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Abstract—Core Network autoscaling is a critical scalability
challenge, where traditional methods and existing advanced
Reinforcement Learning (RL) approaches often overlook safety
considerations leading to exploration of unsafe actions during
training. This paper explores Safe Reinforcement Learning (Safe
RL) as a solution to tackle these safety challenges. This paper
formulates autoscaling as a Safe RL problem to integrate safety
constraints. Then autoscaling methodologies are developed by
optimizing Safe RL algorithms through delicate function design
and hyperparameter tuning. Finally, Safe RL models are eval-
uated on a Gym-based simulation environment and the Magma
Open-Source Core Network platform. Results confirm that Safe
RL models have a safer behavior during exploration and can
help real-world applicability of RL.

I. INTRODUCTION

As networks grow in size and complexity, it becomes
increasingly difficult to manage all of their different elements
effectively and adapt them quickly to changing conditions
and demands. The service requirements are dynamic, and
the network state and traffic varies due to stochastic arriving
requests with different Quality of Service (QoS) requirements
(e.g., tolerated delay). Network Function Virtualization (NFV)
allows to leverage the flexibility offered by virtualization
and Software Defined Networking (SDN), and significantly
reduces the time needed to scale out (resp. in) to increase
(resp. decrease) the resources according to the workload of the
Network Functions (NFs) [1]. Core Network autoscaling in
telecommunications requires adaptive solutions to efficiently
manage fluctuating traffic demands. Traditional methods often
struggle to adapt swiftly, leading to inefficiencies and po-
tential service disruptions. RL offers a promising approach
by automating decision-making based on real-time feedback.
However, applying RL in telecom poses challenges due to
the critical need for safety and reliability. Safe RL integrates
safety constraints into the learning process to ensure QoS
requirements and prevent potential failures, thereby making
it suitable for autoscaling. In this paper, we present several
key contributions to advance Safe RL for Core Network
autoscaling:

• Modeling Core Network autoscaling as a Safe RL prob-
lem in Section II. Our methodology includes visualization
and Hyperparameter Tuning tools to aid in understanding
and optimizing the performance of RL algorithms.

• Evaluation of Safe RL Algorithms on a Gym-based
simulation environment in Section IV.

• Evaluation on the Magma Open-Source Core Network in
Section VI.

A comprehensive State of the Art on Safe RL is detailed in
Section III.

II. PROBLEM STATEMENT

This section first defines the Core Network autoscaling
problem. It then introduces RL and how it can be used to
address this problem and finally Safe RL is defined.

A. Core Network Autoscaling

Core Network autoscaling is one of the most important
scalability problem for the core network in NFV and can be
summarized as: autoscaling the cloud resources(e.g. Virtual
Machines (VMs)) allocated to NFs based on the dynamic
workload. It’s a waste if too many resources are allocated when
the traffic is low, and allocating too few resources is hard to
cope with sudden traffic spikes and may impact the QoS for
subscribers or even lead to crash. In the autoscaling problem,
the network is expected to be able to optimize the resources
allocation to satisfy the demands with QoS requirements while
minimizing the operation cost for the Operator.

The scaling mode can be proactive or reactive. Proactive
scaling refers to the capability of predicting the future work-
load in order to schedule the necessary resources beforehand.
The prediction of the traffic state may help the agent to
get a better performance. Unlike proactive scaling, reactive
scaling responds directly to real-time changes in traffic or
system conditions as they occur, which aligns with the grow-
ing trend of applying RL methods to optimize decisions in
real-time. A related topic is the autoscaling of the cloud
infrastructure. Several papers about the application of RL
for cloud autoscaling mentioned are covered in the survey.
Few papers cover specifically the Core Network autoscaling
problem. Nguyen et al. [2] investigate the application of Deep
Reinforcement Learning (DRL) for scaling UPF instances that
are packed in the containers of the Kubernetes container-
orchestration framework in 5G/6G Core. In paper [1], a scaling
method for packet core NFs using DRL is proposed, which
learns how to handle workload and improving the QoS by
reducing the number of dropped sessions. This work focuses
on the horizontal scalability of virtualized Evolved Packet
Core (EPC) NFs as shown in Figure 1, and it automatically
scales the platform depending on the user traffic.

