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Abstract—Analysis of incoming packets in deployed systems
is one of the main methods used for detection of anomalous
behaviour. Techniques utilizing supervised learning subject to the
need of retraining if the observed behaviour in the system changes
over time. Unsupervised techniques mitigate this problem but are
not always capable of real-time analysis. Real-time unsupervised
techniques bring to the table both the adaptability to dynamic be-
haviour as well as the ability to detect and alert about anomalies
in real-time. A recent state-of-the-art technique, MIDAS, shows
real-time capabilities while being unsupervised, but recent works
have showed that it still had some shortcomings regarding its
performance over more specific datasets. An alternative method
has been proposed, namely MIMC, that builds on the foundation
set by MIDAS. In this paper it is shown that, for the datasets
of interest, there is always a way to setup MIMC that yields a
higher performance than MIDAS. Furthermore, a method for
determining parameters for the technique is also presented, and
it is shown that it improves the yielded performance even further
in a majority of cases.

Index Terms—Network and service security, micro-clustering,
anomaly detection, log analysis.

I. INTRODUCTION

Analysis of incoming packets in deployed systems is one of
the main methods used for detection of anomalous behaviour.
This kind of strategy is especially useful for detecting when
systems are misconfigured or when malicious attacks are under
way.

Techniques utilizing supervised learning require not only
labelled data for training but also additional effort to train
and deploy in existing systems and are subject to the need of
retraining if the observed behaviour in the system changes
over time. Unsupervised techniques mitigate this problem
by adapting to changing environments without the need for
retraining, but are not always capable of real-time analysis.
Real-time unsupervised techniques bring to the table both the
adaptability to dynamic behaviour as well as the ability to
detect and alert about anomalies in real-time.

A recent state-of-the-art technique, MIDAS [1], shows real-
time capabilities while being unsupervised. Its performance
is very respectable with detection rates around ninety percent
over publicly available attack datasets. However, Copstein et.
al. [2], [3] showed that MIDAS still had some shortcom-
ings regarding its performance over more specific datasets.
Moreover, MIDAS does not consider some of the available

information that directly relates to the kinds of attacks present
in the datasets of interest. In these works, an alternative method
is proposed, namely MIMC, that builds on the foundation set
by MIDAS.

The goal of this paper is to provide further evidence of
MIMC’s higher-performing capabilities when compared to
MIDAS over datasets of interest. To do that, first we establish
MIDAS as a state-of-the-art real-time unsupervised anomaly-
detection technique by comparing it to other techniques in
the literature. Then, we show how MIMC builds on top
of the foundation set by MIDAS and how it improves on
some of its shortcomings. Furthermore, we present a method
for determining MIMC’s parameters that further improves
its performance, and finally we show that MIMC’s results
are higher than MIDAS’s in a statistically significant way.
Compared to previous publications covering MIMC, this paper
better describes the method’s foundations and better supports
the claims of higher performance through new experiments
and analyses.

The rest of this paper is organized as follows: section II
explores related works in the literature, section III summarizes
some key concepts required for understanding this study,
section IV presents the main differences between MIMC
and MIDAS and describes the experiments run and results
obtained, and section V summarizes our conclusions and
defines topics for future work.

II. RELATED WORKS

This research is closely related to log analysis and anomaly
detection on log data, particularly graph-based approaches for
anomaly detection. The following section gives an overview
of related works in the area.

Noble and Cook [14] proposed two methods for graph-based
anomaly detection. Subdue uses a method for detecting recur-
ring substructures in graphs. When tested on the 1999 KDD
Cup data, the methods show reasonable results in identifying
some attacks, albeit inferior performance for others.

The solution presented by Kurniawan et al. [10], namely
VloGraph, uses existing knowledge sources to connect logs
and information collected a priori into a knowledge graph. This
graph is then available for analysis using a query language,
SPARQL, to retrieve events of interest.
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Kulkarni et al. [9] explored the patterns found by creating
different graphs of insider trading data. These include net-
works of traders, purchases, and sales of stocks. Furthermore,
they explore the idea of anomaly detection using hyper-graphs,
concluding that, given the complexity of the domain, it is hard
to evaluate the performance of their model. However, they can
confirm that the hyper-edges identified as anomalies (insider
trading) result in profit for the trader in most cases.

