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Abstract—Machine learning has become a prevalent approach
in research on intrusion detection with enormous number of
research publications on the topic, but its adoption by cyber-
security practitioners is falling behind. Recently, researchers
conducted critical and pragmatic assessment of the capabilities of
machine learning in this task and identified fundamental issues
preventing wider application and easy use in practice. In this
paper, we approach the topic from the perspective of network
security management, focusing on the issues of compatibility with
existing monitoring and security infrastructures, computational
complexity, ease of use, and required skills of the operators. The
research in machine learning-based intrusion detection strongly
favors machine learning metrics (e.g., precision and accuracy)
over any other outcome, including performance and usability,
for which we have no actual results due to very low number of
prototypes, implementations, and field studies. Moreover, there
are very limited options of recognizing which type of attack
was detected, which remains a strong advantage of traditional
signature-based intrusion detection systems.

Index Terms—Intrusion detection, machine learning, network
security management, security operations

I. INTRODUCTION

Machine learning (ML) has been applied in many fields
with often a great success. It is no surprise that cybersecurity
researchers and practitioners would like to leverage it in
their field, and that the number of research publications on
interesting applications of machine learning in cybersecurity
were written, published, and discussed [1]. One of the promi-
nent cybersecurity applications of machine learning is the
intrusion detection, i.e., a task of detecting malicious behavior
in network traffic or system logs. The research efforts are
running for two decades already, and hundreds of published
research papers claim high accuracy supported by replicable
laboratory experiments with publicly available datasets [2],
[3]. However, such methods do not seem to be applied and
widely used by practitioners. We may be justly asking: why
is machine learning not widely used in operational intrusion
detection?

We are currently seeing efforts to re-think this research
direction, clearly identify its issues [4], [5], and set recom-
mendations and requirements [6], [7], so that the research can
become applicable. The issues of low quality of the datasets
(e.g., limited numbers of attack samples, rapid obsolescence,
artificiality, imbalance, or large volume) are actively discussed
and approached by researchers [8]. The same applied to best

practices in training the ML models. So far, we seem to
be on a good track to delivering high quality datasets and
training accurate models [9]. However, there are far more
issues potentially preventing the application of ML in intrusion
detection. If a novel, ML-based, intrusion detection system
(IDS) is to be adopted, it should surpass the existing tools
in key performance indicators or provide novel functionality,
while not losing any existing capabilities or at least provide
sensible trade-offs.

In this paper, we formulated a number of questions on
operational aspects ML-based intrusion detection systems (fur-
ther referred to as ML-IDS) and discuss the implications for
future research and development. The research was motivated
by consulting experts in cybersecurity and ML, both from
industry and academia, and finding common themes in the op-
erational issues or critique of ML-IDS among the respondents.
We focus on the most critical issues found in the literature
and do not claim to provide satisfying answers to all the
questions or covering the full scope of the topic. The aim
of this paper is to raise awareness of the issues and prepare
for an exhaustive survey of literature and implementations or
formalized interviews with experts.

The remainder of this paper is structured as follows. In
Section II, we summarize the background and related work
on the topic, focusing on papers providing critical assessment
of ML in intrusion detection. In Section III, we formulate
number of questions that should be answered before ML-
IDS is to be deployed or even implemented. We follow this
question-answer scheme in Section IV, where we discuss
the applicability of ML-IDS in its current state and possible
directions for future development. Section V concludes the
paper.

II. BACKGROUND AND RELATED WORK

The use of machine learning for intrusion detection was
critically assessed several times. The first such assessment
dates back to 2010, when Sommer and Paxson [10] noticed
that, despite extensive research efforts, ML-based intrusion
detection is rarely employed in operational settings. They were
the first to assess the differences between intrusion detection
and other fields, where machine learning proved helpful.
Intrusion detection turned out to be a significantly harder
problem and, thus, the authors provided a set of guidelines
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for future research. However, the situation seems to remain
unchanged despite the high citation of the paper.