The Core Network autoscaling problem encapsulates the
intricate task of dynamically adjusting the number of VMs
or containers in response to fluctuating network traffic. It is
facing the challenge of addressing the trade-offs between cost
reduction, QoS preservation, and system stability. Overall, the
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Fig. 1: Problem description for autoscaling of NFs for LTE networks

challenge of autoscaling is to find an efficient and effective
way to scale the resources to NFs in order to meet the demands
while also minimizing cost with guaranteed QoS and avoiding
disruptions to service.

For the scaling problem in NFV, one promising approach
is RL. In this section, we delve into the foundational concepts
of RL and its extension, Safe RL.

B. Reinforcement Learning

RL is a branch of Machine Learning (ML) that enables
an agent to learn and make decisions through trial and error
by interacting with an environment [3]. The agent gets an
observation of the state from the environment and then takes
an action, and the environment can be changed by this action.
The agent also gets feedback from the environment in the form
of a reward, which measures how well the agent is doing in
its current situation. The agent’s ultimate aim is to maximize
the total rewards it collects over time, which is often referred
to as the return.

Recently, Deep Learning (DL) enables RL to address
decision-making problems that were once too complex, espe-
cially in environments with high-dimensional state and action
spaces [4]. DRL is a branch of ML that combines deep
Neural Networks (NNs) with RL algorithms to learn from
complex and dynamic environments [5]. DRL can handle high-
dimensional and nonlinear problems and adapt to changing
situations without requiring explicit rules or models. DRL has
been successfully applied to various domains such as games,
robotics and self-driving cars [6], [7]. DRL methods have
proven effective in addressing a wide range of resource al-
location problems [8]. DRL has been developed as a powerful
learning framework that can handle the large state space and
real-time state transitions in a network environment without
any prior knowledge [9], which is well-suited to dealing with
complex environments that have a wide range of potential
outcomes. By using DRL, it is possible to automate the
Management and Orchestration (MANO) of network, enabling
it to adapt to the changing network conditions (traffic patterns,
e.g.) and requests in real-time.

C. Safe Reinforcement Learning

In safety-critical domains like telecommunications, tradi-
tional RL methods can inadvertently lead to hazardous actions
or unacceptable outcomes. Safe RL addresses these concerns
by enforcing safety constraints throughout the learning pro-
cess. One effective approach integrates safety considerations
into the RL objective.

Safe RL is often modeled as a Constrained Markov Decision
Process (CMDP) problem [10], which requires to maximize
the reward while satisfying the safety constraints or minimiz-
ing the cost. CMDP extends Markov Decision Process (MDP)
by introducing a set C of cost functions Ci : S ×A×S → R.
Then the expected discounted cost-return can be defined in
terms of cost function:

JCi(π) = Eτ∼π[

∞∑
t=0

γtCi(st, at, st+1)]

So the feasible set of stationary policies for a CMDP is
denoted as: ΠC = {π ∈ Π : ∀ i, JCi(π) ≤ di}. Consider
a constrained RL problem where the agent’s objective is to
maximize the expected cumulative reward subject to safety
constraints. The optimization problem is formulated as:

max
π

Eπ[

∞∑
t=0

γtR(st, at)] s.t. π ∈ ΠC

So the optimal policy is π∗ = argmaxπθ∈ΠC
JR(πθ). Incor-

porating Safe RL methods empowers agents to learn policies
that balance the optimization of cumulative rewards with the
adherence to safety constraints.

III. STATE OF THE ART

Many Safe RL methods are built for continuous action
space, used in the field of automatic vehicles and robot control.
But the Core Network autoscaling typically has a discrete
action space, where actions are scaling decisions. PPO is the
state-of-the-art DRL algorithm for many RL tasks, and has
potential to serve as a basis framework for safe methods.

