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Abstract—The Internet of Things is emerging as a key concept,
defining a network of interconnected devices capable of seamless
data collection, exchange, and analysis. However, due to their
emphasis on simplicity, these devices are often vulnerable to
malware attacks. This study examines the potential of machine
learning methods, specifically in the context of Federated Learn-
ing, to enhance privacy protection and to benefit from IoT’s
decentralized nature, such as the low overhead traffic. The
proposed approach is a federated machine learning algorithm
based on a central aggregator and several clients. The study aims
to conduct a comprehensive analysis using the IOT-23 dataset,
which contains real and labeled instances of malware infections.
The test outcomes demonstrate that the proposed approach
outperforms centralized approaches regarding the global area
under the precision-recall curve (AUPRC) and variance, with a
significance level of 0.05.

Index Terms—AI - ML techniques, anomaly detection, feder-
ated learning, Internet of Things

I. INTRODUCTION

The Internet of Things (IoT) refers to a network of in-

terconnected devices and objects that can collect, exchange,

and analyze data, allowing them to communicate and interact

seamlessly [1]. These devices feature lighter protocols, lower

power consumption, and compact shapes, allowing flexibil-

ity and adaptability [2]. In addition, this kind of Internet

can be implemented in several wireless networks in order

to become adaptable in various use cases; for example, a

LoRaWAN connection can be chosen in smart cities, while

for smart homes, the Z-Wave strategy is more appropriate.

Likewise, smart devices have a wide range of applications,

many in sensitive areas. However, no standard supports all

smart devices, and built-in security mechanisms are not yet

standardized. Furthermore, no proven security methods to

guarantee the digital security of these infrastructures [3]. In

addition, IoT devices prioritize simple operation over robust

security measures, making them vulnerable to malicious users

who can coordinate attacks through malware designed to cause

damage, disrupt, or gain unauthorized access to a system [4].

Therefore, it is necessary to implement an intelligent, light,
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and flexible solution that can learn various attack patterns and

does not interfere with the network’s bandwidth or usability.

Furthermore, these methods must be able to forget learned

patterns and re-learn when malware evolves [5]. In literature,

deterministic techniques are commonly used in conjunction

or not with Machine Learning (ML) methods, depending on

the main aspect the tool should preserve. A key work that

helps us understand this concept is offered by [6], which

discusses anomaly detection analyses for different phases of

the malware life cycle. Statistical analysis is utilized during

the pre-execution phase, dynamic analysis is employed during

the execution step, and memory analysis is conducted during

the post-execution step. Conversely, malware detection is often

considered a stand-alone problem and does not consider the

network’s topology or distributed nature. In [7], the authors

take into account specific IoT challenges, such as privacy,

but do not consider the impact of the model on the wireless

network. Deeper, centralized models often are not appropriate

for IoT cases because they can be accurate but may make the

communication channel busy due to data exchange [8].

Federated learning (FL) is a suitable strategy to minimize

data exchange. Furthermore, it is a distributed machine learn-

ing algorithm that benefits from the topology of IoT networks.

FL employs an iterative approach with discrete interactions

between the client and server, known as federated learning

rounds, to achieve results comparable to those of traditional

machine learning models. Therefore, this method has the

potential to access a large amount of data while maintaining

privacy guarantees.

This paper addresses the critical challenge of malware de-

tection within the Internet of Things paradigm, focusing on the

pivotal role of advanced models such as Federated Learning.

We explore the adaptability of these models to the unique

constraints of IoT environments and thoroughly examine the

open challenges associated with deploying machine learning

models in real-world scenarios where resources are finite and

operational constraints are stringent. Our approach centers on

developing a federated machine learning classifier as a prac-

tical and deployable solution for identifying malicious traffic

within IoT networks. Using data generated from traffic packet

analyzers, we outline effective strategies for data definition,

preprocessing, and the deployment of ML algorithms. This
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Fig. 1. A simplified representation of IoT system. The devices are low-
powered, so the ML classifier is installed on the gateway to enhance the
environment’s security.

results in a robust model characterized by low variance in

accuracy, making it suitable for resource-constrained envi-

ronments. Additionally, we highlight the advantages of FL

in reducing information leakage from devices and enhancing

network performance. Our findings underscore the importance

of advanced ML techniques in strengthening IoT ecosystems

against evolving cyber threats, ensuring the integrity of in-

terconnected devices. For further clarification, please refer to

the diagram in Fig. 1. This illustrates the deployment of the

ML classifier on the gateway and the execution of the attack

on the devices. It should first be noted that the server is

not being considered a point of interest in this context. The

paper is structured as follows. Section II examines the current

state-of-the-art in malware detection, which is the basis for

the proposed model and methodology, such as the definition

of problems explained in III. Section IV is dedicated to the

proposed model and methods, in which the primary aspect

and novelty of the proposed model are discussed. The next

section discusses the results and their implications. After that,

we present the future challenges and the conclusions.