A decade later, more researchers attempted to assess the
benefits and pitfalls of machine learning in cybersecurity,
including intrusion detection. Pragmatic assessment and rec-
ommendations for using machine learning in cyber security in
general were proposed by Apruzzese et al. [11], [12], Arp et
al. [7], [4], and Ceshin et al. [5]. Apruzzese et al. also wrote
an assessment on machine learning for intrusion detection in
particular [6]. Corsini and Yang [13] explored whether the out-
of-distribution techniques are suitable for intrusion detection.
Recently, Munner et al. [14] proposed a critical review of AI-
based intrusion detection, but covered only the AI aspects.

The actual research works on machine learning in intrusion
detection are numerous to the point it is becoming unfeasible
to review them all. The number of research papers on this topic
exceeds hundreds and even thousands, depending on search
words, according to searches in popular research libraries (e.g.,
Google Scholar, Scopus, IEEExplore, ACM Digital Library).
Searching for surveys and literature reviews does not help,
either; there are over 30 such papers published in 2023 only.
We recommend the survey by Buczak and Guven [1], which
despite being older, serves as an excellent introduction into
the field. Recent examples include the works of Kilincer et al.
[2], Chou et al. [3]; recent surveys also focused on particular
application domain, such as IoT [15] or smart grid [16].

While there are thousands of research papers on the topic
of ML-IDS, we were also interested in the number of exist-
ing implementations or prototypes. We searched GitHub for
projects that apply machine learning for intrusion detection
and categorized them by the programming language used.
The results can be seen in Fig. 1. We can see a dominance
of Python, which is widely used in the domain of machine
learning, and while it can be used for implementing prototypes,
most of the repositories contain only scripts for training and
evaluating models on datasets. Projects using Jupyter Note-
books or MATLAB also purely laboratory experiments. We
also encountered numerous projects using only TeX or HTML,
containing only research papers or documentation of ML-
IDS. Not even the repositories using Java or C++ contained
technologically mature projects that could be deployed in
operational environment. Vast majority of the projects only
allowed for processing of datasets, not having any capabilities
to process live network traffic or raw traffic samples.

One of the outstanding open-source projects is Slips (Strato-
sphere Linux Intrusion Prevention System1), an open-source
intrusion prevention system crafted in Python at the Czech
Technical University in Prague. We consider Slips as an
example of a good practice in research on ML-IDS. It is a
versatile prototype that allows for processing various inputs
from raw network traffic in real time to PCAP files and
network flows. It uses a combination of multiple ML models
trained to detect various malicious activities, threat intelligence
feeds, heuristics, and extensively trained thresholds that raise

1https://github.com/stratosphereips/StratosphereLinuxIPS

Fig. 1. Number of ML-IDS projects on GitHub per programming language.

alerts when enough evidence is accumulated. Even though it
is still a prototype and a research project, we consider Slips
as a leading open-source implementation of ML-IDS, since
we could not find any other project of similar technological
maturity.

Numerous commercial products promise the use of AI/ML
for intrusion detection, but in most cases, they employ AI/ML
for anomaly detection (see Section III-A) or as an enhanced
XDR/NDR solution, not for specifically detecting the intru-
sions as a replacement of IDS. Moreover, it is often hard
to obtain information about the employed ML methods or
their application. The examples include Vectra2, Darktrace3,
or ExtraHop4.

III. ISSUES OF ML-BASED INTRUSION DETECTION

In this section, we formulate several questions on ML-IDS
and its application in cybersecurity operations. The questions
are followed by a brief discussion of the stated issue. We do
not aim at providing a comprehensive analysis of applicability
of ML-IDS, but rather pinpoint the most critical points from
the operational perspective.

A. What is the use case for ML-based IDS?

Naturally, the use case for IDS is to detect attacks in network
traffic. However, attack detection covers various approaches
and goals. Two major classifications are used. First, the IDS
can be host-based or network-based. Host-based IDS (HIDS)
resides on a single host and uses system logs, system calls,
or analysis of the network traffic of the single host to detect
attacks. Network-based IDS (NIDS) uses network traffic data
from one or more observation points (e.g., router or a dedicated
probe on a link) to detect anomalies in the network traffic of
multiple hosts simultaneously. Even though both can process
network traffic, the scope and capabilities of each type differs

2https://www.vectra.ai/
3https://darktrace.com/
4https://www.extrahop.com/
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vastly, so it important to specify the use case upfront and train
the ML-IDS accordingly.

