different correla-
tions are observed on the axis of base station orientation and
on the orthogonal axis. This approach addresses the directivity
of millimeter waves and the characteristics of LOS/NLOS.
In the following, we briefly describe related work and then
our proposed method, followed by the measurement results
obtained from our in-door millimeter wave private 5G system,
and finally experimental evaluation results for the proposed
REM estimation method.

II. RELATED WORK

There are so many studies that estimate the REM of the
entire area. For example, some studies proposed methods to
estimate REM based on the distance from access points (AP)
and the strength of radio waves at the observation points [2],
[3]. Such methods enable understanding of radio wave condi-
tions, which can be used for the control of robot operations
and the design of communication areas. GPR has been used in
previous REM research to provide prediction intervals [4]–[6].
In [4], a method is proposed to recursively estimate REM in
situations where measurement data are continuously added. In
[5], a technique is proposed that applies GPR within clusters,
created using k-means clustering, to reduce the computational
cost of constructing the overall REM. In [6], a method is
proposed for generating REM using deep Gaussian processes
to address cases where measurement data are sparse. In [7],
an attempt was made to separate the overall trends of radio
waves from the effects of spatial shadow fading. A log-path

model and a GPR with distance as input were used for the
overall radio wave trends. In addition, GPR was used for
spatial shadow fading. A method for estimating probabilistic
REM using MRF (Markov Random Field) is proposed in
[8]. The model can arbitrarily describe correlations between
any points and thus can capture the structure of the space
such as LOS/NOS. However, MRFs, especially those with
closed loops, are computationally expensive and difficult to
recalculate in real time. REM can also predict the signal
spectrum in a target area and help to manage the spectrum
data [9], [10]. In [9], it was demonstrated how the spectrum
map predicts channel performance metrics, such as channel
capacity, spectral efficiency, and secondary throughput. As
mentioned above, there have been many studies in the past
to estimate the REM, some of which explicitly aim to obtain
it probabilistically. However, it remains challenging to both
obtain the probability distribution and recalculate it quickly
when the beam direction is changed.

III. REM ESTIMATION METHOD

A. Overview

In this paper, millimeter wave radios are expressed in
probabilistic REM to take into account their spatio-temporal
variations. If these variations are viewed as a distribution, the
shape of the distribution is affected by various factors, such
as noise, fading, fluctuations of receivers, etc. We took into
account temporal and spatial variations in our measurements
and obtained a distribution that is nearly Gaussian, as shown
in the next section. Therefore, in this paper, we use a normal
distribution and employ GPR to derive probabilistic REM.

To allow fast recalculation and probabilistic estimation, the
proposed method divides the estimation of REM into two
components, namely a linear term L, which is affected by
the angle of beam radiation, and a GPR term G, which is not
affected, as shown in the following equation:

P (lT , b) ∼ N (L(lT , b) +G(lT ), σ
2
G(lT )), (1)

where lT and b represent the 3D position of the terminal
and the angle of the beam, respectively.The linear term L
represents the radio wave conditions considering the distance
attenuation and the angle from the beam center, while the
GPR term G primarily accounts for spatial factors such as
fading and provides probability distributions. The linear term
L includes b as a variable, while the GPR term G does
not; therefore, by limiting the recalculation to only the linear
term L when the beam changes, the computational load is
minimized. To address the directivity of millimeter waves, we
denote the 3D location of a terminal lT as (ρ, θ, ϕ) in polar
coordinates centered on the location and orientation of the base
station, as shown in Fig. 1. ρ is the distance between lT and
the base station. θ and ϕ are the angle between the orientation
of the base station and the orientation to the terminal, and the
rotation around the axis, respectively.
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B. Linear Term
The linear term is used to describe the overall characteristics

of the space, which is affected by the angle of the beams. The
linear term is expressed as a function based on the log-scale
distance between the antenna and the terminal, and the angle
between them. If there are multiple beams, the smallest angle
is used. Based on our preliminary experiments, we found that
the linear term expressed as the following equation largely fits
the measurement results.