II. STATE OF ART

The field of malware detection is extensive and encompasses

numerous case studies. Malware attacks increasingly threaten

both the IoT and traditional systems [9].

The literature contains several strategies for addressing this

issue, which are collected, explored, and classified due to

the heterogeneity of the problem and the available solutions.

Machine learning techniques can help to analyze dynamics

and memory by generalizing tasks with relevant data. Nascita’s

study shows that using customized data for IoT to feed an ML

model improves performance [10]. This is also supported by

[11], who demonstrate how to mitigate damage to IoT devices

by intelligently identifying both known and emerging IoT

malware. They achieve this by analyzing several device prop-

erties, transforming them into images, and applying dynamic

analysis. However, these studies often overlook crucial factors

such as the high cost of collecting extensive datasets, the

scarcity of available data, and, most importantly, the overhead

traffic generated by these approaches.

Another important aspect of machine learning models is

their ability to be integrated into a cloud environment. How-

ever, this presents a complex challenge. A decentralized model

should be considered over a centralized model to mitigate

data exchange and communication channel availability issues.

For this reason, Federated Learning techniques address this

challenge and ensure privacy. They enable machine learning

model training on the device and exchange only parameters

with the server without sharing the user’s information.

An example of FL applied to an IoT network is [12]. The

authors present a model where the federated approach prior-

itizes participant privacy while achieving results comparable

to those of centralized models. The authors also investigate

the safety and robustness of this approach and demonstrate

that the baseline model aggregation averaging step is highly

vulnerable to attacks, even with a single adversary. However,

they do not consider the impact on the network or analyze the

comparison regarding the results’ variance.

Another reason to consider decentralized methods over

centralized ones is the challenge of combining anonymized

data from heterogeneous and differently shaped data sources.

Anonymized data alone cannot ensure equal client distribution,

and a centralized model may face difficulties in handling the

non-independent and identically distributed (non-IID) nature

of device data. As a result, this can lead to potential bias

and reduced accuracy during model training. In this situation,

clients may be unreliable and experience higher failure rates

or dropouts due to their dependence on less robust communi-

cation media, such as Wi-Fi, and power-constrained systems,

such as smartphones and IoT devices. The authors of [13]

suggest a novel federated learning approach to address privacy,

robustness, and model training, concerns when dealing with

non-IID data. Still, they focus our work exclusively on the

ML model aspects and do not consider the environment. For

interested readers, [14] comprehensively analyzes various

FL methodologies that apply to IoT systems. Additionally,

reference [15] outlines potential research topics.

III. PROBLEM DEFINITION: HOW CAN WE MINIMIZE THE

VARIABILITY IN THE RESULTS?

In the Internet of Things networks, achieving efficient

malware detection while balancing key factors such as privacy,

low computational overhead, and effective data exchange

presents a complex challenge. The objective is to develop a

robust malware detection method that provides high accuracy

and maintains stability over time, with minimal variation in

accuracy across different scenarios. This involves a state-

of-the-art analysis to identify an optimal detection model

and deploy it in a manner that balances the critical points

mentioned above. The investigation analyzes a subset of
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Fig. 2. Distribution of Malicious and Benign across the clients (horizontal
axis).

overhead features from the IoT-23 dataset developed by Avast

Software in Prague. The label distribution across the dataset is

illustrated in Fig. 2, while a deep description is presented in the

appendix. The challenges encountered included varying data

set shapes, a significantly unbalanced label distribution, and

a limited number of correlated features. A detailed data pre-

processing investigation was also conducted. The objective of

the research is to transform the limitations of IoT networks into

strengths within a generalized model. Distributed approaches

enhance scalability, whereas centralized models that exchange

substantial data volumes between servers and clients can strain

bandwidth. In federated models, only model parameters are

shared with all clients, eliminating the necessity for each

clients to transmit their own data and the relative parameters,

thus reducing bandwidth usage and enhancing efficiency [16].