Second, we distinguish intrusion detection systems (IDS)
and anomaly detection systems (ADS). A traditional IDS is
using signatures of cyber attacks and detects the signatures in
the source data, thus recognizing known attacks. Signature-
based IDS cannot detect unknown attacks (attacks, for which
there is no known signature), but if it detects a signature, it
is clear what kind of attack it is and how to defend against
it. In ML-IDS, the signature database is replaced by a model
trained on (artificial or real-world) attack samples. In contrary,
the ADS detects anomalies in network traffic, i.e., deviations
from common traffic patterns. Even the unknown attacks can
be detected as anomalies, but an anomaly also requires further
analysis (typically by a human operator), which can be time-
consuming and complicates automated response. ML methods
are widely used in ADS, but the model is trained on benign
network traffic, not on the attack samples. It is important to
specify whether we talk about ML-IDS or ML-ADS. The
situation is complicated by the fact that the terms are often
used interchangeably and that the ML-IDS are often more
similar to ADS in terms of binary classification (benign x
anomaly, benign x attack) and lack of explainability.

B. What data are on the input?

Surprisingly, many papers on ML-IDS do not specify what
data are they working with. The authors simply reference a
dataset that was used for evaluation, often without discussing
what type of data would be used in operations or in a given
use case. In network security, we may consider multiple types
of data, all with their benefits and drawbacks. In a simple
scenario, the IDS may process network packets as they arrive
to the vantage point. Packet features can be extracted and
forwarded as an input to the classifier. This setup may be
enough for low-throughput networks, IoT networks, and so on.
However, in cloud environments or when processing network
traffic at a high-speed link, processing each packet individually
might be heavily resource-intensive. A typical solution is using
aggregation into network flows, such as NetFlow/IPFIX. The
existing NetFlow/IPFIX technologies are de facto standard for
high-speed network measurements. Some ML-IDS proposals
consider network flows as an input, which facilitates their po-
tential application, which is highly appreciated – the IDS can
then directly access the already collected and pre-processed
data. In other cases, there might be a need to implement a
custom packet parser, flow aggregator, or feature extractor
(see the following questions), which may take months or
development and optimization to achieve similar performance
and precision as existing approaches.

C. Are they data processed in batch or in a stream?

Another important aspect to consider is whether the data are
processed in batches or as a stream. Either choice may have no
effect on ML performance (e.g., accuracy, precision), unless
the classification leverages any contextual information derived
from history of network traffic. Nevertheless, even contextual

information can be processed internally, which is the case in
LSTM-based models. Thus, we do not consider this to a key
issue for advancing ML-IDS. However, the design choices may
impact the computational performance and delays between the
malicious event and its detection, especially in IoT networks
with centralized intrusion detection.

In a related work, Rahman et al. [17] compare the perfor-
mance of centralized and distributed ML-IDS, thus highlighted
another network management aspect of ML-IDS. The data
can be collected at multiple vantage points and forwarded
to the central IDS or processed by a distributed IDS (such
as one employing federated learning) to detect attacks on
each vantage point for reduced delays, bandwidth usage, and
distribution of the workload among multiple nodes.

D. What features to use?

An absolutely vital question with regards to ML-IDS is
which features to use. Feature engineering is typically one
of the most difficult parts of proposing a ML-based solution
to any problem. Numerous paper discuss this issue and elab-
orate on feature engineering. However, there is a potentially
problematic repeated pattern among research paper on ML-
IDS and that is blindly using all features of publicly available
datasets. We argue that the datasets are not realistic in terms
of feature selection and, thus, models trained on full scale
of available features may become very difficult to implement.
At the same time, defining solely on NetFlow/IPFIX or other
standardized features might be limiting the ML performance.
Still, the use of any uncommon feature (i.e., feature that cannot
be extracted from a single packet of flow record) should be
justified and parsers capable of extracting such features should
be implemented or referenced.

