
EdgeVerse: Multi-User Virtual Reality via Edge Computing and eBPF

Okwudilichukwu Okafor
Computer Science

Saint Louis University, USA

Flavio Esposito
Computer Science

Saint Louis University, USA

Tommaso Pecorella
Information Engineering

University of Florence, Italy

Abstract— The adoption of Extended Reality (XR) technology
has been hindered by the need for high-bandwidth and low-
latency networks to provide immersive experiences. Head-
mounted devices used in XR are still heavy and not portable,
limiting the potential of XR applications in various contexts.
In this paper, we propose EdgeVerse, a multi-user XR system
that leverages edge computing and extended Berkeley Packet
Filter (eBPF) to offload computation, thereby reducing the
dependency on high-bandwidth networks in support of XR
applications. Our approach enables lightweight clients, such
as devices with an edge browser, making XR more accessible
to users. The key design of EdgeVerse focuses on offloading the
connection and network synchronization of multiple XR users
at the edge. We used an XDP bidirectional router that processes
XR traffic faster to enhance user interaction, responsiveness,
and immersive experience. To establish the practicality of our
approach, we evaluate our results on a prototype that indicates
improved response times and reduced latency with respect to
baseline solutions.

Index Terms— Virtual Reality, Augmented Reality, network
management, edge Computing, eBPF, eXpress Data Path.

I. INTRODUCTION

XR (Extended Reality) is an umbrella term that encom-
passes Augmented Reality (AR), Virtual Reality (VR), and
Mixed Reality (MR). It represents all forms of immersive
digital experiences that blend or replace real-world environ-
ments with virtual elements. XR systems have rapidly gained
popularity across various industries, including commercial
applications such as gaming, and academic sectors for train-
ing, e.g., for continuing medical education or aerospace
engineering. McKinsey has estimated that the Metaverse
will generate up to $5 trillion in value by 2030 [1]. A
portion of the research community believes that they will
enable immersive virtual experiences that will transform how
we learn, communicate, and perceive reality. Their transfor-
mational experiences and potential to increase productivity
has been well documented, see e.g., [2], [3]. Despite
their widespread, some pressing challenges still exist today
in XR systems, including mobility and portability of the
head-mounted devices [4]. In particular, current (metaverse)
technologies fall short of seamlessly connecting the physical
and virtual worlds.

Experts emphasize that virtual reality (VR) systems must
achieve at least 8K resolution and a 120 Hz frame rate to

1Okwudilichukwu Okafor is a graduate student in the department of
Computer Science, Saint Louis University, MO 1 N, 63103, USA.

2Flavio Esposito is an Associate Professor with the Department of
Computer Science, Saint Louis University, USA.

3Tommaso Pecorella is an Associate Professor with the Department of
Information Engineering, University of Florence, Italy.

prevent pixelation and motion sickness. To achieve these
goals, several solutions have been proposed to improve user
experience and provide more mobility [4]–[6]. A practical
strategy proposed is to push the rendering to a cloud or
edge server. By rendering at a remote location, the graphical
elements and visual components of a VR environment are
generated in real-time at the remote server, and the VR video
is transmitted to thin VR glasses or a display device of the
end user. While this strategy promises portability and high
mobility, VR rendering needs to be done at a high frame
rate and with low latency to ensure a smooth experience
as well as minimize the discomforts that could arise from
inconsistencies or delays in the visual representation. Prior
solutions [2], [5], [7] have also proposed ways to stream
the entire or part of the application from the edge, while
others [4], [8] proposed approaches to cache and reuse
the VR application frames in a way that it minimizes the
resources expended. Some other work [8], [9] considered a
multi-user VR scenario and developed optimization strategies
from a network perspective. While sound and addressing rel-
evant problems, none of these formerly published approaches
considered the synchronization of multiple VR users nor
has any optimization been done to speed up VR packet
processing at the network layer using eBPF. In addition, none
of the work emphasized the need to have an open VR system
that utilizes a non-propietary XR runtime. To tackle these
challenges, we propose an architecture that decouples the
components that constitute a multi-user VR environment (the
application and network layer) and offloads key roles such
as the multi-user networking service. We implemented an
eBPF/XDP program within the intermediate network router
that processes the VR packets faster to and from the VR users
and the VR server. This approach enhances user experience,
reducing latency and improving bandwidth.