IV. METHODOLOGY AND SOLUTION PROPOSED

In this section, we present the pre-processing data methods

and models. We briefly explain the standardization methods

and the federated models used in the classical and modified

versions. In conclusion, the evaluation methods are presented

to describe the analysis in detail.

A. Pre-processing data approach

The pre-processing methodology became crucial in this

work due to the variety of data and the high correlation

between the features. For this reason, we introduce the core

ideas considered and their implications. The following para-

graphs present local and global standardization and distributed

principal component analysis. These techniques address the

high variance present in the data and make them homogeneous

to simplify classification.
a) Local and global standardization: Standardization is

a statistical technique that reshapes the data to make them

more homogeneous and easy to classify. Given a client s with

i examples in the dataset Ds, the local standardized data zsi
is a transformation of the original data dsi ∈ Ds as follows:

zsi =
dsi − μs

σs
(1)

where μs is the average vector of Ds and σs is the vector

of standard deviation based on Ds. Otherwise, the global

standardization replaces the μs and σs arrays with the μ and

σ vectors, which are the mean and the standard deviation

arrays calculated across all clients. These approaches offer

valuable techniques for standardizing data, minimizing shared

information, and enhancing model robustness.

The local standardization approach improves client con-

fidentiality by modifying data within each client’s domain.

This method avoids transmitting sensitive information, such

as the client’s mean vector and variance, to the central server.

Normalizing data locally helps address non-identically and

independently distributed (non-IID) data across the network,

making input data more uniform across clients. In contrast,

global standardization involves estimating the overall data

distribution on the server side. During the initial round of

Federated Learning, the server aggregates mean and variance

vectors from all participating clients, providing a compre-

hensive view of the network’s data distribution. This global

insight enables more robust model training by addressing

disparities in data across clients. Both approaches offer distinct

benefits: local standardization prioritizes privacy, while global

standardization focuses on improving model performance by

leveraging more comprehensive data distribution information.

The choice between these methods depends on the federated

learning application’s specific needs and constraints.

b) Principal Component Analysis: The distributed ver-

sion of Principal Component Analysis (PCA) [17] is pre-

sented. A classical PCA aims to find a smaller dimensional

subspace that captures as much of the variance of the data as

possible. The method involves a collaborative approach where

the variance matrix is constructed using data from multiple

clients or nodes in a distributed system. In this framework,

each client processes and summarizes its local data, which is

then exchanged with a central server or coordinator responsible

for aggregating this information into a global variance matrix.

Efficient computation of principal components necessitates

the exchange of summarized indices or statistical measures

between clients and the server. Nevertheless, this communica-

tion process may result in overhead due to data transmission

and coordination. Despite the potential trade-off in increased

communication complexity, the advantages of distributed PCA

are consequential.

One advantage of PCA is its enhanced scalability to larger

datasets that exceed the capacity of a single computing node

or device. Distributing the computational load across mul-

tiple nodes reduces the overall processing time, leading to

faster computation and analysis. Additionally, the distributed

PCA model provides improved fault tolerance and resilience.

Distributing data and computations across multiple nodes

makes the system less susceptible to failures or disruptions

in individual components. This redundancy can enhance the

reliability and robustness of PCA computations in large-

scale distributed environments. Furthermore, these distributed

approaches also enable data analysis that preserves privacy.

Clients can maintain control over their raw data while con-
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tributing only aggregated statistics or transformed represen-

tations to the central server. These strategies demonstrate

proactive steps toward effective information management and

collaborative model development within the context of FL.

Each approach tackles unique challenges posed by distributed

data settings, ultimately contributing to the advancement of

secure and efficient machine learning practices.

B. Models

This section outlines our adopted models, introduces the

base model, and describes our modifications. Specifically, the

federated models discussed here are adaptations of Feder-

ated Averaging (FeAvg) and Federated Knowledge Distillation

(FD). For a more detailed explanation of these models, please

refer to [18], [19] and [20].

a) Classical version: The federated models utilize an

iterative approach that entails discrete interactions between

clients, who possess a local model, and the server, which

establishes the global model. The server chooses a subset of

clients to train the local model in each iteration and updates

the global model based on the parameters received. The logit

function is the main distinguishing factor between the two

approaches.