Moreover, Mongiovi et al. proposed NetSpot [13] for finding
anomalous regions on dynamic networks, including traffic
networks, social networks, and knowledge networks. They
show that NetSpot is up to one order of magnitude faster than
an exhaustive search approach and yields results within 5%.

He et al. [8] analyzed six methods for anomaly detection
using log data: three supervised and three unsupervised. The
three supervised methods are based on Logistic Regression,
Decision Trees, and Support Vector Machines (SVM). The
unsupervised methods include Clustering, Principal Compo-
nent Analysis, and Invariant Mining. Regarding accuracy,
SVM achieved the highest F-measure among the supervised
methods. Out of the unsupervised methods, Invariant Mining
was the one with the highest F-Measure.

The work of Uno et al. [16] introduced the problem of
micro-clustering, defined as unsupervised soft clustering. Here,
the problem is clustering highly related entries instead of
highly dense ones. They propose a methodology called data
polishing to reduce the number of yielded clusters while
maintaining the high relation between entries.

On the other hand, Farzad and Gulliver [5] proposed a
method for unsupervised anomaly detection in system logs.
They employ an Isolation Forest algorithm and two deep
Autoencoder networks. When evaluated over system logs
from machines such as Blue-Gene II and Thunderbird, the
proposed method outperforms comparable techniques such as
the Gaussian Mixture Model and One-Class Support Vector
Machine.

In [17], Zhang et al. introduced LogRobust, an anomaly
detection technique that uses an extracted semantic vector
to represent each log entry. It is argued that, by doing so,
the method remains robust against anomalous events not
previously observed in training / historical data.

LogBERT, introduced in the work of Guo et al. [7], uses
BERT to run self-supervised training to learn sequences of
log masks, that is, masks yielded by a log abstraction process.
Sequences of masks that do not match the trained ones are
deemed anomalous.

STAD, a framework introduced by Makanju et al. [12],
attempts to detect alerts using system log information. It uses
a clustering technique based on spatiotemporal information, in
this case, nodehours. The authors report a detection of 100%
of all alerts with a false positive ratio of 0.8% in the best
case, a detection rate of 78% and a false positive rate of 5.4%
on average. During its initial phase, STAD requires extracting
message types, which, in turn, requires the analysis of multiple
log messages. This aspect makes STAD unsuitable for real-
time processing.

Bhati et al. [1] introduced MIDAS. It is an unsupervised
method that provides anomaly detection and is optimized
enough for real-time processing. Compared to related works,
MIDAS performs better in all selected datasets, reaching
accuracy above 98% in two of the three tested cases. Using
a data structure from the family of sketches also helps reduce
the method’s memory usage to sublinear.

An overview of the characteristics of the works presented
here can be seen in Table I. In summary, none of the presented
methods have all the desired characteristics, and MIDAS is the
only one planned for real-time performance. Methods relying
on machine learning models tend to be harder to interpret
when performing root-cause analysis over an incident. Graph-
based methods are more accessible to analyze and, in most
cases, provide a reasonable level of explainability to flagged
anomalies. When using language models, a method relies on
the semantic value of log entries, which may not always be
intended for readability. Given these methods, we take MIDAS
as the current state-of-the-art method that provides the desired
characteristics of a real-time anomaly detector.

III. BACKGROUND

A. MIDAS

As the state-of-the-art (SOTA) method, MIDAS is an effi-
cient, unsupervised, real-time method for anomaly detection.
It comprises three main stages: attribute extraction, frequency
storage, and probabilistic test, as seen in Figure 1.

In the attribute extraction stage, MIDAS receives entries in
the form of logs and extracts an attribute co-occurrence of the
source IP address and destination IP address. This extraction
assumes that the format of the logs fed into the system is
previously known, which is typical for network logs.