L(lT , b) = β0 − 20β1 log(ρ)− β2∠(b, lT ) (2)

Here, L(b, lT ) denotes the signal strength in dBm at lT
assuming the absence of interference factors such as fading.
b and ∠(b, lT ) are the direction in which the base station
is facing, and the angle between b and the direction to the
terminal, respectively. When multiple beams are present, the
smallest angle is used. The parameters β0, β1, and β2 are
intended to be solved using multiple regression analysis using
measurement data obtained by experiments.

C. GPR Term
The GPR term primarily accounts for spatio-temporal fac-

tors such as noise, fading, fluctuations of receivers, etc. For
Gaussian Process (GP), the input variables are the data mea-
surement positions, and the output variables are the values
obtained by subtracting the linear term L(b, lT ) from the
measured RSRP (Reference Signal Received Power), so that
the sum of the Linear and GPR terms express the orig-
inal REM. This includes data measured in both the LOS
and the NLOS areas. As a result, the output values of the
GPR term at the LOS locations will be nearly zero with
some measurement errors, while at locations with significant
spatial shadow fading, such as NLOS, the values will be
large.In this study, we employ GPR to take into account
the instability and error of radio measurements. In existing
studies, data from each location were used as input data one
at a time, which did not account for the variations in the
received signal strength at each location. To address significant
variations due to the characteristics of millimeter wave, we
conducted measurements at varying spatio-temporal locations
by placing a measurement terminal on a turntable and trained
the GPR model with varying sample data. Using multiple
measurement data points around location l as training data
Dl(e.g. D1, . . . , DM ), this approach addresses the variations
due to differences in terminal orientation and small positional
changes that are prominent in millimeter waves. For any
natural number N , we define the output vector f corresponding
to the inputs l1, l2, . . . , lN ∈ L as follows:

f = (f(l1), f(l2), . . . , f(lN )) , (3)

where each input li represents a 3D location in the space
L, and L denotes the set of all possible 3D locations. The
GPR model uses these 3D locations as inputs to predict the
corresponding outputs f . Assuming that the observations are
subject to noise, the observation model can be expressed as:

Dn = f(ln) + ϵn, (4)

where ϵn is the observation noise, typically Gaussian with
mean 0 and variance σ2

obs.

K ′(ln, ln′) = k(ln, ln′) + σ2
obsδnn′ , (5)

where k(ln, ln′) is the kernel function, and δnn′ is the Kro-
necker delta. Thus, the Gaussian process GP is expressed as
follows (assuming a mean function m(l) = 0):

f ∼ GP(0,K ′(l, l′)). (6)

Given the observed data D, the conditional distribution of D
follows a normal distribution with the predicted mean G∗ and
the predictive variance σ∗2

G , calculated based on the Gaussian
process model with the following equations.

G∗ = k⊤
∗ K

−1D, σ∗2
G = k∗∗ − k⊤

∗ K
−1k∗

k∗ = (k(l∗, l1), k(l
∗, l2), . . . , k(l

∗, lN ))⊤, k∗∗ = k(l∗, l∗).
(7)

Using these equations, G(lT ) and σ2
G(lT ) can be calculated

as G∗ and σ∗2
G , respectively.

In this study, we propose a GPR kernel inspired by polar
coordinates to better capture the characteristics of narrow
beams like millimeter wave. In the kernel, the features of
the 3D location l are divided into two directions, one in
which the base station is facing and the other orthogonal to
it. Assuming that the correlations of spatial shadow fading in
these directions follow a normal distribution, the kernel uses
the RBF (Radial Basis Function) kernel.

kernel(l, l′) = σ2 exp

(
− p2

2L1

)
exp

(
− q2

2L2

)
, (8)

where p and q are distances in two directions, one the base
station facing and the other orthogonal to it, respectively, as
shown in Fig. 1. L represents the length scales for each di-
rection, indicating how quickly the correlation between points
decreases as the distance increases. σ is the scale parameter of
the kernel that controls the amplitude of the predicted output
of the model. The locations l and l′ are denoted as (ρ, θ, ϕ)
and (ρ′, θ′, ϕ′), respectively, in the polar coordinates centered
on the base station, and thus the distances p and q between
them in their directions are defined as follows:

p =|ρ cos(θ)− ρ′ cos(θ′)| (9)

q =
√

(ρ sin(θ) cos(ϕ)− ρ′ sin(θ′) cos(ϕ′))2

+(ρ sin(θ) sin(ϕ)− ρ′ sin(θ′) sin(ϕ′))2. (10)