A common approach to solve a CMDP problem is the
Lagrangian approach [11], which is also known as the primal-
dual solution. The constrained optimization problem is trans-
formed into an unconstrained one by adjusting the objective
function. This adjustment involves adding terms that consider
the violations of constraints, and these terms are weighted
by Lagrange multipliers associated with the constraints. Sub-
sequently, the Lagrange multipliers are updated within the
dual problem to ensure that the constraints are satisfied.
Reward Constrained Policy Optimization (RCPO) [12] is a
multi-timescale Lagrangian approach, in which the actor-critic
policy optimization and Lagrangian multiplier have different
updating timescales. The policy update is performed on a faster
timescale than that of the Lagrangian penalty coefficient.

Lyapunov function is used in classic control theory. Chow
et al. apply Lyapunov safe constraints function to the CMDP
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problem to ensure safety and learning stability in [13] and [14].
Constrained Policy Optimisation (CPO) [15] is the first policy
gradient method to solve the CMDP problem with guarantees
for near-constraint satisfaction at each iteration. However,
CPO’s computation is more complex than the Lagrangian
approach, since it needs to compute the Fisher information
matrix and uses the second Taylor expansion to optimize the
objectives. Based on CPO, Projection-based Constrained Pol-
icy Optimisation (PCPO) [16] is an improvement work, which
constructs a cost projection to optimize the policy to a feasible
region to guarantee safety. PCPO provides lower bounds on
reward improvement and upper bounds on constraint violation,
and displays better performance than CPO on some tasks.

However, the second-order proximal optimization is also
used in PCPO, which leads to a more expensive computation
cost than the first-order optimization. First Order Constrained
Optimization in Policy Space (FOCOPS) method [17] has an
approximate upper bound for worst-case constraint violation
throughout training and only uses the first-order optimization.
It is therefore simple to implement, and outperforms CPO on
a set of constrained robotics locomotion tasks. Although FO-
COPS is easy to implement and shows better sample efficiency,
it still needs to solve the problem of unstable saddle points
and unsafe actions during training [18]. Constrained Update
Projection (CUP) method [19] also solves the constrained
policy optimization by policy improvement and projection,
providing a non-convex implementation via only first-order
optimizers. In papers [20] and [21], the penalty function
is designed for safety constraints and the first-order policy
optimization method is provided based on it.

It is noted that there are less off-policy methods about Safe
RL, especially for the Q-learning methods. In RL, techniques
for selecting actions during the learning phase are called ex-
ploration/exploitation strategies, and most exploration methods
have a random and greedy exploratory component, which are
blind to the risk of actions [22]. Kalweit et al. [23] develop an
off-policy and constrained Q learning method for autonomous
driving in simulation environments. Worst-Case Soft Actor
Critic(WSAC) [24] is the extension of an off-policy method
called the Soft Actor Critic algorithm(SAC) [25] with a safety
critic to achieve risk control. WSAC could optimize policies on
the premise that its worst-case performance satisfies the con-
straints. Constrained Variational Policy Optimization(CVPO)
[26] is an Expectation-Maximization approach to naturally
incorporate constraints during the policy learning, and its
performance is validated on continuous robotic tasks. There
is a small number of research not focused on CMDP, but
that try to introduce other MDP Formulations. In paper [27],
Sun et al. address Safe RL problems under the framework of
Early Terminated MDP. Sauté RL [28] and Simmer RL [29]
are state augmentation approaches, which formulate Safety
Augmented MDP, where the safety constraints are eliminated
by augmenting the state-space with a safety state and reshaping
the objective. Based on these reviews, in our pursuit to tackle
the safety problem for Core Network autoscaling we turn our
attention to on-policy methods, specifically PPO, described

thereafter, which is the state-of-the-art on-policy method.

A. Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [30] is a robust and
widely recognized on-policy RL algorithm. PPO is distin-
guished by its effectiveness in addressing complex decision-
making scenarios, and suitable for both continuous and dis-
crete action space, making it an ideal candidate for our task.
PPO is inspired from another policy optimization method
which is called the Trust Region Policy Optimization (TRPO)
[31]. PPO has most of the benefits of TRPO, and it’s a first-
order optimization method which is simpler to implement.

Firstly, PPO requires to compute a probability ratio r(θ)
between the new policy and the old policy, which measures
the difference between two policies: r(θ) = πθ(a|s)

πθold
(a|s) . With

clipped objective, we construct a new objective function to
clip the estimated advantage function if the new policy is far
away from the old one.The new objective function becomes:

JCL(θ) = E[min(r(θ)Âπ(s, a), cl(r(θ), 1−ε, 1+ε)Âπ(s, a))]

where ε represents a small value that approximately indicates
the allowable distance between the new and the old policy,
Â represents using Generalized Advantage Estimation(GAE)
[32] to replace the original advantage function, and cl is a
function depending on whether the advantage is positive or
negative to clip the r and avoid moving it outside of the
interval (1−ε, 1+ε). In addition to the surrogate loss functions
discussed above, PPO contains JCL and two other losses in
the objective function:

J(θ) = Eπθ
[JCL(θ)− c1(V̂ (st)−Rt)

2 + c2H(πθ(·)|st)]

where c1 is the value function coefficient and c2 is the
entropy coefficient. The entropy coefficient is multiplied by
the maximum possible entropy and added to loss, which
helps prevent premature convergence of one action probability
dominating the policy and preventing exploration.

B. From PPO to its safe versions

To address safety concerns within autoscaling problem and
compare with the performance of PPO, this section introduces
some Safe RL methods based on PPO.

1) PPO Lagrangian (PPO-Lag) integrates safety con-
straints into the agent’s objective, maximizing the rewards
within safe exploration. Lagrangian method is relatively simple
to implement and highly scalable to different DRL algorithms.
Considering both the objective and the Kullback–Leibler di-
vergence (KL-divergence) constraints in PPO, the final opti-
mization goals can be as follows:

πk+1 = arg max
π∈Πθ

JR(π) s.t. JC(π) ≤ d,KL (π, πk) ≤ δ

Here, JC(π) represents a safety violation constraint. The
Lagrangian is introduced by augmenting the objective with
a penalty term, turning the CMDP into an equivalent uncon-
strained problem:

min
λ≥0

max
θ

[JR(π)− λJC(π)]
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λ is the Lagrange multiplier controlling the trade-off be-
tween reward maximization and constraint satisfaction. The
Lagrangian method is a two-step process. First, solve the un-
constrained problem to find a feasible solution. Then, increase
the penalty coefficient until the constraint is satisfied.

• Policy update: The surrogate function in PPO is changed
to satisfy the Lagrange method:

max
π∈Πθ

[JR(π)− λJC(π)] s.t. KL(π, πk) ≤ δ

• Lagrange multiplier update: After several times of the
policy updates, an update on the Lagrange multiplier is
performed:

min
λ

(1− λ)[JR(π)− λJC(π)] s.t. λ ≥ 0

In the actual calculation process, the multiplier update on
the kth update is often written as:

λk+1 = max
(
λk + ηλ

(
JC(π)− d

)
, 0
)

where η is the learning rate of λ.
The Lagrange algorithms are sensitive to hyperparameters
selection. If the initial value or the learning rate of λ is too
large, the agent may suffer from a low reward, otherwise it
may violate the safety constraints.

2) PPO PID-Controlled Lagrangian (PPO-PIDLag) is an-
other variant of the Lagrange algorithm, where the update of
the λ is based on the classic PID controller. But it is also
known as a parameter-sensitive controller, requires tuning the
control parameters (Kp, Ki and Kd) for different tasks.