In the following stage, addresses are registered into a graph
where each node is an IP address, and the edges register the
number of times two addresses have co-occurred. This is done
by using a Count-Min Sketch [4]. The method uses a Chi-
Squared Test to determine the likelihood that the information
gathered in the graph follows a Chi-Squared distribution. This
is used to yield an unbounded anomaly score, that is, a score
with no fixed maximum.

Throughout its execution, MIDAS aims to phase out old
and prioritize newly gathered information. To do that, every
minute (as given by the timestamp on the log entries fed to
the system), the values stored in the graph get multiplied by a
learning ratio, a value between 0 and 1, that represents how
much of the current data should be kept for the following
analyses. MIDAS will only insert new data into the frequency
graph if the yielded anomaly score does not exceed a set
threshold to avoid poisoning the graph with anomalous data.

Given the use of attribute co-occurrence frequency as the
main factor for determining anomalies, we can say that MI-
DAS focuses on anomalies that follow the property of being
bursty, as proposed by Makanju et al [12]. The performance
of MIDAS is determined by calculating the ROC-AUC over
the anomaly scores yielded for each log entry.
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TABLE I
COMPARING THE RELEVANT CHARACTERISTICS OF THE METHODS INTRODUCED IN RELATED WORKS

Method Unsupervised Graph-based Explainability Real-Time
Noble & Cook NO YES YES NO

VloGraph YES YES YES NO
Kulkarni et al. N/A YES YES NO

NetSpot N/A YES YES NO
He et al. YES NO PARTIAL NO

Farzad and Gulliver YES NO NO NO
LogRobust NO NO NO NO
LogBERT NO NO NO NO

STAD YES NO PARTIAL NO
MIDAS YES YES PARTIAL YES

B. Datasets of Interest

For this research, we refer to three datasets of interest:

• CIC IDS 2017 [15]: contains benign data and data
from attacks, such as brute-force FTP, brute-force SSH,
DoS, Heartbleed, infiltration, botnet, and DDoS. The
Canadian Institute of Cybersecurity at the University of
New Brunswick makes this dataset available and includes
approximately 2.8M entries. It consists of 5 days of
captures.

• DARPA [11]: is well-known for testing intrusion detec-
tion systems. It consists of approximately 4.5M packets
exchanged between 25K hosts over nine weeks. The at-
tacks included in this dataset are arranged in 5 categories:
Denial of Service, User to Root, Remote to Local, Probes,
and Data.

• CTU-13 [6]: dataset of botnet traffic is captured by the
CTU University in the Czech Republic. It consists of
thirteen distinct scenarios of botnet traffic, representing
different forms of malicious behaviour. Each of the
provided scenarios can be used individually or combined.
This set contains 2.5M packets being exchanged between
371K hosts. For this research, similarly to the evaluation
for the MIDAS technique, only scenarios 4, 10, and
11, which included some form of DDoS attack, were
considered.

IV. METHODOLOGY

While MIDAS can be seen as the state-of-the-art technique
for real-time anomaly detection, MIMC improves on it in three
main aspects:

1) There are multiple instances of each stage. A set of
attribute co-occurrence extraction, frequency storage
and probabilistic test is called a lane.

2) Each lane is responsible for extracting, storing, and
testing a single attribute co-occurrence and yields a local
anomaly score regarding only that co-occurrence.

3) Local anomaly scores are combined into a single result-
ing anomaly score using a combination strategy.

Each lane of an instance of MIMC yields an unbounded
anomaly score, similar to MIDAS, for each entry. Let n be the
number of lanes in an instance of MIMC, La where 1 ≤ a ≤ n
be a lane in the instance, i be a valid arbitrary input, and
S(a, i) ∈ R( ≥ 0) the score yielded by lane La for input i; a
combination strategy is defined as a function:

C : R≥0
n → R≥0

The resulting anomaly score is given by

C(S(1,i), S(2,i), ..., S(n,i))

Along with the technique, fours methods are proposed to
be used as combination strategies in instances of MIMC:

• Max: Yields the highest value of the local anomaly scores
given by the lanes. This strategy considers that if any
attribute co-occurrence indicates a high anomaly score, it
is enough for the technique to treat an input as a potential
threat.