Different length-scales L1 and L2 are used for each direction.
This allows the model to apply different correlations for these
directions. In the direction the base station is facing, the RSRP
values are close because the base station side of the LOS
location is, by definition, also an LOS location. Similarly, the
values are close in the direction opposite to the base station
at the NLOS location, which by definition is also an NLOS
location. However, its orthogonal direction does not exhibit
such properties. Therefore, the correlation in the direction the
base station is facing tends to be relatively high, whereas the
correlation in its orthogonal direction tends to be relatively
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Fig. 1. Distance used in the kernel

Fig. 2. The condition of indoor structures

low. This kernel allows for the appropriate capture of the
effects of spatial structures.

D. Evaluation of Probability Distribution Using KLD

Since the proposed method obtains the REM as a probability
distribution, an evaluation measure is necessary for this pur-
pose. Furthermore, in order to evaluate how well the estimate
obtained as a normal distribution fits the actual distribution, it
is necessary to evaluate not only the mean and variance, but
also the shape of the distribution. Therefore, we propose to
evaluate them using the Kullback-Leibler Divergence (KLD).
KLD indicates the divergence between the estimated prob-
ability distribution of the RSRP and the actual distribution.
Therefore, when the estimation accuracy is high, the KLD
value will be small. The formula is expressed as follows.

DKL(P ∥ Q) =
∑
i

P (i) log
P (i)

Q(i)
= EP

[
log

P (i)

Q(i)

]
(11)

Here, P (i) and Q(i) are the probabilities that the values of
the random variables following the probability distributions P
and Q, respectively, are i. P represents the distribution of the
measured data itself and Q represents the predicted values of
P . By this definition, the KLD cannot be less than 0.

IV. RADIO MEASUREMENT

A. Environment Description

We conducted an experiment in a real-life environment,
measuring the RSRP multiple times at arbitrary indoor points,
as shown in Fig. 2. The floor is mainly composed of a corridor
and an elevator hall. The corridor is approximately 40 meters
long and the elevator hall is 20 meters from the base station.
The elevator hall is in the NLOS area. In this measurement,
the measurement terminal is placed on a turntable and rotated
during measurement, as shown in Fig. 3. This rotation causes

Fig. 3. Measurement devices and methods

the blocking of radio waves by the terminal’s frame to vary,
and as the position changes by several centimeters, the radio
environment continuously changes, leading to significant fluc-
tuations in the received signal strength. For each beam angle,
measurements were taken at 35 locations, with approximately
120 measurements per location over about 2 minutes. During
these measurements, the measurement terminal was placed on
the turntable, rotating at at about one revolution per minute.

B. Device Description

The specifications of the base station are shown in Table I.
Its location is at the right end of the corridor in Fig. 2, with a
height of 2.7 meters and a tilt angle of 8°. As shown in Fig. 4,
the base station can configure the beam direction by specifying
the assigned beam number. In this measurement, beamforming
settings were measured in two scenarios: Static Beamforming
Scenario (only beam number 11; downward at an 8°angle) and
Dynamic Beamforming Scenario (in addition to beam number
11, beam numbers 29, 47, 65, and 83 are added; downward
at angles of 8°, 23°, 38°, 53°, and 68°). The beam settings in
the Dynamic Beamforming scenario are configured to reflect
the most significant changes in the REM, taking into account
the location of the base station. The measurement terminal
used was a millimeter wave compatible device, the APAL
raku+ [12]. It is capable of measurements in 1 dBm increments
within the range of -44 dBm to -140 dBm.