3) Interior-point Policy Optimization (IPO) is a first-order
policy optimization method [20] in which the logarithmic
barrier functions are introduced to augment the objective and
satisfy safety constraints. The empirical results on MuJoCo
[33] and grid-world environments [34] have demonstrated
this method’s effectiveness. And IPO is also validated in the
resource allocation within network slicing problem [35].

4) Penalized Proximal Policy Optimization (P3O) [21]
solves the constrained policy iteration via a single minimiza-
tion of an equivalent unconstrained problem. Specifically, P3O
uses an effective penalty function to eliminate cost constraints
and removes the trust-region constraint by the clipped surro-
gate objective.

IV. EXPERIMENTAL SETUP

This section details results on two types of environment: (i)
a simulated environment based on the Gym (ii) a platform
based on Magma, an Open-Source vEPC framework. The
pipeline for all the experiments is described in Figure 2.

A. Experiments

1) Description of the environment CoreNetTwin is a RL
environment based on the Gym framework designed for the
Core Network autoscaling problem1. It is a simulation platform
that has flexible settings. Here are the setting used for the
experiments:

1https://github.com/gfraysse/icin2024 tutorial/
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Fig. 2: Description of the experimental pipeline

• Workload: Figure 3 ((red curve) shows an extract of one
day (out of 30) of user traffic appears in which X-axis
is number of steps, Y-axis is the number of concurrent
sessions. This load is from the real data of one-month
VoIP calls [36].
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Fig. 3: Extract of the workloads, one day of production traffic
used for evaluation and synthetic sine wave used for training

• The number of available VMs: The highest number of
VMs that can be simulated in the experiment is set to
100.

• The logic of crash simulation: We follow the assumption
that high attach rate could lead to the crash of a VM,
as observed on the real-life behavior of a platform. The
environment would compute the crash probability every
step, the probability increases as the attach rate is higher
than 3.2 based on Magma sizing recommendations2.

2) Metrics For the autoscaling experiments, several metrics
can be used to evaluate the performance and QoS:

• C, the number of crashes: The total number of crashes
that occurred during the entire training process of the
agent.

• D, the number of sessions dropped: The total number
of sessions that failed to be set up due to insufficient
resources(VMs).

• VM usage: How many VMs have been used during the
training process.

2https://lf-magma.atlassian.net/wiki/download/attachments/7969523/Mag
ma%201.7.0%20Release%20Validation.docx
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• M , Memory usage: Each connected UE requires mem-
ory. CoreNetTwin assumes that each UE allocated 3 MB.

• R, the attach rate: The attach rate is defined as the rate
at which new UEs are attaching to the network over a
specific time period.

If sessions get dropped or a crash happens, the QoS decreases.
Here, we want the C and D metrics to be close to 0.
Meanwhile, we want to use less VMs to decrease the operation
cost.

3) PPO baseline design We use PPO as the baseline with
the following structure:

• Input: The observation from the environment (the num-
ber of VMs used, memory usage, the traffic load obser-
vation) is a vector formed as a 1D observation space.

• Output: The action can be modeled as a vector, and the
action space is [-1,0,1], which means three actions: we
want to scale in to decrease the resources, no action, and
scale out to increase the resources.

For the NN hidden layers, a fully connected net is used with
64 units (per layer) for PPO.

4) The reward and cost functions The reward is penalized
by C and D to increase sensitivity to QoS degradation. Apart
from the guaranteed QoS, the platform encourages the NFs
to use resources optimally around 70%. In order to reduce
the number of crashes and number of D to zero, the reward
function can give the penalty as big as −10. The reward
function can be expressed as follows:

r(s, a, s′) =



−10 if s′crash = True,
−D if s′crash = False & D > 0,

1− |0.7−M | if s′crash = False &
D = 0 & M ≤ 0.7,

−2M otherwise

To ensure that the reward has a minimum value of -10, the
reward is clipped:

r = max (r(s, a, s′),−10)

As for the Safe RL methods, the objective is to max-
imize the reward function and minimize the cost function
(cf. Section III-B1). The reward is thus redesigned, and the
consideration of the crash is put into the cost function.