• Min: Yields the lowest value of the local anomaly scores
given by the lanes. This strategy says that input is only
considered as much of a threat as indicated by the lowest
local anomaly score, which indicates that all other scores
are at least as high.

• Median: Yields the median value of the local anomaly
scores given by the lanes. This strategy attempts to
consider all of the yielded scores without prioritizing very
high or low outliers.

Fig. 1. MIDAS comprises three main stages: attribute extraction, frequency storage, and probabilistic test

2024 20th International Conference on Network and Service Management (CNSM)



• Average: This strategy yields the average value of the
local anomaly scores given by the lanes. It attempts to
consider all of the yielded scores and is more susceptible
to outliers.

Each combination strategy is able to provide explainability
in the form of the attribute co-occurrence that influenced
the final result the most. For example, the Max combination
strategy is able to provide the attribute co-occurrence that
yielded the highest anomaly score and, therefore, is the one
that influenced the final score the most. The only exception
to this is the Average combination strategy, which takes all
attribute co-occurrences into consideration equally.

Five parameters are used to configure instances of MIMC:
two of them exclusive to MIMC — the number of lanes (and
their respective attribute co-occurrences) and the combination
strategy (also known as the merger) — which are paired into
the called setup — and the three parameters in MIDAS —
threshold, number of columns, and learning ratio — which
are combined into the called configuration.

A. Setups

To show that MIMC outperforms MIDAS, we must show
that the main idea behind it - the combination of multiple lanes
of micro-cluster detection - outperforms MIDAS’s single lane
in detecting anomalies. In order to do that we propose five
new attribute co-occurrences to be used in experimentation:

• Source Port → Destination Port (PortSrc → PortDst)
• Destination IP Address → Destination Port (IPDst →

PortDst)
• Destination IP Address → Bytes Sent (IPDst →

SrcBytes)
• Source IP Address → Destination Port (IPSrc →

PortDst)
• Source IP Address → Bytes Sent (IPSrc → SrcBytes)

Experiemnts were run with MIMC over the datasets of
interest for every possible combination of the five proposed
attribute co-occurrences and the co-occurrence used originally
by MIDAS (IPSrc → IPDst). Each attribute co-occurrence
is assigned to a lane on an instance of MIMC, and the yielded
results are combined using each of the proposed combination
strategies. The six attribute co-occurrences can be combined
in sixty-four different ways, and there are four proposed
combination strategies, which means there are 256 possible
setups to use when evaluating all datasets.

The results of these experiments, as seen in Table II, were
summarized to report only the best result for each setup,
that is, only the best-performing combination of attribute
co-occurrences and merging strategy is reported for each
dataset. Along with the ROC-AUC score, the results also report
the combination and strategy that was used, the equivalent
performance yielded by MIDAS over the same dataset, and
whether MIMC’s yielded score outperformed MIDAS (>M),
as well as whether it outperforms an instance of MIMC with
a single lane with any of the proposed co-occurrences (>S).

B. Configurations
Even though the previous experiments show that there is

always a setup where MIMC outperforms MIDAS, they do not
consider the possibility of changing MIMC’s configuration,
that is, the three parameters used by each lane: threshold,
number of columns, and learning ratio. The previous exper-
iments used the same configuration proposed by MIDAS in
their implementation.

Given that the three parameters in a configuration are non-
categorical, there is no explicit limit to how many config-
urations can be used by an instance of MIMC. On top of
that, experimenting with a multitude of configurations over
the datasets of interest quickly adds up to a large number of
hours of experimentation. With that in mind, experiments with
configurations were run considering three values for each of
the configuration’s parameters, all based on the configuration
proposed by MIDAS: 1K, 10K, and 100K for the threshold
(10K was proposed); 512, 1024, and 2048 for the number of
columns (1024 was proposed); and 0.25, 0.5, and 0.75 for the
learning ratio (0.5 was proposed).

Despite using a limited number of values for each parameter
in the configuration, there are still 27 different configurations
that need to be evaluated for each dataset, which may contain
millions of entries. To make this evaluation more feasible and
less demanding in terms of resources, determining promising
parameters is proposed.