TABLE I
BASE STATION SPECIFICATION

Specification Details
Band 28 GHz (Band n257)

Bandwidth DL:400MHz (100 MHz x 4 CC),UL:100MHz
Antenna Directed antenna x64 (8x8)

Half-power angle V: 13.5, H: 13.5
Transmission power +8 dBm

Antenna gain 23 dBi
Maximum EIRP +31 dBm

C. Measurement Results

Figure 5 visualizes the average RSRP values at several
points in both the LOS and the NLOS areas. The red points
are from the LOS area, and the green points are from the
NLOS area. A RSRP value shown in the figure is the average
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Fig. 4. Beam Directions Configuration Based on Number Assignments

Fig. 5. Prediction based solely on the linear term.

of the series of data measured at the point. In this figure, the
base station is located at (x, y, z) = (0, 0, 2.7), and the beam
is emitted at a downward angle of 8°. The estimated RSRP
values using only the linear term are also shown as a blue
surface. It can be observed that the regression is well-fitted for
the LOS areas, but the linear term alone fails to account for
predictions in NLOS areas.The time series of measured RSRP
data at a point is shown in Fig. 6, which exhibits significant
fading effects, with continuously changing RSRP values. Since
it is virtually impossible to accurately estimate each of these
measurement point values, the objective of this study is to
estimate these values as a distribution. We also found that,
although the variance values were different at various points,
the shape of the distribution was almost Gaussian.

V. REM ESTIMATION RESULTS

We perform two types of evaluation of the accuracy of
REM. The first evaluation is the Static Beam Scenario, where
some measurement data are collected by fixing the beam angle
to train the GPR, and then the RSRPs of other points are
estimated without moving the beam. In this scenario, we divide
the measured data into training and test datasets. The RSRP
at the estimation points is predicted from the training data and
evaluated by comparing it with the measured data.

The second evaluation is the Dynamic Beamforming Sce-
nario, where the GPR is trained with a particular beam angle,

Fig. 6. Changes in RSRP due to small variations in the position or orientation
of the device

and then the REM is estimated for other beam angles. In this
scenario, measurements are only performed for a particular
beam angle obtained in the Static Beam Scenario to train the
GPR. Measurements for other beams are performed only for
validation, not for training.

A. Shape of Probability Distribution

We first verify the shape of the probability distribution of
the RSRPs. Here we train the GPR with all the measurement
data obtained for the Static Beam Scenario, and compared
the probability distributions obtained by the GPR and by the
measurement. The shapes of these distributions are generally
consistent. Figure 7 visualizes the measured and estimated
probability distributions at the coordinate (4, 0, 1.8) where the
KLD is at the median. In this paper, from our measurement
results, we consider the agreement between the actual data and
the predicted data to be high when the KLD value is between
0.5 and 1, and very high when the KLD value is 0.5 or lower.

Fig. 7. Estimated and Measured RSRP Distributions When KLD Equals 0.386

B. REM Estimation with Static Beam

In this evaluation, we cross-validated using 1 point out of
35 as validation data and the remaining 34 points as training
data, repeating this process for a total of 35 validations. The
KLD between the validation data and the estimated values
was calculated and is shown in Fig. 8 and Fig. 9. In Fig.
8, the y = 0 axis corresponds to the straight corridor, while
y = 2, 3, 4 corresponds to the locations of the NLOS elevator
hall. In the corridor, x = 0, 1, . . . , 10m has measurement
data at 1m intervals, and beyond 10m, data is available at
5m intervals, with the corresponding KLD values shown. The
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color map in Fig. 8 shows that the KLD values are poor at the
points (x, y) = (1, 0, 1) and (4, 0, 1). Although the estimation
is poor at the points relatively close to the base station, the
estimates at points (2, 0, 1) and (3, 0 ,1) are not bad. Therefore,
no specific trend related to position was observed in the KLD.
Figure 9 shows the histogram of KLD values for each test
data and the corresponding estimated data. There were 27 of
35 points where the KLD value was 1 or less and 21 points
where the KLD value was 0.5 or less. The estimated REM
in the static beam scenario is shown in Fig. 10. This figure
shows an average of the distribution as the Estimated RSRP at
each location. It is observed that the attenuation is significantly
more severe in the elevator hall area, the NLOS locations, and
the locations close to the base station but at a large angle
to the beam. In all of the area, the RMSE (Rooted Mean
Square Error) between the average of the estimated distribution
and the average of the measured distribution is 3.28 in this
situation.