In particular, in this paper we introduce EdgeVerse, a
multi-user VR application that has the multi-user networking
and synchronization offloaded to an edge server. Our design
is based on a decoupling of the multi-user network operation
(such as the connection processing and synchronization)
from the scene rendering. EdgeVerse offloads the connection
and synchronization tasks of the VR users to a separate dedi-
cated system, a connection server, and consistently maintains
the users’ states across the local devices of the connected
VR users. Such EdgeVerse connection server runs at the
edge of the network and leverages the PUN SDK [10] to
maintain user states and connection. A key novelty of our
architecture design is that it should allow VR users’ devices
to only process scene rendering while receiving the updated

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

Fig. 1: High-level system architecture of EdgeVerse. VR clients connect through the PUN SDK) which runs at the edge.

positional states of other connected VR users that are in the
same virtual space.

We implemented EdgeVerse and tested our application
using two network servers for multi-user connection. One
of the network servers runs as the edge server (EdgeVerse’s
connection server) within the users’ LAN, and the other
runs as the cloud server in a public cloud. EdgeVerse is
developed using C# programming language, Unity Engine,
and scripting APIs, Photon Unity Networking APIs and
on-premise server SDK. The XDP programs are written
in C/C++ and attached to an intermediate eBPF router.
Our evaluation of EdgeVerse showed good improvement in
response time and higher frame rate compared to using the
cloud server thereby enhancing the responsiveness of the
VR application. Other evaluation results on bandwidth show
an improved data speed to EdgeVerse’s VR users as the
connection and network synchronization is done within the
edge server. Our system architecture is separated into three
different components as shown in Figure 1.

II. DESIGN CHALLENGES

To achieve our design goals, we tackled three primary
challenges: synchronized user interaction, proprietary XR
runtimes, and network optimization Using eBPF.
Synchronized User Interaction. In a multi-user VR envi-
ronment, ensuring consistent updates for all users interacting
with shared objects is crucial to maintaining immersion. We
introduced a dedicated monitoring routine that continuously
checks for any inconsistencies in the state of shared objects
across users. This routine handles incoming updates from
remote users and resolves discrepancies in real-time, guaran-
teeing that every user sees the same interactions. This persis-
tent synchronization ensures a seamless experience, reducing
the risk of misaligned views and fostering a cohesive virtual
environment.
(2) Proprietary XR Runtimes. Most VR platforms rely on
proprietary XR runtimes, limiting flexibility and compati-
bility, especially for projects requiring open standards for
security and compliance, such as in government settings. To
overcome these constraints, EdgeVerse utilizes the OpenXR
runtime, which supports cross-platform, high-performance
access to a broad range of XR devices. OpenXR allows
EdgeVerse to run on multiple hardware configurations with-
out being tied to a specific vendor, enhancing adaptabil-

ity and ensuring that the application can be deployed in
diverse environments without sacrificing compatibility or
performance.
Network Optimization Using eBPF. Photon SDK’s in-
tegration with Windows and the .NET Framework posed
limitations in optimizing VR packet handling, impacting
latency and throughput. To address this, we implemented
a Linux-based eBPF router with custom XDP programs
for packet processing. The eBPF router efficiently manages
network traffic between VR clients and servers, reducing
latency and increasing data throughput. By offloading packet
processing to the network layer, EdgeVerse achieves better
performance, enabling a responsive and scalable multi-user
VR environment that can handle complex interactions with-
out degradation in user experience.

III. EDGEVERSE ARCHITECTURE

User Interface. This layer consist of all the end user
devices that are used to interact with a VR application. Most
of the devices in this layer are headsets and controllers.
However, with recent advancements, many VR applications
can now be experienced using phones, tablets, directly on
PCs and browsers using mouse and keyboard as controllers.
For standalone untethered VR applications, the application
is built to the headset and directly rendered. Whereas if
the headset requires tethering, then the application can be
rendered directly on a PC while the headset act as a display
device.
Network Logic. This layer encodes the multi-user function-
ality and the network optimization strategy of EdgeVerse.
This layer is completely decoupled from the user inter-
face implementation and devices. In the event that multiple
users are to participate in a shared environment, this layer
handles the connection to the edge server for connectivity
and synchronization among the users. The logic implements
three algorithms: The first, checks the requested state of the
application depending on the connection status of the user.
The connection status returned indicates if the user device
is allowed to connect to the network server or not based on
the network configuration of the user and internet protocol
(IP) address. The second algorithm offloads the multi-user
network synchronization to the edge server. Offloading of
the network synchronization to the edge server ensures that

2024 20th International Conference on Network and Service Management (CNSM)

Algorithm 1: Connection to the Edge Server
Data: The connection object to the server
Result: The connection status and network mode