1) Most Promising Parameters: The most promising value
for a configuration parameter is the one that yields the highest
performance in identifying anomalies compared to different
values of the same parameter. The most promising configura-
tion contains the most promising values for all parameters.

To improve the performance previously yielded by MIMC,
it is proposed that the most promising configuration be de-
termined over a sample of each dataset of interest. Once de-
termined, an experiment using this newly found configuration
is executed over the entire dataset of interest and compared
to the previously yielded performance. In all cases, the setup
used for each instance of MIMC is the same as determined to
be the best performing over the entire dataset in the previous
experiments.

2) Selecting a Subset of Data: With the desire for real-time
operation in mind, it is crucial to establish the importance of
keeping the temporal aspect of the data to be analyzed. In other
words, one cannot expect consistent results from either MIMC
or MIDAS by running tests with randomly sampled datasets.
That being said, selecting a sequence of entries from the
datasets while preserving their original ordering is sufficient
to fulfill this prerequisite.

Similarly to a supervised learning step of training, the ratio
of benign over malicious entries in the selected subset di-
rectly impacts the performance of each technique in detecting
anomalies. Therefore, a dataset subset was chosen considering
the ratio of benign over malicious entries to be higher than one,
having more benign entries than malicious ones.

A subset of 100,000 entries, with at least 50% benign,
was extracted from the datasets of interest for the following
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TABLE II
SUMMARY OF THE BEST-PERFORMING RESULT OF THE ANALYSIS OF THE DATASETS USING ALL COMBINATIONS OF ATTRIBUTE CO-OCCURRENCES AND

COMBINATION STRATEGIES

DATASET COMBINATION STRATEGY SCORE MIDAS >M >S

CIC IDS 2017 IPSrc-IPDst
IPSrc-PortDst MIN 0.9595 0.9532 Y Y

DARPA
IPSrc-IPDst

IPSrc-PortDst
PortSrc-PortDst

MED 0.9899 0.9816 Y Y

CTU-13

IPDst-PortDst
IPDst-SrcBytes

IPSrc-IPDst
IPSrc-PortDst

IPSrc-SrcBytes
PortSrc-PortDst

MIN 0.9919 0.9831 Y Y

TABLE III
YIELDED ROC-AUC FOR EACH PARAMETER FOR EXPERIMENTS WITH
THE CIC IDS 2017 DATASET. THE HIGHLIGHTED VALUE SHOWS THE

HIGHEST SCORE ACHIEVED FOR EACH PARAMETER.

Parameter Values ROC-AUC
0.25 61.31%
0.50 61.59%Learning Ratio
0.75 66.34%
512 61.80%

1024 61.69%Num. Columns
2048 99.26%
1,000 94.19%
10,000 61.66%Threshold

100,000 62.25%

TABLE IV
YIELDED ROC-AUC FOR EACH PARAMETER FOR EXPERIMENTS WITH

THE DARPA DATASET. THE HIGHLIGHTED VALUE SHOWS THE HIGHEST
SCORE ACHIEVED FOR EACH PARAMETER.

Parameter Values ROC-AUC
0.25 99.74%
0.50 99.73%Learning Ratio
0.75 99.82%
512 99.59%

1024 99.68%Num. Columns
2048 99.77%
1,000 99.77%
10,000 99.68%Threshold

100,000 99.72%

experiments.
3) Most Promising Configuration: For the CIC IDS 2017

dataset, as seen in Table III, the most promising configuration
comprises the values that yielded the highest performance for
each parameter. In this case, a configuration with a threshold
of 1K, 2048 columns, and a learning ratio of 0.75 is deemed
the most promising.

As Table IV shows, the most promising configuration for
the DARPA dataset was 1K for the threshold, 2048 columns,
and a 0.75 learning ratio.

Table V shows that the most promising configuration for
the CTU-13 dataset was a 10K threshold, 2048 columns, and
a 0.5 learning ratio.

