
Task Completion Time Prediction Scaled by
Machine Learning Model Uncertainty

Shumpei Kawaguchi∗, Yuichi Ohsita†, Masahisa Kawashima† and Hideyuki Shimonishi†
∗Graduate School of Information Science and Technology, Osaka University, Osaka, Japan

Email: s-kawaguchi@ist.osaka-u.ac.jp
†Cybermedia Center, Osaka University, Osaka, Japan

Email: yuichi.ohsita.cmc@osaka-u.ac.jp, kawashima.masahisa.cmc@osaka-u.ac.jp, shimonishi.cmc@osaka-u.ac.jp

Abstract—We discuss ”GPU Time Sharing,” which involves
sharing GPU servers locally owned in the private cloud to
increase their usage and to reduce the costs of cloud services.
In the GPU Time Sharing, users can reserve and use a GPU
server for a certain period of time to complete a task, such as
training the AI model or inference on a video. In the reservation,
task completion time must be predicted conservatively to ensure
that the task is completed in the reserved time, but at the same
time, the reserved time should be as short as possible for efficient
resource sharing. In this paper, we propose a task completion time
prediction method called ”Uncertainty Scaled Gradient Boosting
Decision Tree” (USGBDT), which first predicts the completion
time of the Deep Learning (DL) tasks using the Gradient Boosting
Decision Tree, and then scales the predicted time based on the
expected uncertainty of the machine learning models. Applying
the proposed method to the GPU Time Sharing for video analysis
tasks, we have confirmed that all tasks are completed in the
predicted completion time and the GPU usage time over the
reserved time is improved from 53.4% to 67.0%.

Index Terms—Machine Learning, GPU Sharing, Resource
Management

I. INTRODUCTION

In recent years, the utilization of AI and machine learning
technologies has expanded, and the rapid proliferation of new
applications and services using GPUs, especially Generative
AIs, LLM (Large Language Model), and foundation models,
has dramatically increased the demand for GPUs.

Traditionally, AI models and machine learning models have
often been used with GPUs provided by cloud services,
resulting in increased financial costs for GPU resources for
individual users and university laboratories. Furthermore, as
the number of cloud service users increases, there are concerns
about the growing power consumption due to the expansion
of data centers and the increased network load caused by the
large amount of data flowing through the network.

In contrast, corporations, such as IT service provider or large
IT solution users, universities and national research institutions
often possess high-performance GPU servers for their private
cloud, but some of them are not fully utilized, i.e. remain
connected to power and network despite only being used for a
short amount of time. Therefore, in recent years, the concept
of sharing these resources has received more attention. For
example, securing computational resources by sharing owned
servers has been provided by many universities in the United
States [1]. In addition, a new computing paradigm has been

proposed in which any computer connected to the Internet can
be used as a computational resource in the future [2].

One major problem with sharing private GPU servers in this
way is that, since they are deployed by each company for its
own business, they do not lend them freely as in the cloud,
and the company that owns them must be able to prioritize
their use at any time. Therefore, we propose a new service
called ”GPU Time Sharing,” which allows GPU servers in
the private cloud to be used by other users in a gap time
when the local users have declared they will not use. This
is exactly the same as operating as a taxi when not using a
private car. By lending out such GPU servers during their non-
operational hours, it is possible to effectively utilize the low-
utilization GPU servers in the private cloud. This approach can
reduce the financial burden on individual laboratories while
also achieving a reduction in social energy consumption.

In GPU Time Sharing, local users should be able to use
their own GPU servers whenever they want, and thus external
users should avoid occupying servers for long periods of time
but use them on a task basis, such as a batch to train an AI
model or inference on a video. Such fine-grained lending is
important to ensure owner convenience, especially in small
private clouds. However, if the user’s task does not complete
within the reserved GPU server time, the task might be forcibly
terminated before completion, so that the usage rights of the
server are returned to server’s owner. To ensure that tasks
are completed within the reserved time, it is necessary to
predict the task completion time conservatively. However, such
prediction leads to a shorter actual usage time of the GPU
server relative to the reserved time. To achieve a higher task
completion rate within the reserved time and higher GPU
usage time, it is necessary to accurately predict the task
completion time and select the appropriate GPU server before
the user starts executing the task.

