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Abstract—The increasing use of deep learning approaches,
particularly generative models such as autoencoders (AEs), as
Intrusion Detection Systems (IDS) in cybersecurity, introduces
vulnerabilities to adversarial attacks. These attacks involve small,
malicious perturbations to input data that can deceive the
system, disguising attacks as normal behavior. In this paper,
we investigate the susceptibility of an AE-based IDS deployed
in an Operational Technology (OT) environment, specifically a
water distribution system. We explore various defense strate-
gies to enhance model robustness against adversarial attacks,
focusing on increasing the minimal perturbation required to
evade detection. Our study examines both adversarial training
and sensitivity-based training, comparing their effectiveness in
hardening the system against adversarial attacks with different
number of features available to the attacker (100%, 75%, 50%,
25%, 2%). Results show that while both methods have improved
the robustness of the model architecture for some scenarios, no
method shows clear improvement on all experiments. This work
highlights the importance of adversarial robustness in critical
infrastructure protection and provides insights into defense
mechanisms for enhancing the security of AE-based IDS systems.

Index Terms—Intrusion Detection System, Anomaly Detec-
tion, Adversarial Attacks, Autoencoders, Adversarial Robustness,
Critical Infrastructure Protection.

I. INTRODUCTION

With the increasing use of generative models and deep
representation learning based approaches for intrusion detec-
tion systems (IDS) [1], a natural security flaw that arises and
becomes increasingly relevant are adversarial attacks on said
systems [2]. Adversarial attacks are small perturbations added
to the input, which are maliciously crafted to fool the model
in the system. In the case of intrusion detection systems, this
typically means that an attack gets disguised and misclassified
as normal behaviour. Generative models, like autoencoders
(AEs) or Generative Adversarial Networks (GANs), work
very well for detecting anomalies and have been used more
frequently in the past years [3]. These deep learning methods
are however inherently vulnerable to adversarial attacks due
to their oftentimes very complex function parameters and
high non-linearity [4]. Crafting adversarial samples that fool
a system while still being similar to benign input samples has
been investigated thoroughly and is a rather easy task for an

attacker, especially when the model architecture and weight
parameters are known.

In this paper, we investigate the effectiveness of adversarial
attacks on an AE-based IDS, which has proven effective in
detecting cyber attacks in an Operational Technology (OT)
environment: a water distribution system (WDS). The main
contribution of this paper is the examination of various de-
fense strategies, which enhance the models robustness, thereby
increasing the minimal modification needed to generate an
adversarial sample. The findings indicate that employing these
more robust training methods increases the so-called hardness
of evasion, a measure of how easily an attack can be disguised.
Furthermore, different amounts of features available to the
adversary are considered in empirical analysis, since this aligns
more closely with practical attack scenarios.

II. RELATED WORK

Adversarial attacks on IDS pose a significant, realistic secu-
rity challenge, as they involve malicious actors crafting inputs
designed to deceive the IDS into misclassifying or failing to
detect intrusions. By subtly altering the attack patterns or data,
adversaries exploit weaknesses in the detection algorithms,
often causing the IDS to overlook real threats or falsely
flag benign activities as malicious [5]. This undermines the
reliability of the IDS, potentially leaving systems vulnerable to
breaches while reducing confidence in automated threat detec-
tion solutions. In particular, the access of only a small branch
of an OT environment, for instance a single Programmable
Logic Controller, might also be available to an adversary to
manipulate a significant part of the system [6], which creates
a more challenging situation.

Recent attacks on cyber-physical systems (CPS) have shown
that with an increase in usage of sensors, actuators, edge
devices in automation in smart cities, there is also an increase
in vulnerabilities of such systems [7]. One signifcant incident
in the domain of water treatment facilities was in 2020,
where attackers successfully gained access to a water treatment
plant’s computer system and tried to increase sodium hydrox-
ide levels of the water to a dangerous level [8]. Only through
the attentiveness of a plant operator was the attack halted.
These attacks are more and more common and the adversarial
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robustness of CPS remains relatively underexplored in current
research [9].

Our work examines the susceptibility of an autoencoder-
based Intrusion Detection System (IDS) to adversarial attacks,
focusing on its effectiveness in detecting cyber threats within
an OT setting, particularly in a water distribution system.