There are several examples of potentially problematic fea-
tures that we can classify in two groups. In the first group,
there are features that cannot be obtained from the network
traffic and would require additional tools to provide them. For
example, in KDD ’99 dataset, there are features indicating
the number of login attempts, indicators of successful login
or login as root. Since most of the network traffic is now
encrypted, making the deep packet inspection impossible, such
features can now be obtained only from system logs on the
target machine, which requires access to the target’s logs
and a difficult correlation with network flows. Further, IDS
leveraging this feature is no longer an NIDS, but a combined
NIDS/HIDS, potentially invalidating the proposed use case or
scenario.

The second group of problematic features are uncommon
network-based features, such as the number of connections
having the same source or target or number of flows between
the same hosts but on different ports. While obtaining such
features might be an algorithmically trivial tasks, the parser of
such features might be difficult to implement to allow for ob-
taining such features in high-speed networks. NetFlow/IPFIX
probes have become highly optimized and efficient over
decades of intensive development, and it may take months
or years to reach similar computational performance with
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probes collecting alternative features. Therefore, the use of
such features should be justified and the data collection process
should be elaborated on, especially if the scenario assumes
high-speed network traffic or low computational power.

E. Which model (and optimizations) to choose?

Enormous number of various models and their optimizations
were used for intrusion detection. Popular recent approaches
based on deep learning (e.g., Deep Neural Networks (DNN),
Recurrent Neural Networks (RNN), Long Short-Term Memory
(LSTM)) seem to outperform traditional ones (e.g., decision
trees, random forests, support vector machines). However,
there is no definite answer which one to choose for the best
results, since new ones proposing even better performance
are proposed often and their performance (accuracy, preci-
sion, recall, etc.) in most cases significantly exceeds 90%.
The differences between two approaches can be as low as
0.1%. However, vast majority of works only compares the
performance of their ML models to another works using ML
models on the same datasets and experiments using multiple
datasets or live networks are scarce. Common assumption is
that the model trained on one dataset will most likely fail or
underachieve on another dataset or in live network traffic, but
we do not have a proof of that – perhaps because of avoidance
of publishing negative results. Until we objectively measure
the performance of ML-IDS in live networks or at least over
multiple datasets and consider other issues (computational
performance, frequency and difficulty of retraining, etc.), we
may assume most of the ML models roughly equivalent.
Nevertheless, we may temporarily disregard all the works
dealing with various optimization, since such optimizations
are premature and their time is yet to come.

F. How to train the model and how transferable it is?

Training the model on live data is only possible for anomaly
detection since the lack of ground truth, and, thus, the datasets
are used. The usual procedure in the literature is to use one
or more existing datasets, and for each dataset use part of
it for training, and the remainder for testing. While this is
methodologically correct, using only one or a few datasets
will not produce a model that is usable in production simply
because of a limited number of attacks and their variations
in the datasets and the lack of background traffic. Moreover,
the quality and availability of dataset is a widely recognized
problem in cybersecurity, and it is not suprising to see research
works using outdated and flawed datasets like KDD’99 even
in recent years. It is also surprising how many research works
focus on specific environments, such as IoT or cloud, but
use generic IT datasets for evaluation, completely missing the
specifics of the environment.

The state of the art approach is simultaneous learning on two
sources – the model is trained on the dataset, so it correctly
identify the attacks, and (simultaneously or subsequently)
trained on sample of data from the production environment to
recognize the benign background traffic and common traffic
patterns in the specific settings. One such approach is referred

to as siamese neural networks [9]. While this may sound
sufficient, it brings additional research challenges and poses
additional overhead to the operators in terms of time and
resources and also expertise required.

In conclusion, there is a way, although difficult, to train the
ML-IDS to detect attacks well while acknowledging specifics
of local environment. However, we are still relying on datasets
and may face problems in situations, where no samples of
background traffic are available (e.g., because the infrastruc-
ture to protect is not yet running). There is a need to produce
and update the datasets with the traces of novel attacks.