In conventional task scheduling, since many tasks are as-
signed to many GPU servers, a statistical multiplexing effect
can be expected, and thus it is not a major problem even if
the completion time prediction of individual tasks contains
certain errors. However, in the GPU Time Sharing, since the
tasks are scheduled in a fine grain, accuracy of the individual
completion time prediction is quite important. To predict
the completion time using a machine learning model, there
is the possibility of underestimating the actual completion

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



time. Therefore, scaling must be applied according to the
uncertainty of the machine learning model’s predictions to
avoid underestimating.

Also, since users are expected to perform various tasks,
predicting the completion time of the tasks before executing
them is quite difficult unless the user provides detailed infor-
mation on the application, data, and tasks they intend to use
on the provided GPU server. GPU Time Sharing is intended
to be provided not only to researchers with deep knowledge of
computers but also to general users without such knowledge.
Providing detailed information about the characteristics of the
source code of the applications they run and the specifications
of the AI or machine learning being used would be extremely
challenging.

In this paper, we propose a machine learning-based task
completion time prediction method called Uncertainty Scaled
Gradient Boosting Decision Tree (USGBDT); which considers
the uncertainty of the predictions and only uses a small number
of easily obtainable input parameters. In completion time
prediction using machine learning, the magnitude of prediction
error varies depending on the types of deep learning tasks and
the training status of the using data. The proposed method
adapts to the uncertainty based on these variations while
maximizing the actual GPU usage time relative to the GPU
server reserved time.

II. RELATED WORK

Several prediction-based methods have been proposed to
schedule GPU resources for deep learning tasks. One of
the methods is the method called ”Horus” [3]. Horus is the
interference-aware and prediction-based scheduling method in
deep learning co-location systems. In [3], the relationship
between the characteristics of popular deep learning models
and GPU utilization is analyzed and characterized based on
benchmark tests. These characteristics of the deep learning
model include floating point operations (FLOPs), input data
size, and the computational graph structure, such as the
number of layers. A machine learning model is constructed
based on the features of the computational graph such as
FLOPs, Batch Size, Memory Parameters to predict GPU
utilization. And they construct a scheduler to support co-
location considering resource interference risk.

The method for predicting the execution time of deep
learning tasks in large-scale GPU datacenters has also been
proposed [4]. In this paper, a machine learning model using
GBDT is constructed to predict GPU time and cluster status
utilizing trace data from deep learning workloads executed in
large-scale data center clusters. For the vast number of deep
learning tasks running in the cluster, the resource manager is
designed to predict execution time based on features such as
job type, user characteristics, and cluster type, thereby achiev-
ing reductions in overall job completion time and waiting time.

In [5], it is demonstrated that the use of machine learning
models to predict the execution time of the GPU applica-
tion is more effective compared to analytical models. Unlike
analytical models, machine learning models can reasonably

Fig. 1. Task Scheduling Method of the GPU Time Sharing

predict execution time without requiring detailed knowledge
of application code, hardware characteristics, or modeling.
Therefore, when a large dataset containing similar applications
and hardware structures is available, the machine learning
approach has been found to be effective in predicting the
execution time of GPU applications on heterogeneous archi-
tectures utilizing GPUs.

In those previous studies, there have been no studies in
which the uncertainty of the predictions made by machine
learning models has been corrected during the prediction
phase. In [3], resource interference is not considered during the
prediction phase, but rather in the task scheduling algorithm to
expect statistical multiplexing gains. In GPU Time Sharing, the
usage time of GPU servers is limited, and prediction errors for
individual deep learning tasks can significantly impact service
quality. Therefore, this paper proposes that scaling should
be applied according to the uncertainty during the prediction
phase of the execution time of the deep learning task.

III. COMPLETION TIME PREDICTION METHOD

In this section, we provide an overview of GPU Time
Sharing and explain the concept of Uncertainty Scaled GBDT.

A. GPU Time Sharing

In the GPU Time Sharing, users can use the GPU servers
that are deployed in private clouds. The owner of the GPU
server can decide the time periods during which the GPU
server will be available for GPU Time Sharing. Users can
use the GPU server that the task scheduler selects based on
the predictor’s prediction of the deep learning task completion
time. Figure 1 represents the scheduling of tasks in GPU Time
Sharing; the completion time of the task is predicted before
running it, and the scheduler schedules the task using the
predicted completion time. If the predicted completion time
is shorter than the actual completion time, the task may not
be completed within the reserved GPU time, leading to the
task being interrupted midway. This would result in decreased
user satisfaction. However, if the predicted completion time is
significantly longer than the actual completion time, the actual
GPU usage time will be shorter relative to the reserved time,
leading to inefficiencies and wasted resources. Therefore, in
the GPU Time Sharing, an accurate completion time prediction
is extremely important.