Experimental part of the work is based on The BATtle
of the Attack Detection ALgorithms (BATADAL) dataset,
originally created for an intrusion detection system challenge
[10]. Since its introduction, it has been used as a benchmark
dataset for WDS IDSs, since it is a rather large dataset with
different attack scenarios included [11], [12], [13]. It was
artificially created using the epanetCPA water distribution
modeling toolkit and has proven itself as a benchmark data set
for time series anomaly detection [14]. It consists of a one-year
simulation without any attacks and a six-month simulation
with seven different (partially labeled) attacks, respectively. It
also contains a test dataset which is a three month simulation
with seven different attacks.

In our previous work we have tested different model archi-
tectures to find the best model to detect anomalies in the time
series data [15]. The conclusion was that the most promising
approach is a simple autoencoder architecture, which has only
been trained on benign data without any anomalies. This
method is called One-Class Novelty Detection and has been
proven to work well for finding anomalies in various datasets.
The model learns to extract important features and how to
reconstruct the original data sample based on the extracted
features. When finally testing the AE on the test data, which
included benign data samples as well as anomaly samples, the
reconstruction error has been shown to be relatively small for
the benign data samples, while it is high for the anomalies.
This is due to the fact that the AE is unfamiliar with the
underlying statistical distribution of the anomaly data samples
and is unable to successfully reconstruct them. While this
method has brought state of the art results for time series
anomaly detection with this dataset, as with all current deep
learning architectures, the question arises if this is a robust
approach against adversarial attacks. For IDSs, adversarial
attacks are most often in the form of evasion attacks, where the
attacker wants to stay unnoticed by disguising their attack as
benign behaviour. This is made possible by altering the input
data of the model.

Adversarial attacks are small perturbations added to the in-
put features that are maliciously crafted to fool the underlying
system [16]. Much research on how to craft said perturbations
and how effective the attacks are on modern machine learning
approaches has been done in the past years [17], [4], [9],
[18]. However, to the best of our knowledge, this is still an
ongoing research topic and is very much relevant for many
different deep learning applications, especially in the cyber-
security domain. Adversarial attacks can be categorized by
white-box or black-box attacks as well as untargeted or class-
targeted attacks, depending on the model access capabilities
and adversarial purpose of the attacker [19].

In this paper, we focus on the white-box attack scenario,

since it results in better crafted adversarial samples, which
lead to more successful attacks on the system. In the white-
box scenario all model parameters as well as the models
architecture are assumed to be known to the attacker. This
information is useful for calculating the gradient of the model
with respect to the input data. State-of-the-art white-box ad-
versarial attack methods on neural networks, such as Projected
Gradient Descent (PGD) [20], use this gradient information
to update the input sample by iteratively stepping into the
direction of greatest ascent of the loss in every feature. This
often results in a perturbed input sample which is very similar
to the original sample and barely over the decision boundary
resulting in the wrong classification.

It should be noted that black-box attacks, while out of
the scope of this paper, are an alternative approach to craft
adversarial samples which do not require much knowledge
about the models’ inner architecture or parameters. Instead, the
model output can be obtained for a given input. With a suitable
number of queries (which varies depending on type of model,
number of parameters, etc.), the classification boundaries can
be approximated and adversarial samples which lie on these
boundaries can be found as well [21].

III. METHODOLOGY

A. One-Class Novelty Detector

One-Class Novelty Detection is a machine learning tech-
nique used to identify outliers or novel data points by training a
model on a single class of normal data and detecting deviations
from this normal class. It is an important task in many
different domains like computer vision, cybersecurity, finance,
healthcare, industry and production, etc. [22]. Traditional
machine learning approaches like One-Class Support Vector
Machines (SVM) have recently been outdated by deep learning
approaches in terms of performance. In particular, generative
models like GANs and AEs have gained popularity in this task
since they have many benefits such as nonlinearity, scalability
and robustness to noise. Training of the generative models
is relatively straightforward: The training data consists of
exclusively normal data (in-distribution data), and the models
are trained to reconstruct the original input data sample by
first reducing and then expanding the feature space again. For
inference, the reconstruction error of the data samples are
looked at as a score of how likely the input sample is an
outlier. Since the model has not seen the outlier data before
and is not able to reconstruct it as well as the normal data,
the reconstruction error is higher for these data samples.