1 connectionStatus← False
2 if connectionObject is True then
3 connectionStatus← True
4 multiUserMode← Activated
5 networkUser ← UserSpawn()
6 UserSync()← connection.networkServer()
7 Updates()← consistentWithServer

8 else
9 connectionToServer ← False

10 singleUserMode← Activated
11 rendering.Set.Local()← True

12 return connectionStatus, UserMode

Algorithm 2: Network Synchronization
Require: Object position and rotation
Ensure: Updated object position and rotation

1: if isLocalUser then
2: {Client is the local user, send states}
3: RunPhysicsSimulation(PhysicsData)
4: UpdateObjectPositionAndRotation()
5: ComputePositionAndRotationDeltas()
6: SendDeltaUpdatesToServer()
7: else
8: {Client is not the local user, receives updates}
9: ReceiveDeltaUpdatesFromServer()

10: InterpolateObjectPositionAndRotation()
11: end if

end user devices only focus on rendering local contents to
the users connected while being constantly updated of the
behavior of other network users in the same environment.
The third algorithm implements the eBPF/XDP program that
optimizes the VR packet processing to and from the VR users
and the VR network server. The first two algorithms freed
up resources that would have been required if the multi-
user network functionality were directly handled by the end
user devices. The third algorithm improve the VR packet
processing times as it traverses the network.
Connection Algorithm. As shown in Figure 1, connections
from multiple users are handled by the edge server, which
manages user interactions in the shared VR environment.
The connection algorithm (Algorithm 1) initializes connec-
tionStatus as False and determines if the client is in single or
multi-user mode. If a UDP connection is established (Line
2), connectionStatus is set to True, activating multi-user
mode (Line 4), creating users as networked objects, and
synchronizing their state with the server (Lines 5-6). The
server continuously updates user states, isolating end-user
devices to focus on local rendering.

If the connection is unsuccessful, as shown in Line 8, the

Algorithm 3: VR Packet Processing
Data: Ingress packet
Result: Packet is properly directed

1 for Every Ingress packet do
2 pktProcessed← False
3 if pkt is VR then
4 if pkt.direction is to_VR_server then
5 XDP_redirect_to_V R_server_IF ()
6 else
7 XDP_redirect_to_V R_client_IF ()

8 pktProcessed← True

9 else
10 pktProcessed←

Linux_NW_pkt_proc_stack()

11 return pktProcessed

connection status is set to False in Line 9 and the single-
user mode is activated in Line 10. In the single-user mode,
the rendering is set to local in Line 11, meaning that the
client is only rendering what is on their machine. Finally the
algorithm returns the connection status and the user mode.
Network Synchronization Algorithm. The network syn-
chronization algorithm ensures all connected clients have
a consistent view by updating the state using delta values
between the current and prior states. Local users compute
position and rotation deltas, sending updates to the edge
server. Remote users receive these updates and apply inter-
polation. This delta encoding minimizes bandwidth usage,
reducing latency and maintaining consistency. The algorithm
is represented as

Pi(t) = f(Pi(t− 1), Ui(t), S(t)),

where Pi(t) is the position of object i at time t, Ui(t) is
the user input, S(t) is the network state, and f is the function
computing the new position.

The equation models non-simultaneous user interactions,
where the new position Pi(t) of an object depends on
its previous position Pi(t − 1), the user input Ui(t) (e.g.,
movement/rotation commands), and the network state S(t).
The function f computes the new position using these inputs,
ensuring synchronization across all connected clients.
VR Packet Processing Algorithm. The algorithm pro-
cesses incoming packets at the eBPF router. If a
packet is identified as a VR packet, it is redi-
rected using either XDP_redirect_to_VR_server_IF or
XDP_redirect_to_VR_client_IF based on its direction, and
marked as processed. Non-VR packets are handled by
Linux_NW_pkt_proc_stack. The algorithm then returns the
processing status.

2024 20th International Conference on Network and Service Management (CNSM)

(a) EdgeVerse consistent state sharing and synchronization. (b) EdgeVerse eBPF GW. packets are redirected at the interfaces.

Fig. 2: (a) The software architecture of EdgeVerse, showing consistent state sharing and synchronization. (b) The network
architecture of EdgeVerse, where VR packets are redirected through the eBPF gateway at the network interfaces.

IV. SYSTEM IMPLEMENTATION

In this section, we describe the design and implementation
of EdgeVerse, developed using the Unity3D platform and
Photon Unity Networking (PUN) SDK.