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 2. Scheduling Method using Tmodel and Tpred

B. Overview of Uncertainty Scaled GBDT (USGBDT)

Task Scheduler in GPU Time Sharing should satisfy the
following requirements.
(I) Ensure that the GPU reserved time does not end before

the user’s GPU task is completed.
(II) Minimize the difference between the completion time of

the user’s GPU task and the end of the GPU reserved
time.

If requirement (I) is not satisfied, it is possible that the user’s
task will remain incomplete, which significantly degrades the
quality of service. The above requirements (I) and (II) can
be achieved by satisfying the conditions (a) and (b) using ∆
defined by Eq. (1).

∆ =
Ttrue − Tpred

Ttrue
, (1)

(a) ∆ ≤ 0 is ensured for all data.
(b) ∆ is maximized under condition (a)

Figure 2 illustrates the scheduling using the predicted
completion time. If condition (a) is not satisfied, incomplete
tasks will occur, as shown in Fig. 2. In the proposed method,
we first construct a machine learning model using GBDT to
predict the completion time of deep learning tasks. However,
the predicted completion time from the constructed machine
learning model (Tmodel) includes underprediction errors, and
using this time directly as the completion time prediction can
often fail to satisfy condition (a). Therefore, we scaled the
predicted completion time by machine learning model using
a coefficient to obtain a completion time prediction using
task scheduling. It is a significant challenge to determine this
coefficient. If it is too small, condition (a) cannot be satisfied;
if it is too large, condition (b) cannot be satisfied. Therefore,
in this paper, we propose to vary the coefficient according to
the prediction error of the machine learning model. In this
method, we obtain the prediction result Tpred by Eq. (2).

Tpred = Umodel × Tmodel (2)

In Eq. (2), Tmodel is the completion time predicted by a
machine learning model, and Ttrue is the actual completion
time. Umodel is a coefficient that represents the uncertainty
in the machine learning model, determined by the parameters
input by the user. The selection of this coefficient will be
discussed in Section V-E.

TABLE I
CANDIDATE INPUT PARAMETERS

Parameter Description
Gcore Number of the GPU core
Gboost Boost clock frequency of the GPU
GFLOPS GPU FLOPS
Mframes Number of frames in the video data
Mheight Height of the video data
Mwidth Width of the video data
Mpixels Pixels of the video data
Msize File size of the video data
Aparams Number of parameters of the Video Analysis AI
AFLOPs Video Analysis AI FLOPs
AmAP Video Analysis AI mAP

IV. SELECTION OF INPUT PARAMETERS FOR PREDICTING
VIDEO ANALYSIS TASK COMPLETION TIME

Task completion prediction requires the information on the
application. However, providing detailed information about
the characteristics of the applications would be extremely
challenging. Therefore, We simplify the parameters input into
the predictor and minimize the information users need to
provide beforehand to make GPU Time Sharing as user-
friendly as possible.

In this paper, we evaluate USGBDT by predicting the com-
pletion time of video analysis tasks. In this section, we discuss
the selection of input parameters for USGBDT, focusing on
the video analysis tasks.

We first list the features that are considered necessary to
predict the completion time of video analysis tasks, and use
those parameters as inputs to construct the machine learning
model. Table I lists the candidate parameters considered as
input for the video analysis task completion time predictor.

We select features from the candidates listed in Table I,
incrementally increase the number of input parameters, and
choose the best combination of parameters to construct the
predictor. The best predictor was chosen based on the smallest
MAPE (Mean Absolute Percentage Error) calculated between
the completion time predicted by the machine learning model
Tmodel and the actual completion time Ttrue using test data.
In this paper, since the evaluation is conducted using the en-
vironment described in V-A, the selection of input parameters
was also performed using the environment presented in V-A.
Figure 3 shows the MAPE when the predictor is constructed
by varying the number of input parameters.