For the FedAvg algorithm is shown in Fig. 3, while the loss

function of a generic s device is given by:

Ls(Ds,w) =
1

Ns

Ns∑

i=1

l(dsi;w) (2)

where Ds corresponds to the dataset of device s, Ns corre-

sponds to the amount of examples list in Ds, l is an entropy

function such as cross-entropy function and dsi is the i-th
example of Ds. It is important to note that the weight w is

usually a simple averaging of the selected clients’ weights.

On the other hand, Federated Knowledge Distillation in-

volves a more complex loss function and requires selected

clients to store the mean logit vector per label during local

training. A simplification of the algorithm is shown in Fig. 4.

The logit is a combination of the previous logit and the

distance between the client and server logit arrays, as defined

by the formula:

LKD(Ds,w) = Ls(Ds,w) + λ ·KLdist,y(Ylog, Ylog,s) (3)

where Ls(Ds,w) was defined previously and

KLdist,y(Ylog, Ylog,s) is the Kullback-Leibler metrics

distance used to compare the logit distribution of the client

and the server. The pre-trained phase, typical of this method,

was excluded from the experiment to create a lightweight and

fast tool.

b) Our modified version: The difference from the usual

methods is that the update of the local weights of device s at

step t+ 1 is calculated using the following formula:

ws,t+1 = β · ws,t−1 + (1− β) · wt (4)

where ws,t−1 is the weights vector of the device s at step t−1,

and wt is the average weights vector of the selected device at

Fig. 3. Representation of a Federated Average method. The blue arrows
communicate the average weights vector, while the other arrows communicate
the client weights vectors. The boxes indicate the devices.

Fig. 4. Representation of a Federated Distillation method. The circle repre-
sents the different logit vectors: the full-colored ones are the global logit, the
circle with the x in the center is the contribution for the regularization, and
the others are the client logits. The boxes indicate the devices.

step t. β is a hyperparameter that can take values from 0

to 1. In our experiment, we used β = 0.75. This approach

guarantees stable weights and robust model performance, en-

abling the model to learn effectively without being influenced

by variations in scale, such as alternating between high-value

and low-value clients across training rounds.

Our methods assume that the system is stationary, meaning

that the statistical properties of the data, such as the mean and

variance, remain constant over time. In a stationary system, the

data distribution does not change significantly, allowing the

model to rely on consistent patterns. However, these estimates

may become inaccurate if the global mean and variance shift

over time. To address potential non-stationarity, we trigger an

index update when there is a significant change in average loss.

This mechanism helps maintain the accuracy of the estimates

and allows for dynamic adjustments. Specifically, the update

is initiated when the loss change exceeds a threshold value of

0.1 (threshold > 0.1). As previously highlighted, minimizing

information exchange and efficiently preprocessing data are
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crucial for enabling rapid analysis and easy deployment in

practical scenarios.

C. Evaluation approach

To facilitate the comparison of results, the area under the

precision-recall curve (AUPRC) is chosen as an index of

fitness. The AUPRC is a widely recognized machine learning

metric for evaluating classification algorithms. Consider the

unbalanced nature of the data and provide a suitable summary

of the fitness of the model on the data [21]. This index

helps to identify the balance between precision and recall at

various thresholds. Precision is the ratio of correctly classified

examples to all positively classified examples, while recall is

the ratio of correctly classified positive examples to all positive

examples.

When comparing different models, their AUPRC scores

will be compared by ratio. For instance, let’s consider a

generic Federated Model (AUPRC(Fed)) and a Centralized

one (AUPRC(Centr)), the ratio of their AUPRC scores are

calculated as follows:

AUPRCRatio =
AUPRC(Fed)

AUPRC(Centr)
(5)

A ratio greater than 1 indicates that the Federated Model

outperforms the Centralized one regarding AUPRC, while a

ratio less than 1 indicates the opposite.

In conclusion, a Chi-square test can be performed to verify

the variance reduction and evaluate whether the variances

of two populations are equal. By applying this test, we can

establish whether the variance reduction is meaningful and

quantify the effectiveness of the proposed methods. This

evaluation offers robust metrics that assure improvement.

V. EVALUATION

Our experiments want to highlight how the federated models

overcome the centralized model, which is used as a baseline.

That happens because the proposed model is more suitable

for the nature of the IoT environment and allows some

key concepts. Also, the exchange data can be manipulated

depending on bandwidth availability.