End-User devices used include HP Reverb, Samsung
Odyssey HMDs, and Windows PCs with NVIDIA GeForce
RTX GPUs. To avoid reliance on Oculus (Meta), we used
OpenXR as the default runtime, allowing builds for Oculus
Quest 2. A headless version was created using Unity XR
simulator, enabling interaction via keyboard and mouse. The
multi-user functionality is managed by two servers: a cloud
server in Azure and an edge server in the user’s LAN, both
running PUN SDK. The edge server has 128GB RAM and
an NVIDIA RTX GPU, while the cloud server has 16GB
RAM. Rendering is performed on user devices.

EdgeVerse consists of three main software modules
namely NetworkManager, NetworkUser and the
NetworkSpawner as seen in Figure 2a. These software
modules interact with each other to connect, instantiate
and synchronize the networked VR users. User connections
and spawning go through the NetworkManager mod-
ule. On the successful connection to a network server, the
NetworkManager places the connection on a multi-user
mode interacts with the NetworkSpawner module to cre-
ate the network user. The VR user is then placed in the shared
VR scene where all connected users are synchronized. Other
software modules used are Unity XR Interaction Toolkit
[11] and several Unity Prefabs [12]. Unity XR Interaction
Toolkit is an interaction solution for building VR and AR
applications. It offers a framework that enables Unity input
events to be used for 3D and UI interactions. The Interaction
Manager, which connects these two types of components, and
a set of basic Interactor and Interactable components make
up the system’s core. Additionally, it has elements that you
can utilize to move about and create visuals.

V. CONCLUSION

In this paper, we discussed how to enable a responsive
multi-user VR adoption with edge computing and eBPF. We

developed a multi-user VR application, EdgeVerse, explained
the system architecture and design implementation. We of-
floaded the multi-user logic to an edge sever that runs on
PUN SDK with the VR traffic traversing through an eBPF
router for optimized packet processing.

VI. ACKNOWLEDGEMENT

This work has been supported by NSF Awards #1908574
and #2201536, and partially by the EU under the Italian Na-
tional Recovery and Resilience Plan (NRRP) of NextGener-
ationEU, partnership on “Telecommunications of the Future”
(PE0000001 - program “RESTART").

REFERENCES

[1] McKinsey and Company, “Value creation in the metaverse,”
https://www.mckinsey.com/capabilities/growth-marketing-and-sales/
our-insights/value-creation-in-the-metaverse, 2024.

[2] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive adaptive
streaming to enable mobile 360-degree and vr experiences,” IEEE
Transactions on Multimedia, vol. 23, pp. 716–731, 2021.

[3] A. Nichols. Top 5 tech trends for 2022: Virtual reality offers exciting
new avenue. [Online]. Available: https://www.cepro.com/news/
top-5-tech-trends-2022-virtual-reality-offers-exciting-new-avenue/

[4] X. Hou, Y. Lu, and S. Dey, “Wireless vr/ar with edge/cloud comput-
ing,” in 2017 26th International Conference on Computer Communi-
cation and Networks (ICCCN). IEEE, 2017, pp. 1–8.

[5] X. Hou and S. Dey, “Motion prediction and pre-rendering at the edge
to enable ultra-low latency mobile 6dof experiences,” IEEE Open
Journal of the Communications Society, vol. 1, pp. 1674–1690, 2020.

[6] S. Shi, V. Gupta, M. Hwang, and R. Jana, “Mobile vr on edge cloud:
a latency-driven design,” in Proceedings of the 10th ACM multimedia
systems conference, 2019, pp. 222–231.

[7] X. Hou, S. Dey, J. Zhang, and M. Budagavi, “Predictive view genera-
tion to enable mobile 360-degree and vr experiences,” in Proceedings
of the 2018 Morning Workshop on Virtual Reality and Augmented
Reality Network, 2018, pp. 20–26.

[8] Y. Li and W. Gao, “Muvr: Supporting multi-user mobile virtual reality
with resource constrained edge cloud,” in 2018 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 2018, pp. 1–16.

[9] S. N. Gunkel, “[dc] multi-user (social) virtual reality commnunica-
tion,” in 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), 2019, pp. 1359–1360.

[10] Photon. Demos and turials. [Online]. Available: https://doc.
photonengine.com/pun/current/getting-started/pun-intro

[11] Unity. (2023) Xr interaction toolkit. [Online]. Available: https:
//docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit

[12] Unity3D. (2023) Prefabs. [Online]. Available: https://docs.unity3d.
com/Manual/Prefabs.html

2024 20th International Conference on Network and Service Management (CNSM)