Fig. 8. Positional relationship of KLD (static beam)
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Fig. 9. KLD Distribution (static beamforming)

TABLE II
RMSE OF AVERAGE RSRP AT ALL LOCATIONS

Scenario RMSE
Static Scenario 3.2

Dynamic Scenario 2.2

C. REM Estimation with Dynamic Beamforming

Using the RSRP data obtained during the beam in the Static
Beam Scenario to train the GPR, we estimated the REM for the
Dynamic Beamforming Scenario after the beam was changed
and compared it with the data measured in the scenario. As

Fig. 10. Estimated REM (static beam)

shown in Figs. 11 and 12, the evaluation was performed using
KLD. Of 35 points, 32 had a KLD value of 1 or less. This
indicates that the estimation was successful even after the
beam was changed, similar to when there was no beam change.
However, at the NLOS locations we observed slightly larger
KLD values on which we can discuss further improvements.

Fig. 11. Positional relationship of KLD (dynamic beamforming)
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Fig. 12. KLD Distribution (dynamic beamforming)

Figure 13 visualizes the estimated REM, which is the aver-
age of the distribution at various locations, during the Dynamic
Beamforming Scenario. Compared to REM in Fig. 10, the
RSRP within 10 meters of the base station is particularly
higher by adding beams pointing to the area. The RMSE be-
tween the average of the estimated distribution and the average
of the measured distribution is listed in Table. II. In the static
scenario, the RMSE was 3.28, and in the dynamic scenario, it
was 1.53. This indicates that the REM can be estimated with
the same level of accuracy in the dynamic scenario as in the
static scenario. Fig. 14 visualizes the comparison between the
estimated and actual data at the coordinates(4, 0, 1.8) that were
significantly affected by the beam change. It can be seen that
the estimated normal distribution is close to the histogram
of the actual data.The KLD is 0.29. The average RSRP at
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this location is -59.1dB measured and -59.3dB estimated. The
calculated values of RSRP obtained with a probability of more
than 90% are -63.8 dB and -65.1dB for the measured and
estimated values, respectively. Thus, the proposed method is
able to accurately estimate RSRPs not only for the average
but also for its tail of the distribution, which would greatly
help to design radio networks for robust CPS. We can design
a remote controlled robot system in which a robot selects a
path where the probability of signal strength below -75dB is
always less than 10%, for example.

Fig. 13. Estimated REM (dynamic beamforming)

Fig. 14. Estimated and Measured RSRP Distributions when KLD Equals 0.29

D. Evaluation of Computation Times

We compared the speed of the REM reconstruction after
a beam change between a simple construction method using
GPR and the proposed method. This simple GPR model has
the coordinate vector as the explanatory variable and RSRP as
the objective variable. In this model, 35 data points are used
as training data. REM reconstruction using the simple GPR
model involves both training time and inference time. Training
time refers to the time taken to adjust the model parameters by
fitting the training data, while inference time refers to the time
taken to input data into the model and generate the output. The
training time for the GPR is O(N3) when the number of data
points is N , and the inference time for the GPR is O(N2N∗)
when the number of prediction points is N∗. On the other
hand, in REM reconstruction using the proposed method, only
inference time for the linear term is required, as the GPR terms
do not need retraining when the beam changes. Therefore, this
method is efficient for REM reconstruction. Table III compares
the reconstruction times for REM using the simple GPR model
and the proposed method. The proposed method is shown to
reduce the overall time required for REM reconstruction after
a beam change to approximately 1/50 of that required by the
method that simply uses GPR.

TABLE III
COMPARISON OF REM RECONSTRUCTION TIMES(SECONDS)

Method Training Time Inference Time
Simple GPR Model 0.690 0.417
Proposed Method N/A 0.0195

VI. CONCLUSION

In this paper, we proposed a method to enable real time
reconstruction of REMs to aim dynamic beam forming opti-
mization in mm-wave environment. In particular, we address
the spread of RSRP caused by slight differences in the position
and orientation of the receiving terminal, which is particularly
important for millimeter waves. GPR was used to successfully
provide probability distributions. For future research, there
are many areas to explore: 1) further improving accuracy,
especially for NLOS locations, 2) designing a kernel suitable
for multiple beam selection, 3) real-time beamforming opti-
mization following multiple moving robots, and 4) obtaining
evaluations in structures other than hallways.
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