A summary of the results can be found in the box plots pre-

sented in Figure 5. These box plots illustrate the distributions

of the AUPRC values for each data configuration and operation

method. The PCA and standardized transformation results

were aggregated for the centralized approach as they produced

identical outcomes. In contrast, the federated approach without

standardized data led to the presentation of both models’

outcomes. Upon examination of the figure, it becomes evident

that the federated model with globally standardized or PCA

data exhibits minimal variance and demonstrates superior

global AUPRC performance. A chi-square test is performed to

verify this reduction in variance, and the results are reported

in Table I. The test results demonstrate that the Federated

Learning approach significantly reduces variance in the Dis-

tributed PCA AUPR index and the Global Standardized AUPR

index compared to the local Standardized Data Index, with a

significance level of 0.05.

Fig. 5. Box plots of the AUPRC of the clients. The cross in each box
represents the mean. As we can see, the low variance is achieved by the
Federated models.

TABLE I
SUMMARY OF THE AVERAGE AUPRC RATIO BETWEEN FEDERATED

MODELS (FEDAVG AND FD) AND CENTRALIZED MODELS

Model
Federated
No STD

Federated
Global STD

Federated
PCA

Centralised
No STD

0.94 (FedAvg)
1.07 (FD)

1.64 1.65

Centralised
Data Transformation

0.82 (FedAvg)
0.97 (FD)

4.9 4.91

As mentioned above, analyzing model performances based

on their AUPRC ratios provides valuable insight into different

configurations. In the case of using only transformed data,

FL methods exhibit significantly higher performance, approx-

imately three times on average (with AUPRCRatio � 4.9),

whether employing PCA-transformed data or standardized

data. This outcome illustrates these methods’ efficacy in reduc-

ing the variance across the results obtained. It can be seen that

FedAvg demonstrates superior performance in this regard, as it

minimizes the information exchange between nodes. In com-

parison to a centralized model, excluding standardized data

during federated learning resulted in an average performance

improvement of approximately 7% (AUPRCRatio = 1.07).

Despite this improvement, the significant variance observed

suggests that while this federated model shows promise, it

may not offer the most consistent results.

Further comparison between standardized data and trans-

formed data within the FL framework revealed a substan-

tial performance gain, with an average improvement of

around 60% compared to traditional centralized methods

TABLE II
RESULT OF CHI TEST ON AUPRC INDEX PERFORMED ON THE CLIENT

AUPRC DISTRIBUTION

Chi test p-value

PCA data 0.04
No STD data - FD 0.99
No STD data - FedAvg 0.99
Glob STD data 0.04
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(AUPRCRatio � 1.6). This highlights the critical importance of

federated participation and data transformation in optimizing

model outcomes.

A Chi-square test was conducted to validate these find-

ings, confirming significant differences in the mean AUPRC

distributions between standardized and transformed data (p-

values between 0.1 and 0.15); see Table II. Additionally, data

exchanged between nodes and the aggregator was analyzed.

The results show that overhead traffic is directly influenced

by the volume of data exchanged. Among the exchanged data

types, model weights had the smallest size, averaging 224

bytes. In contrast, centralized models require the transmission

of the entire device dataset, resulting in a significant overhead

burden. However, the exact amount varies depending on device

traffic and is not specified here. Other data transmitted during

FL include feature sum and deviation vectors, each 56 bytes

in size, which are essential for global standardization and

principal component analysis (PCA). Basic traffic information

is also communicated during the setup phase. Finally, the

federated dropout (FD) algorithm requires additional data

transfer, including the labeled logit vector (8 bytes) and model

weights, further increasing the data exchange requirements.

The average data size for each client is around 140 MB. The

average GPU utilization per example is 3.51 for centralized

models and 2.15 for Federated approaches. The execution

time for 1 MB is 5 seconds on average for the centralized

model and 4.83 seconds on average for the Federated models.

These values indicate that higher computational effort is

required for validation on individual devices, but this enables

a more distributed workload across the network, as previously

demonstrated. Additionally, as depicted in Figure 6, when the

example size increases, device GPU usage is lower for the

Federated models than the centralized model, as previously

mentioned.

VI. FUTURE CHALLENGES

The following section outlines future research goals and

presents emerging challenges in network security. As network

threats continue to evolve, it is imperative to develop methods

for accurately classifying raw data, understanding the inner

workings of these methods, and addressing critical security

issues. A novel approach that combines computer vision tech-

niques with Explainable AI (XAI) methods, such as saliency

maps, offers promising advancements in this domain.