Autoencoder Architecture. The One-Class Novelty Detector
which has achieved state of the art results for the BATADAL
dataset is a simple autoencoder architecture [15]. It consists
of 4 layers in the encoder and decoder each, which compress
input data into a lower-dimensional latent representation and
reconstruct the original data from this compressed form again.
We used tanh activation functions interleaved between layers.
The latent space representations between the encoder and
the decoder blocks consisted 18 features. Model parameters
were optimized with the Adamax algorithm. In the original
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paper that introduced this architecture [15], a fixed number
of epochs of 100 was used. Since we test different training
strategies, the fixed number of epochs hinders the different
models abilities to correctly fit to the training data distribution.
We introduce an early stopping mechanism that stops training
once the validation loss has not improved for 10 epochs, to
have an objective comparison of all training strategies. We set
the threshold by calculating the optimal F1-score.

B. Adversarial Attacks

Adversarial attacks are a common vulnerability of machine
learning methods, especially for deep neural networks. Ad-
versarial samples are data samples that lie at the decision
boundary of the model and are therefore classified into the
wrong class [16], [23]. Adversarial attacks work best for
models that have a decision boundary which differs from the
true decision boundary. While all machine learning methods
principally have faulty decision boundaries to some degree,
highly nonlinear models, such as deep neural networks, of-
tentimes have more ambiguous decision boundaries and are
therefore more vulnerable to adversarial attacks than, for
example, more traditional machine learning techniques.

As previously discussed, adversarial attacks can be broadly
classified into white-box and black box attack settings. In
the white-box setting, it is assumed that the attacker has
full knowledge of the model parameters and the specific
architecture. This is useful information since the gradient of
the models loss function with respect to the input sample can
easily be calculated and maximized, until the perturbed sample
gets classified wrongly.

1) Projected Gradient Descent: A state-of-the-art white-
box adversarial attack algorithm proposed by Madry et al. [20]
is Projected Gradient Descent (PGD). The gradient of the loss
function with respect to the input sample x gets calculated.
The gradient is scaled by a small α and added to the input
sample. A projection is done on this perturbed sample, to
ensure some constraints given by the task. This is usually an
epsilon magnitude clipping to ensure a small l∞ norm or, as
in our case, a projection on the feasible set of features, which
can be changed. The exact formula for the iterative update
step can be defined as:

x̃k+1 = ΠB∞(x̃k + α · sign(∇x̃k
L(θ, x̃k, y))), (1)

following the notation from [24]. This update rule is done
iteratively for a fixed number of steps or until a condition is
met. PGD can be seen as an extension of the Fast Gradient
Sign Method (FGSM) which was the first adversarial attack
[23]. PGD is in principle an iterative version of FGSM.

C. Defenses Against Adversarial Attacks

1) Adversarial Training: The classical approach to increase
robustness, especially for defending against adversarial at-
tacks, is the so-called adversarial training [20]. For classi-
fication tasks, adversarial training works by generating and
adding adversarial samples to the training dataset, with their
respective original class. These samples are generated for

example using the PGD algorithm explained in Section III-B1
since it is, at the time of writing, one of the most effective
ways to generate adversarial samples [25]. At every epoch
a certain percentage of data samples get transformed to an
adversarial sample, while their target class stays the same.
This guides the model to learn to filter out and ignore the
adversarial perturbations and is more resilient against these
attacks, meaning to generate an adversarial sample, a bigger
perturbation needs to be applied to the sample.

However, for One-Class Novelty Detectors adversarial train-
ing functions somewhat differently, since we only train the
autoencoder in an unsupervised manner and our training data
consists purely of benign data samples without any target
classes. We therefore use the adversarial loss:

LAE = ∥X − Dec(Enc(X∗))∥22
+λ ∥Enc(X∗)− Enc(X)∥22 ,

(2)

where X is the original data sample and X∗ is the adversarial
sample generated from X . The first part of Eq. (2) describes
the L2-norm of the original data sample and the reconstruction
of the adversarial sample, which was generated live using
PGD, meaning for every sample, the adversarial sample is
generated for the current model and then used to calculate the
loss. The second part is weighed with a λ and describes the
difference in the latent representation of the original data sam-
ple and the adversarial sample. This term is necessary to filter
out the adversarial noise in the encoder. We use λ = 0.091 and
α = 7 ·10−7, which were the ideal hyperparameters optimized
by Optuna Parameter search algorithm.

The model is expected to filter out any adversarial pertur-
bations. Salehi et. al. have shown that this type of adversarial
robust training can increase the so-called hardness of evasion,
which is a metric that measures the size of the perturbation
needed for a misclassification [26]. In our case, it is calculated
via the average L2-norm of the perturbations needed for an
attack to stay unnoticed by the system.