• Reward function for Safe RL:

rsafe =


−D if D > 0,

1− |0.7−M | if D = 0 & M ≤ 0.7,

−2M otherwise

And the reward is clamped to a minimum value of -10:

r = max (rsafe,−10)

• Cost function: In the cost function, the cost c increases
if the attach rate R is higher than 3.2, cf. Section IV-A1,

and its maximum value is 10. When a crash happens, the
cost is also 10.

c =


0 if s′crash = False & R ≤ 3.2,

R− 3.2 if s′crash = False & 3.2 < R ≤ 13.2,

10 otherwise

It calculates the cost based on the attach rate, including
the binary condition for a crash.

V. RESULTS ON A SIMULATION ENVIRONMENT

To compare all the algorithms fairly, the training traffic
data is the same and parameters are the same except for
the hyperparameters that are unique to each algorithm. Some
of the important parameters are shown in Table I. The total
number of the training steps is set to 48000, and the batch
size is 640, which contains nearly one day’s traffic data. The
learning rate is for the training of the NN. Cost limit is the
threshold of the cost accumulated during one batch. KL limit
is one of the parameters of PPO, and since all the algorithms
are based on PPO, the hyperparameters for PPO are the same
for all variants.

Parameters Value
batch size 640
total number of steps 48000
learning rate 0.0001
cost limit 2
KL limit 0.2

TABLE I: Parameters settings

The results on CoreNetTwin are shown in Figure 4.
As we can see from the Figure 4a and 4b, the PPO-PIDLag

algorithm (the blue curve, PPOPIDLag-bs640) has the best
performance on the QoS metrics, it causes minimal crashes
and total number of calls dropped. PPO-PIDLag also gets
the convergence before 10k steps, as the crashes and calls
dropped nearly stop growing after 7k steps. Conversely, PPO
has the worst performance on these metrics, since it takes
unsafe actions, as shown in Figure 4c, it (the yellow curve,
PPO-bs640) keeps a lower number of VMs after 32k steps,
leading to crashes and sessions dropped. On the other hand,
IPO (the red curve, IPO-bs640) and PPO-Lag (the green curve,
PPOLag-bs640) are also better than PPO on QoS metrics,
which shows that Safe RL methods are very effective in
solving our problems. Results of P3O (orange curve P3O-
bs640) are close to those of PPO-Lag. As for the total number
of VMs used, shown in Figure 4c, PPO-Lag has the lowest
number of it and is the best for balancing a trade off between
VM usage and QoS. As illustrated in Figure 4c, PPO uses more
VMs than IPO and PPO-Lag, but still fails to satisfy the safety
constraint. Comparing to other algorithms, PPO-PIDLag also
uses more VMs, as we can see from the Figure 4c, although it
has improved the policy to safest one. In average PPO-PIDLag
uses 60 VMs, while PPO-Lag uses 45.

Hyperparameters selection was made with Optuna [37],
an optimization software. It could list the importance of
hyperparameters, which helped to find the most important
parameters for training, e.g., different batch sizes lead to
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Fig. 4: Evaluation of the performance of PPO, PPO-Lag, PPOPIDLag, P3O and IPO on CoreNetTwin

different performance. One potential reason behind it may be
that a proper batch size is beneficial for sampling data and
updating PPO policy.

VI. RESULTS ON MAGMA PLATFORM

A. Experimental platform based on Magma

The platform we used for running the Core Network au-
toscaling use-case was described in a prior work [1]. This
testbed is based on Magma [38], an open-source software
platform that could build a flexible and extendable EPC. The
release 1.8 was used and configured as LTE rather than the
5G core to be able to compare with results from previous ex-
periments run on release 1.5 that was not 5G-ready. Although
NFs are different in the 5G network architecture, it follows the
same scaling logic when using the platform. Magma packages
several 3GPP NFs of EPC networks, such as MME, PGW
and SGW, into a single element, called the Access Gateway
(AGW) [1], so the scaling operation is directly an action on
the Magma AGWs. The whole platform is deployed on VMs
on the Orange Flexible Engine Cloud infrastructure.