G. How often to retrain the model and who should do it?

Another issue arises due to two important factors in ML
and cybersecurity, the ML drift, which describes the situation,
in which the ML model loses its accuracy over time, and
everchanging cybersecurity threat landscape, in which the
novel attacks or their variants appear on a daily basis [18]. The
major benefit of ML-IDS is that it is capable of detection the
attacks and its variants, contrary to traditional signature-based
IDS, where there would be a need for a signature for each
attack variant. However, even this benefit may be lost over
time – the variants can move too far from the original attack
or a novel attack may appear that does resemble any of the
previous ones. Similarly, the benign background traffic is also
changing its patters, some of which may resemble adversarial
samples in the training set. Thus, there is definitely a need to
retrain the models if they are to be used in practice.

The problem is studied by the research community [19],
but how often and who should be doing it is an unresolved
question in the literature. We may only guess whether to
perform this once a month or once a year, since no long-term
measurements are not known to us at the moment. Retraining
the models may also pose a major overhead for the operators,
which also poses a risk of the users not retraining their models
often or at all due to the lack of time, thus losing the benefits
of ML-IDS and vanishing the efforts spent on deploying it.

H. What is the computational performance of ML-IDS?

A critical issue that is avoided in the literature is the
computational performance of ML-IDS, with a few exceptions
[20]. If a computational performance evaluation is conducted,
the authors typically show configuration of the computer on
which the experiment was conducted and measure the time it
took to 1) train the model, and 2) process the testing dataset
in a batch. We find these metrics insufficient. Training time
might be interesting in certain use cases, but if it finishes
in reasonable time (e.g., minutes or few hours at most), it
is not as important as the data preparation, which may take
hours or days of manual labor of an expert. Processing the
whole batch of testing data may give only a rough estimate
of performance. However, one of the important metrics is the
network throughput, i.e., how much network traffic can be
successfully processed by the IDS in terms of packets, flows,
or bytes per second using a commodity hardware. This cannot
be simply derived from the batch processing time and size
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of dataset due to numerous implementation decision to be
made. Nevertheless, authors should state what is the expected
network throughput for the ML-IDS and ensure its implemen-
tation will be capable of operating at 1, 10, or even more
Gbps. The situation may get complicated in IoT use cases,
whether on device or centralized, where the ML-IDS should
be capable of either run on low-power device or it should be
ensured that the devices are capable of collecting and sending
data to process to a central instance of IDS. Still, this questions
remains mostly unaddressed in vast majority of works on ML-
IDS, even if they have an existing implementation.

I. How are the alerts raised, how do they look like, and how
many are there?

Since majority of ML-IDS proposed in the literature lack
implementation or only implements the ML parts, it is not
clear how the alerts are raised and would they look like. The
features are extracted from the raw data and forwarded to the
ML model as a vector, often undergoing normalization and
other forms of manipulation. The ML model then decides
whether the vector described an attack or a benign traffic.
An alert is raised when an attack occurs, but what would it
contain? A simple alert informing about an attack reduces
the expresiveness of ML-IDS to the level of ADS, even if
meta-data like involved IP addresses or ports are involved.
Moreover, attack types differ in what is important to alert –
we are interested in source IP address and destination port in
horizontal scans, while the list of scanned IP addresses is not
important and often too large. In contrary, in DDoS, we can
only make use of the destination IP address and port, not the
potentially vast number of sources. We argue that unless the
ML-IDS can recognize between various types of attacks, it
cannot provide the information of the same level of detail and
relevance as traditional signature-based IDS.

Moreover, since the alert raising mechanisms are rarely
implemented, we do not know how many alerts would an ML-
IDS raise, regardless of using aggregation mechanism or not.
Information overload and alert fatigue are major concerns in
operational cybersecurity, so we should avoid using detection
tools that produce large amounts of alerts with low information
value [21], [22]. In case of ML-IDS, there is a need to employ
thresholds, alert aggregation, and possibly even correlation
even before the alert is send out by the IDS, since even a
simple malicious action like a network scan would be spread
among hundreds or thousands of network flows and, later,
feature vectors. Timing of the detection in another unknown,
since the alerts can be raised in real time, but at the risk of
raising too many alerts. In conclusion, the evaluation of the
ML-IDS based simply on correct labelling of feature vectors
is formally right, but does not tell much about the actual
capability of the tool to deliver timely and adequately-sized
information about an attack.