2) Sensitivity Based Training: Since the adversarial training
requires a lot of computational resources, we have investigated
another method that is supposed to increase robustness of the
anomaly detector, while still being relatively cheap computa-
tionally [27]. This method also uses a custom training loss
that is supposed to help the model in learning to filter out the
adversarial noise. This sensitivity based loss is described by:

Lsen = ∥X − Dec(Enc(X))∥2
+γ ∥Enc(X)− (Enc(X +∆h))∥2 ,

(3)

where ∆h is a vector with the same length as X and
every entry has been randomly generated from a Gaussian
distribution with µ = 0 and σ = q. For our experiments,
we have found the best results using Optuna hyperparameter
search with q = 1.5 · 10−5 and γ = 1.0.

3) Hardness of Evasion: Hardness of Evasion is defined
as the average Euclidean distance between the original data
sample and the adversarial data sample, which has the smallest
perturbation needed to be wrongly classified. In our case this
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Fig. 1. Comparison of original test dataset and the adversarially generated test dataset based on the original autoencoder architecture. Green Area marks
the attack samples

means a reconstruction error below the threshold and therefore
a classification as a benign data sample. We calculated this
metric using the PGD algorithm with a very small α = 10−7.
This is a useful measure for comparing the robustness of dif-
ferent training strategies. The higher the hardness of evasion,
the more robust the model is. For our experiments, we have
normalised this metric, meaning that we divided the score by
the number of features available to the attacker. This was done
to have a better comparison between the different attacks.

IV. EXPERIMENTS

We aim to build upon an existing One-Class Novelty
Detection Architecture [15] to evaluate the current robustness
of the system and find methods to increase it. We therefore
train and compare three models with the same architecture, but
different training loss functions: original model with L2-norm
as loss, adversarially trained model with the adversarial loss
in Eq. (2) and sensitivity trained model with the sensitivity
loss in Eq. (3). We keep most hyperparameters of the original
architecture the same, to be able to have a fair comparison and
not skew the results by introducing more unknown variables.
Parameters that we have not changed include number of layers,
number of neurons, training- and testing data split, pre- and
postprocessing of the data. While the original architecture
trains the model for a fixed number of epochs, we had to

introduce an early stopping condition since we have changed
the loss functions for two experiments and this changes the
training drastically. The early stopping condition stops the
training when there has been no significant decrease of the
validation loss in over 10 epochs. It should be noted that
while we use different losses for adversarial- and sensitivity
based training, to measure performance on the validation-
and test dataset, we use the mean squared error between the
reconstructed and original samples.

We also tested the scenario where different numbers of
features were allowed to be perturbed by the adversary. This
is a more realistic setting, since an attacker is more likely to
be able to only change a percentage of features in a cyber-
physical system as opposed to all the features. This makes the
task drastically more challenging. We examine approximately
100%, 75%, 50% and 25% of the features available for
perturbation, as well as only a single feature. We choose the
features that have the most effect on the classification, at the
time of the first iteration in the PGD algorithm for every
sample to cover the worst case scenario.

For testing the robustness of the system, we wanted to
generate adversarial data for the attacks in the testing data.
In theory, a successful generation of these adversarial samples
should decrease the reconstruction error enough to be clas-
sified as a benign class. We have used the PGD algorithm
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TABLE I
HARDNESS OF EVASION SCORES AND PERCENTAGES OF FAILED ATTACKS, FOR DIFFERENT NUMBERS OF FEATURES AVAILABLE TO THE ADVERSARY.

Hardness of Evasion (normalized) Number of failed attacks (%)

# features original adversarially trained sensitivity trained original adversarially trained sensitivity trained

51 (100%) 0.01229 0.02154 0.00871 22.7 18.3 22.0
37 (75%) 0.01138 0.00820 0.00969 24.7 18.8 21.5
25 (50%) 0.00688 0.01069 0.01038 26.7 22.5 25.7
13 (25%) 0.00180 0.02100 0.00220 42.1 44.3 39.1

1 (2%) 4.7572e-09 2.2749e-14 5.1661e-08 60.9 58.2 61.3

(explained in detail in Section III-B1) for all attack samples
in the testing set, which were 407 out of 2089 samples. It
is important to note that while the PGD algorithm tries to
increase the loss with respect to the input sample, in our case
we want to decrease the reconstruction error to stay unnoticed
by the underlying system. This means that instead of going
in the direction of the gradient with the update rule, we go
into the opposite direction by multiplying the gradient by -1.
Other than this simple change, the algorithm stays the same.