In this paper, we use XGBoost [6] and LightGBM [7] to
construct a machine learning model for prediction. We refer
to the machine learning model built with XGBoost as the
XGB model, and the model built with LightGBM as the LGB
model. It was confirmed that MAPE was minimized when the
number of input parameters was 4 or 5 in the XGB model
and 4, 5 or 6 in the LGB model. Therefore, the completion
time predictor proposed in this paper adopts the model with
4 input parameters. The combination of parameters are listed
in Table II for the XGB model and in Table III for the LGB
model. Mframes and Mheight can be easily extracted from
the input video data. In this study, we use some versions
of YOLO for video analysis, and YFLOPs and Yparams are
properties of YOLO that are publicly available and can be

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 3. The Relationship Between the Number of Input Parameters and the
Model Score in the Constructed Predictors

TABLE II
INPUT PARAMETERS USED IN THE XGB MODEL

Inputs parameter Description
GFLOPS GPU FLOPS
Mframes Number of frames in the video data
Mheight Height of the video data
YFLOPs YOLO FLOPs

TABLE III
INPUT PARAMETERS USED IN THE LGB MODEL

Inputs parameter Description
GFLOPS GPU FLOPS
Mframes Number of frames in the video data
Mheight Height of the video data
Yparams Number of parameters of the YOLO

easily obtained. Therefore, it was concluded that the proposed
prediction method allows the prediction of the completion time
using only parameters that the users can easily provide.

Note that Gcore, Gboost, and GFLOPS are GPU related
parameters, which only need to be known by the service
provider to select GPU servers, and users do not need to
care about them. In this paper, we only tested two types of
GPU servers; thus, only GFLOPS is sufficient to discriminate
them, but more GPU related parameters might be used for the
prediction to integrate various GPU servers into GPU Time
Sharing in our future work.

V. EVALUATION AND DISCUSSION

A. Evaluation Environment
In this paper, we verify the effectiveness of USGBDT

specifically for object detection tasks among various deep
learning tasks. So, we used four versions of YOLO in Tables
IV and V to evaluate the USGBDT. We use YOLOX [10] and
YOLOv5 [11] to obtain the inference completion time data for
training machine learning based prediction model (IV). And
for test data, we use YOLOv8 [12] and YOLOv10 [13] (V).
We refer to the information from [10]–[13] to obtain YOLO
specifications and implement them accordingly.

We used two types of servers with two types of GPUs, as
shown in Table VI, as resources for edge computing. Table
VII shows the specifications of GPU.

Fig. 4. Distribution of Prediction Errors by the GBDT model

We construct a machine learning based prediction model
using XGBoost and LightGBM. We refer to [8], [9] for
implementation. Additionally, the models with Uncertainty
Scaled applied to each machine learning model are referred
to as the USXGB model and the USLGB model.

The videos used for inference with YOLO were created
based on the videos obtained from the 7th AI city challenge
dataset [14]. Since the dataset obtained from [14] lacked
variety in video duration, we created video data with diverse
duration by purging and merging together different segments
of the videos. Table VIII shows videos used to obtain training
data, and Table IX shows videos used to obtain test data.

B. Uncertainty of the GBDT Model
In this section, we evaluate the prediction errors of the

XGB model and the LGB model. The x-axis of Figure 4
represents the true completion time, and the y-axis represents
the values predicted by the machine learning model. The
straight line in Fig. 4 represents the line y = x, and any points
plotted below this line indicate that the predicted values by the
machine learning model are underpredicted. In this evaluation,
we found that the XGB model resulted in underestimation
in 50.6% of the whole data, while the LGB model exhibited
underestimation in 53.8% of the whole data.

Here, to calculate the utilization efficiency of the GPU
server in GPU Time Sharing, we present a metric defined by
Eq. 3.

Gutil =


Ttrue

Tpred
(if Ttrue ≤ Tpred)

0 (if Ttrue > Tpred)

(3)

TABLE IV
TRAINED YOLO

YOLO Models params (M) FLOPS (G) mAP
YOLOv5x 86.7 205.7 50.7
YOLOv5l 46.5 109.1 49.0
YOLOv5m 21.2 49.0 45.4
YOLOv5s 7.2 16.5 37.4
YOLOX-x 99.1 281.9 51.1
YOLOX-l 54.2 155.6 49.7
YOLOX-m 25.3 73.8 46.9
YOLOX-s 9.0 26.8 40.5

2024 20th International Conference on Network and Service Management (CNSM)



TABLE V
UNTRAINED YOLO

YOLO Models params (M) FLOPs (G) mAP
YOLOv8x 68.2 257.8 53.9
YOLOv8l 43.7 165.2 52.9