4) Comparing to MIDAS: With the most promising con-
figuration determined, it is now possible to compare MIMC’s
performance using the most promising setup and most promis-

TABLE V
YIELDED ROC-AUC FOR EACH PARAMETER FOR EXPERIMENT WITH THE

CTU-13 DATASET. THE HIGHLIGHTED VALUE SHOWS THE HIGHEST
SCORE ACHIEVED FOR EACH PARAMETER.

Parameter Values ROC-AUC
0.25 45.63%
0.50 51.85%Learning Ratio
0.75 23.65%
512 42.17%

1024 50.43%Num. Columns
2048 53.47%
1,000 41.85%

10,000 54.02%Threshold
100,000 43.33%

ing configuration to that of MIDAS.
MIMC and MIDAS use one or more instances of the

Count-Min Sketch data structure, which is inherently subject
to slight alterations during multiple executions due to its
randomized factor that is determined during instantiation. With
that in mind, it is easy to see how results could be skewed
towards exceptionally high or low results that do not represent
the technique’s expected performance. Each of the following
comparisons was run ten times to mitigate this skewing. The
reported output is the mean of the values yielded in these runs.

The results from these experiments were analyzed using
the Mann-Whitney U test to strengthen the validity of the
claims. This non-parametric test evaluates whether there is a
significant difference in the distributions of two independent
data sets. A significance level of 95% was applied, meaning
that a p-value of 0.05 or lower would provide sufficient
evidence to reject the null hypothesis and conclude that there
is a significant difference between the distributions of the
two groups. The test can be adapted to be two-sided, where
the total difference is considered, or one-sided, where it is
considered if the values in one set are higher or lower than
those in the other.

Table VI summarizes the results of these experiments. For
the CIC IDS 2017 dataset, using the most promising configu-
ration improves the median result over MIDAS by 5.47 points
percentual. With a p-value of approximately 0.0000829, the
results yielded by MIMC are shown to be statistically greater
(one-sided test) than those of MIDAS. For the DARPA dataset

2024 20th International Conference on Network and Service Management (CNSM)



TABLE VI
MEDIAN ROC-AUC FOR EXPERIMENTS WITH THE DATASETS OF

INTEREST USING THE MOST PROMISING CONFIGURATION COMPARED TO
MIDAS.

Dataset Technique ROC-AUC
MIMC 99.01%CIC IDS 2017 MIDAS 93.54%
MIMC 98.39%DARPA MIDAS 98.02%
MIMC 98.52%CTU-13 MIDAS 97.44%

the result for MIMC’s median result improves over MIDAS
by 0.37 points percentual. With a p-value of approximately
0.000898, the results yielded by MIMC are shown to be
statistically greater (one-sided test) than those of MIDAS. The
results for the CTU-13 dataset show that MIMC’s median
result improves over MIDAS by 1.08 points percentual. With
a p-value of approximately 0.0000843, the results yielded by
MIMC are shown to be statistically greater (one-sided test)
than those of MIDAS.

V. CONCLUSION & FUTURE WORK

Anomaly detection is an essential part of the security
strategy of any deployed system. Methods that provide high
levels of performance when identifying anomalies facilitate
the operation of large-scale systems and reduce the workload
of security specialists. This research aimed to provide further
evidence of the high-performance capabilities of the previously
introduced real-time anomaly detection technique MIMC and
its improvements over its state-of-the-art counterpart MIDAS.
These differences provide the technique with the capability of
exploring data more deeply and, in turn, performing better at
detecting anomalies.

Experiments presented in this work show that the core
concept behind MIMC - the combination of local results into a
global anomaly score - already produces better results than the
state-of-the-art counterpart. On top of that, by making use of
the proposed method of determining the most promising con-
figuration, MIMC is able to further improve its performance
by analyzing only a sample of the available data a priori.

Finally, by performing executions of both techniques mul-
tiple times, this work provides evidence of the performance
improvements of MIMC despite the non-deterministic nature
of both methods. Statistical significance is also shown with
the use of the Mann-Whitney U test over the yielded results.

Methods for determining which attribute co-occurrences to
use for each dataset of interest, determining which attacks
are more susceptible to detection by MIMC, and providing
guidelines for selecting parameters for novel datasets are left
as future work.
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