Since we want to look at the minimum perturbation needed
for the model to misclassify, we have ignored the epsilon
clipping which normally guarantees a small l∞-norm. Through
Optuna hyperparameter search library [28], we have achieved
the best results with an α of 10e-4 and 10 000 iterations.

In this paper we focus on concealing attacks rather than
attempting to manipulate benign data to resemble an attack.
Both scenarios are a valid research topic but in the domain
of cybersecurity, the former case is more threatening to the
integrity of the system than the latter.

We first looked at the original AE architecture and how
vulnerable it is to adverarial attacks. In Figure 1 we can see
the reconstruction errors of the original (unperturbed) testing
dataset (red curve) as well as reconstruction errors for the
adversarial testing dataset (blue curve), where PGD was used
on the attack samples (marked as green area in the plot).
We can see that for most attacks, the reconstruction error
could be reduced enough to be classified as benign by the
original system. There are some exceptions where the original
reconstruction error was too high to begin with and the PGD
algorithm converged before the rec. error was reduced enough.
However, overall it is very possible to disguise most attacks
as benign behaviour, which proves as a serious vulnerability.

V. RESULTS AND DISCUSSION

In order to compare the different training methodologies,
we have displayed the hardness of evasion metric (explained
in Section III-C3) as well as the number of failed attacks (i.e.
the percentage of attack samples that could not be disguised
as benign data for the given system architecture) in Table I.
These metrics were calculated for different amounts of features
available to the attacker, since in a real world scenario, this is
more practical. We can see that the adversarially trained model
clearly outperforms the original architecture, when 100% (51)
of features were available, since the score is almost double
of the original. This is the case for all attacks except the one

with 75% and 2% of available features. The sensitivtiy trained
model has better robustness than the original architecture only
when less or equal to 50% of features were used.

The adversarially trained model seems to be the best ar-
chitecture regarding the hardness of evasion metric, since it
is the highest across the board. However, while the average
hardness of evasion increased by a lot, the number of failed
attacks is the lowest for all architectures for 4 out of the
5 attack strategies. It seems that some attacks which could
not be disguised on the original- and the sensitivity-trained
model, could be perturbed enough to be misclassified on
the adversarially trained model. Interstingly, the number of
failed attacks metric stands in contrast to the hardness of
evasion metric, in the sense that for high number of features
available (more than 50%), the original model performs best.
However, since in practice the attacker is unlikely to have a
high number of features avialable, the more relevant case is for
low number of features available. For these attack scenarios,
the adversarially trained and sensitivity trained model clearly
outperform the original.

While the main goal of this paper was to investigate methods
to increase robustness against adversarial attacks, we still want
to look at the performance of the three models on the original
(unperturbed) test dataset. This can be seen in Figure 2 where
the reconstruction errors of the normal and unperturbed test
data for our three models has been plotted. They mostly look
similar, with the main difference being that the sensitivity
trained model has a lower threshold for classification. Other
than that, the models performances are mostly the same.
This is made more clear when we compare the F1-scores for
the architectures: the original architecture has an F1-score of
0.668, the adversarially trained model has a score of 0.678 and
the sensitivity trained model only 0.656. The worse score for
sensitivity trained model can easily be explained by the fact
that we add noise to the training data to increase robustness,
which makes it harder to train in a general manner. The
adversarially trained model actually has an increased F1 score,
meaning we actually have better performance for this model
than the original. However, these differences in F1 score are
miniscule and do not consistute for actual improvement or
worsening, but rather for random chance.

VI. CONCLUSION

In this paper we wanted to investigate the robustness of
an established IDS in an OT environment. We looked at the
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vulnerabilities of the original architecture regarding white-box
adversarial attacks of varying degrees, and methods to increase
the robustness by simply changing the training methology
while the model structure stays the same. We have compared
two methods which increase the hardness of evasion for
adversarial attacks, while the overall performance of the IDS
stays fairly similar. However, since the total number of failed
attacks has been decreased in 3 out of the 5 attack scenarios,
it is not definite that adverarially trained or sensitivity trained
models are a safer option in practice. It depends on the kind
of resilience that is needed for the practiacal system. This
research underscores the significance of investigating security
flaws in modern IDS’, which oftentimes utilise modern ma-
chine learning techniques which are vulnerable to adversarial
attacks.

Further investigation is needed in this domain, particularly
for black-box attacks in OT environments, as they are a
more realistic setting, where the attacker does not have any
knowledge about the inner workings of the model but instead
is able to query the model. Ultimately, the topic adversarial
robustness of IDS will require more reasearch, especially as
the system architectures get more complex.
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