YOLOv8m 25.9 78.9 50.2
YOLOv8s 11.2 28.6 44.9

YOLOv10-X 29.5 160.4 54.4
YOLOv10-L 24.4 120.3 53.2
YOLOv10-M 15.4 59.1 51.1
YOLOv10-S 7.2 21.6 46.3

TABLE VI
GPU SERVER USED AS EDGE COMPUTING RESOURCES

Server1 Server2
CPU Intel Core i7-13700F Intel Core i5-13400F
GPU Nvidia RTX4070 Nvidia GTX1650
RAM 32GB 16GB

TABLE VII
GPU SPECIFICATIONS

GPUs CUDA Core Boost Clock FLOPS
(GHz)

NVIDIA GeForce GTX1650 896 1.59 2.849
NVIDIA GeForce RTX4070 5888 248 29.204

In GPU Time Sharing, if a task does not finish within
the reserved time due to underprediction of the completion
time, the task will be forcibly terminated. Therefore, the GPU
utilization for data that was underpredicted is considered 0% in
Eq. 3. When scaling is not applied according to the uncertainty
of the machine learning model, the prediction made by the
model, Tmodel, is used as the final predicted result, Tpred.
Therefore, in Eq. 3, Tpred = Tmodel. Calculating GPU
utilization from the equation results in 45.0% for the XGB
model and 42.9% for the LGB model. This indicates that using
predictions from the machine learning models for scheduling
in GPU Time Sharing fails to meet both requirements (I) and
(II) in Section III.B. Therefore, it is obvious that there is a
need to scale the uncertainty of the machine learning models.

C. Dependency on Video Data

Whereas the variation of YOLO versions is countable,
users would use their own video data for their inference
tasks, and thus variations of input video data are enormous.
Therefore, the XGB/LGB models should accurately predict the
completion time of the inference for various video data that
are completely different from those used for model training.

Figure 5 shows the distribution of the prediction error
between Tmodel and Ttrue for both the XGB model and the
LGB model. This figure shows that it is clear that many
points are plotted near the line y = x. This indicates that
the predictions made by the machine learning model can
achieve high accuracy in unknown video data. Furthermore,
data analysis revealed that the percent error is almost within
the range of -0.2 to 0.2. This indicates that machine learning
models can predict task completion time for unknown video
data within a 20% error range. This error range is much
smaller than that of the unknown YOLO versions, thus we can

TABLE VIII
TRAINED VIDEO

movies length width height size (MB) frames
c001 28:46 1920 1080 823.7 51728
c003 32:17 1920 1080 794.1 58052
c007 05:02 1920 1080 84.7 9051
c008 11:07 1920 1080 75.4 19990
c047 20:01 1920 1080 439.8 35994
c107 10:00 1920 1080 134.2 17982
c001s 28:46 213 120 39.3 51728
c003s 32:17 213 120 36.8 58052
c007s 05:02 426 240 9.9 9051
c008s 11:07 160 120 2.6 19990
c047s 20:01 320 240 14.2 35994
c107s 10:00 960 720 53.6 17982

TABLE IX
UNTRAINED VIDEO

movies length width height size (MB) frames
c005 30:29 1920 1080 507.1 54815
c014 10:00 1920 1080 96.2 17982
c048 20:01 1920 1080 346 35994
c006s 30:59 213 120 36.7 55714
c015s 10:00 320 240 9.4 17982

Fig. 5. Distribution of Prediction Error (Trained YOLO and Untrained Video)

conclude that the predictor is capable of handling various input
video data accurately. Furthermore, since the value of Umodel

that satisfies condition (a) in III.B is expected to be small, it
is anticipated that condition (b) can be satisfied sufficiently. It
may be possible to further improve the accuracy by training
the model with more input data, which would be our future
work.

D. Dependency on YOLO Versions

There are a number of variations YOLO versions as intro-
duced above, and we can assume that many versions of YOLO
are learnt into the machine learning model and many users
would use these YOLO versions. We can also assume that new
YOLO versions will be proposed in the future, or variations of
existing YOLO versions are prepared, thus users would also
use YOLO versions that are not used for machine learning
model training. Note that we assume that some parameters,
i.e. YOLO FLOPs or number of parameters of the YOLO, as
discussed in the previous section, should be known in advance
even for the untrained YOLO versions.

2024 20th International Conference on Network and Service Management (CNSM)



Figure 6 shows the distribution of the prediction error
between Tmodel and Ttrue for both the XGB model and the
LGB model.