During the training process some actions could lead some
of the instances of the Access Gateway (AGW) to crash:

• If a scale-in action is performed when load is high.
• If no action is performed when the testbed is overloaded.
Since it’s a real platform, there are some issues:
• Delays: The operations of the VMs can cause delays.

Scaling in/out VM takes time, up to a few minutes.
• Crashes: Although data analysis was performed, it is

not possible to identify all the possible reasons for them
because a software can fail in many different ways when
it is overloaded.

B. Experiments

1) Description of the environment
• Workload: The workload used for the test follows a sine

wave, repeated for the duration of the experiment: In
average, there are 3.33 new sessions every seconds for
180s, then waits for 180s. And the durations of each
session follows a lognormal distribution, with mean =
60 and σ = 0.25. The average duration is 180s. This
workload is shown in Figure 3 (blue curve).

• The number of available VMs: 5

2) Metrics The metrics used on this platform:
• D is the number of sessions dropped,
• C is the number of crashes caused,
• M is the memory usage in MME process,
• U is the number of connected UEs per AGW instance,
• N is the count of running AGWs.
3) Algorithm used
• Input observation: The set of metrics observed from the

environment is a 1D observation-vector.
• Output: The action vector, as defined for CoreNetTwin.

In this environment, the platform also encourages the NFs
to use resources(such as M and U ) optimally around 70%.
And the reward is penalized by D scaled by a factor of 10 to
increase sensitivity to QoS degradation outside the acceptable
resources usage range. Unlike CoreNetTwin , all the metric
values are normalized, so the reward shaping is done using
the normalized values and clipped to -1 to 1.

• Reward function:

rc =



1− |0.7−max(M,U)| −D if M ≤ 0.8

& U ≤ 0.8,

max (−max(M,U)− 10 ·D,−1) if M ≤ 0.8

& U > 0.8,

−M otherwise

One reason of the crash is that the AGW can crash when
the MME overloads due to a high number of UEs trying to
establish sessions, so the design of the cost function is based
on the attach rate.

• Cost function: In the cost function, the cost c increases
if the attach rate R is higher than the threshold rsafe,
and its maximum value is 10. When a crash happens, the
cost will also be 10.

c =


0 if s′crash = False & R ≤ rsafe,

R− rsafe if s′crash = False &
rsafe < R ≤ rsafe + 10,

10 otherwise

4) Results The performance of the PPO-Lag model was
tested on this platform. There were 6 crashes during 3k steps.
It took 134 hours to run the experiment.
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The detailed results are shown in Table II. The values are
averaged over all steps of the experiment. PPO-Lag has the
lowest average number of dropped sessions D as well as as
lowest average number N of VM/AGW.

DQN D3QN PPO-Lag
D 0.07 0.079 0.001
N 3.146 4.62 2.903
M 47.7 113.52 58.68
U 265.19 336.64 207.68

TABLE II: Results
It seems that PPO-Lag learns to avoid crashes while leading

a trade off between QoS and operation cost.

VII. CONCLUSION AND FUTURE WORK

This article introduces a Safe RL model for the Core
Network autoscaling problem. The results of experiments run
both on a simulation environment and a EPC platform showed
that PPO-Lag has a safer behavior and leads to a more stable
platform during exploration. Simulation results of other Safe
RL algorithms IPO, P3O and PPO-PIDLag also confirmed
safer behaviors. These results are a first step to integrate
a safer behavior during the training process on a critical
telco infrastructure. In future work, the Gym-based simulation
platform will be improved to be a real Network Digital Twin
and will be open-sourced. Since only PPO-Lag is evaluated
on Magma in this work, more experiments have to be done
to confirm the performance of Safe RL algorithms on a real
world environment.
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