By converting raw data into visual representations, such as

grayscale images constructed from hexadecimal arrays [22],

and applying saliency maps to highlight key features [23],

this method enhances the precision of malicious activity de-

tection while clarifying the rationale behind machine learning

decisions. Despite these advancements, research on integrating

XAI and computer vision for cybersecurity analysis remains

limited, presenting a significant research opportunity. Future

work should investigate the effectiveness of different XAI

methodologies combined with computer vision techniques

to improve network anomaly detection and interpretability.

Fig. 6. The graph shows the GPU usage curve based on the test set size
(number of examples). The blue curve represents the centralized model, while
the pink curve represents Federated models. The pink curve demonstrates the
lower GPU usage of the Federated models compared to the centralized model.
The bars indicate the confidence interval at level 95%.

This approach holds great potential for enhancing malware

detection and security awareness as explainable AI develops.

In addition to these advancements, our future research

aims to expand the current framework to include multino-

mial cases, which we believe will significantly improve the

model’s diagnostic capabilities. This expansion will identify

a broader range of malware categories, further strengthening

cybersecurity defenses. We also plan to explore how federated

learning can benefit from scenarios where only one or a

small subset of clients encounters new malware. This research

will focus on collaborative efforts within the federation to

enhance security and learning outcomes, particularly through

data transformation techniques that leverage computer vision

approaches.

Finally, an important aspect not yet addressed in our

framework is the forgetting problem, where models must

continuously adapt to evolving data distributions and emerging

patterns. We will investigate mechanisms to prevent, mitigate,

or strategically use forgetting in machine learning models.

This exploration aims to improve the model’s resilience and

versatility, enhancing its efficacy across various real-world

applications.

VII. CONCLUSION

In conclusion, the IoT ecosystem, characterized by a vast

network of interconnected devices that collect, exchange, and

analyze data, is inherently vulnerable to malware attacks due

to its simplicity and limited security features. To address

this challenge, a federated approach for binary classification

has been investigated, leveraging the decentralized nature of

IoT devices and their computational capabilities to optimize

learning while ensuring data security.
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This study performed a comprehensive analysis using the

IoT-23 dataset, which includes labeled instances of IoT mal-

ware infections. The results demonstrate that federated mod-

els, particularly those employing global standardization or

principal component analysis (PCA), outperform traditional

centralized approaches in the global area under the precision-

recall curve (AUPRC) and exhibit lower variance.

The Federated Average approach, trained on globally stan-

dardized data, emerges as the most effective among the meth-

ods evaluated. It achieves a crucial balance between enhancing

model performance and minimizing overhead traffic, making it

a highly promising solution for federated learning applications

in IoT environments. This approach improves security and

supports efficient and scalable deployment across diverse IoT

networks.
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APPENDIX

The IoT-23 dataset, collected by Avast Software, Prague, consists of
twenty-three captures of IoT network traffic from 2018 to 2019. Each scenario
involves executing specific malware samples on a Raspberry Pi using various
protocols. The dataset includes original .pcap files, corresponding Zeek
conn.log files, andconn.log.labelled files with additional labeling columns.
Due to large traffic volumes, .pcap files are rotated every 24 hours, sometimes
resulting in varying capture durations.

These labels are one for the binary classes (Malicious, Benign), the
other for the category of malware. In this work, only the binary labels are
considered, and only the following features are considered:

• duration: How long the connection lasted
• origin bytes: The number of payload bytes sent by the originator. This

is taken from sequence numbers for TCP and may be inaccurate (e.g.,
due to large connections).

• missed bytes: Indicates the number of bytes missed in content gaps,
representing packet loss. A value other than zero will normally cause
protocol analysis to fail but some analysis may have been completed
before the packet loss.

• originator packets: Number of packets that the originator sent.
• originator IP bytes: Number of IP level bytes sent by the originator
• responder packets: Number of packets sent by the responder
• responder IP bytes: Number of IP level bytes sent by the responder (as

seen on the wire, taken from the IP total length header field).

Of course, because of the nature of the experiment, dataset sizes vary
significantly, with smaller sets comprising approximately four examples while
larger sets contain over 100,000 samples. For this reason, the datasets are
considered if they have at least 100 examples.
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