This figure shows that many points are plotted below the
line y = x. Data analysis revealed that an underprediction
occurred in 73.8% of the data for the XGB model and 81.3%
for the LGB model. This indicates that the predictions made
by the machine learning models have a significant uncertainty
when applied to unknown YOLO versions. Also, further
analysis showed that the percent error for the LGB model
falls within the range of -0.5 to 0.5, while the percent error
for the XGB model falls within the range of -1.2 to 0.5. This
suggests that the XGB model has the potential to significantly
overprediction the completion time. By comparing Figs. 5
and 6, the predictor can produce larger errors for untrained
YOLO models. This indicates that there are challenges in
generalizability to different YOLO models. Furthermore, the
value of Umodel that satisfies condition (a) in III.B is expected
to be higher compared to that for trained YOLO. Therefore,
if the Umodel value that satisfies condition (a) for unknown
YOLO is uniformly applied to all data, it is anticipated that
condition (b) may not be satisfied adequately. It is significant
to adjust the value of Umodel based on the training status of
the YOLO version to scale the uncertainty of the machine
learning model accordingly.

Table X shows the value Umodel required to ensure ∆ ≤
0, which means that the predicted task completion time will
never be shorter than the actual completion time. To meet
this stringent requirement, a large Umodel value is needed, as
expected. As discussed above, the predictor can produce larger
errors for untrained YOLO versions, thus larger Umodel values
are required. Comparing the XGB and LGB models, the LGB
model has higher accuracy and requires smaller Umodel values.

E. Analysis on Umodel Values

Figure 7 shows the values of Umodel when the allowable
value of ∆ is varied. In this figure, ”T” represents Trained
and ”UT” represents Untrained. When using common Umodel

to calculate Tpred, ∆ ≤ 0 must be satisfied for all data to
achieve 0% task incomplete rate. Higher Umodel values, which
means reserving the completion time larger than the machine

Fig. 6. Distribution of Prediction Error (Untrained YOLO and Untrained
Video)

TABLE X
Umodel VALUES WITH EACH COMBINATION

Umodel

USXGB model (T YOLO and UT Video) 1.75
USXGB model (UT YOLO and UT Video) 2.23
USLGB model (T YOLO and UT Video) 1.28

USLGB model (UT YOLO and UT Video) 2.02

learning model predicts, decrease the rate of task incompletion.
However, as shown in Eq. (2), since Umodel is uniformly
applied to all predicted values, if Umodel is too large, the
prediction accuracy decreases. We select the smallest Umodel

that satisfies ∆ ≤ 0 for all data, the value was 2.23 for the
XGB Model and 2.02 for the LGB Model.

Figure 8 shows the relationship between task incomplete
rate and Umodel values. The figure indicates the trade off
between these values. When we set Umodel to 1, the task
incomplete rate can be as large as 0.2 to 0.8. We confirmed
that when Umodel is set to 2.23 for the XGB Model and 2.02
for the LGB Model, the task incompletion rate becomes 0%.

F. Differentiation of Umodel values
The analysis on the previous subsection indicates that, if

the YOLO version of a user task is indicated and whether
the YOLO has been learnt by the machine learning model
or not is known in advance, and actually this is true, we
can select appropriate Umodel value to efficiently predict the
task completion time Tpred. Therefore, in this paper, we also
propose a scheme to use differentiated Umodel values for each
task.

We evaluated the predicted completion times (Tpred) against
the actual completion times (Ttrue) using MAPE and Umodel,
which satisfies ∆ ≤ 0. Table X shows the values of Umodel

for each combination.
We note that before applying USGBDT, the GPU utilization

calculated using Eq. 3 was 45.0% for the XGB model and
42.9% for the LGB model. However, after applying USGBDT,
Table XI shows that GPU utilization improved to 52.7% for
the XGB model and 67.0% for the LGB model while achieving
0% task incomplete rate caused by underprediction. It is also
evident that when Umodel is determined for each combination,
the MAPE is smaller, and the ratio of GPU utilization is
higher. Especially, in the completion time prediction based
LGB model, while achieving a 100% task completion rate, the

Fig. 7. The Relationship Between Umodel and ∆ in Eq. 1

2024 20th International Conference on Network and Service Management (CNSM)



Fig. 8. The coefficient Umodel of the predicted completion time in Eq. 2
and the rate of tasks not completed within the allotted time.

TABLE XI
MAPE FOR Tpred AND Ttrue

MAPE GPU Utilization
XGB model (without scaling) 15.5% 45.0%

USXGB model (Common Umodel) 114.0% 46.7%
USXGB model (Diferentiated Umodel) 89.8% 52.7%

LGB model (without scaling) 15.5% 42.9%
USLGB model (Common Umodel) 87.2% 53.4%

USLGB model (Diferentiated Umodel) 49.0% 67.0%

Fig. 9. Distribution of Prediction Error (Using USGBDT and Differentiated
Umodel Values)

ratio of GPU usage time to GPU reservation time is 67.0%.
This result demonstrates that USGBDT using differentiated
Umodel improves task completion rate and GPU utilization
efficiency in GPU Time Sharing.

Figure 9 shows that neither the XGB model nor the LGB
model results in underprediction. The use of USGBDT has
been shown to be an effective prediction method that can
suppress incomplete tasks and improve GPU server utilization
efficiency in GPU Time Sharing. However, the figure shows
that the completion time for data with longer duration is
overestimated. This is likely due to the application of a
constant Umodel across all data. By considering the scaling
of uncertainty more deeply, it is believed that this could lead
to the development of a more robust and efficient prediction
method for GPU Time Sharing. However, this research will
be left for future work.

VI. CONCLUSION

In this paper, we proposed a completion time prediction
method, called USGBDT for deep learning tasks, intended for
use in GPU Time Sharing. The proposed method minimizes
underprediction by scaling the uncertainty in predictions made
by the machine learning model, enabling predictions that
improve task completion rates and GPU utilization in GPU
Time Sharing.

In the evaluation of the proposed method, a completion
time prediction for object detection using YOLO by USGBDT
based on the LGB model achieved a MAPE of 49.2%. This
indicates that by using the USGBDT LGB model-based com-
pletion time prediction for GPU server reservations, a 100%
task completion rate can be achieved, while the ratio of actual
GPU server usage time to GPU server reservation time can
be maintained at 67.0%. Compared to before using USGBDT,
we achieved an improvement in task completion rate by 46.2%
and increased GPU utilization by 24.1% in GPU Time Sharing.

In GPU Time Sharing, it is expected that object detection
using YOLO, as well as various other applications, will be
used. Additionally, the system infrastructure for GPU Time
Sharing is expected to use various GPUs. Therefore, in our
future work we will construct a more generalized completion
time model that can accommodate common GPU applications
using various GPUs.

REFERENCES

[1] “Nautilus by national research platform,” https:// nationalresearchplat-
form.org/nautilus/. Accessed: June 10, 2024.

[2] X. Cheng, M. Xu, R. Pan, D. Yu, C. Wang, X. Xiao, and W. Lyu, “Meta
computing,” IEEE Network, pp.1–7, 2023.

[3] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Gar-
raghan, “Horus: Interference-aware and prediction-based scheduling in
deep learning systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 1, pp. 88–100, 2021.

[4] Q. Hu, P. Sun, S. Yan, Y. Wen, and T. Zhang, “Characterization and
prediction of deep learning workloads in large-scale gpu datacenters,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15, 2021.

[5] M. Amaris Gonzalez, M. Dyab, D. Trystram, R. Camargo, and A. Gold-
man, “A comparison of gpu execution time prediction using machine
learning and analytical modeling,” 11 2016.

[6] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
Proceedings of the 22nd acm sigkdd international conference on knowl-
edge discovery and data mining, pp.785–794, 2016.

[7] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in Neural Information Processing Systems, vol.30, Curran
Associates, Inc., 2017.

[8] ”XGBoost Documentation”, https://xgboost.readthedocs.io/en/stable/in-
dex.html. Accessed: May 15, 2024.

[9] ”LightGBM’s documentation”, https://lightgbm.readthedocs.io/en/latest/
index.html, Accessed: May 17, 2024.

[10] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” 2021.

[11] “Ultralytics yolov5,” https://github.com/ultralytics/ yolov5. Accessed:
May 10, 2024.

[12] “Ultralytics yolov8,” https://github.com/ultralytics/ultralytics?tab=read-
me-ov-file. Accessed: May 10, 2024.

[13] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding,
“Yolov10: Real-time end-to-end object detection,” 2024.

[14] M. Naphade, et al., “The 7th AI City Challenge,” The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, June
2023.

2024 20th International Conference on Network and Service Management (CNSM)