J. What options does a user have to configure or modify the
IDS?

ML-based systems are typically black boxes with close to
no options for configuration. In this question, we are not
interested in the configuration of inputs or outputs (e.g., where
to read the input data, where to send the alerts), but in the
configuration of the function of the ML component itself. The
natural way of reconfiguring an ML-based system is to re-
training the model. However, an ML-IDS may compose of a
single model trained to detect various attacks simultaneously,
while having no mechanism to differentiate between types of
attacks, and reconfiguring the model may be a difficult task
requiring a skilled personnel, as we discussed earlier.

In cybersecurity, we often encounter situations when there
is a need to adjust the detection tools, e.g., by turning off the
underperforming or no longer needed detection methods or
temporarily suspend the detection of certain attacks. Alterna-
tively, in threshold-based detection, we can simply manipulate
the thresholds, e.g., to reduce false positive rate and raise alert
only in cases, where it is clear there is an attack. ML-IDS are
expected to lack such simple features and will likely require
a postprocessing of the alerts to be able to quickly adapt to
changing environment.

The lack of configuration may also lead to lower reliability
of ML-IDS and usability in automated incident response
procedures. Practitioners prefer low false positive rates over
other parameters since there will always be some attacks
that avoid detection, but incorrect incident response (e.g.,
mitigation action triggered by false positive detection) may
lead to harm to the infrastructure, restricting the users, and
reputation loss of the security team. Threshold-based detection
methods often use thresholds that minimize false positive rate
to 0 %, regardless of true positive rate, just to allow prompt
and automated incident response (e.g., blocking the attacker).
ML-IDS are usually trained to maximize true positive rate,
so unless they minimize false positive rate by careful training
or other methods, they are risky to be used in the discussed
situations.

IV. DISCUSSION

Herein, we follow the question-answer format of the previ-
ous section, but instead of querying the applicability of ML-
IDS, we formulate the question so that the answers suggest
how to make use of ML-IDS and what should be done to
make effective and efficient use of them.

A. Is it really better than traditional IDS?

The overview of operational issues in the previous sec-
tion highlighted several existing of potential drawbacks of
ML-IDS. There are numerous commercial or open-source
traditional IDS that are well known by practitioners and
efficient even in high-speed networks, and there are numerous
signatures, patterns, or detection algorithms available. The
signatures, patterns, and algorithms can be easily manipulated
with and configured, often simply by moving a threshold. The
user can freely choose what to detect and how and keep an eye
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on performance, the alerts are descriptive, the type of attack
can be inferred from the used signature, and the true and false
positive rates can be manipulated by configuration to achieve
desired outcomes.

On the contrary, ML-IDS actually offer very few improve-
ments. We may rightfully argue that the capability to detect
as many attacks as possible is the most important feature of
an IDS, but we should not underestimate the other features.
ML-IDS seem to improve precision and accuracy of detection
for the cost of disabling or complicating other features. The
real question is: is the improvement in detection capability so
significant that we can omit the other features? Alternatively,
can we compromise on the features of an IDS?

In related work, there are a few benchmarks or comparisons,
but often comparing traditional IDS between themselves [23]
or ML-IDS between themselves [24], [25]. A qualitative
and quantitative comparison, evaluation, and benchmarking
between traditional and ML-based IDS would be a valuable
addition to the field.

B. How would a good ML-IDS look like?

What is a good ML-IDS is up for discussion and there is
no definite answer yet; we may only argue which features are
more important and which less so. It also highly depending on
the particular use case. Nevertheless, there are some aspects
that should be considered when proposing an (ML-)IDS.

To start with, it is a good idea to use standardized inputs,
such as network flows. Data collection can be offloaded to
a dedicated measurement infrastructure, there is no need to
develop and maintain custom packet parsers. Network flow-
based input may not be as rich as the data from custom
parsers, but it will be easier to set up or replace traditional IDS
with ML-IDS. Scalability of flow-based approaches would be
another benefit.

We should aim for an ML-IDS that distinguishes between
different types of attacks. This is actually a challenging goal,
but there are two approaches to take. First, the ML-IDS may
use an ensemble of models, each trained to detect different
type of attack. This is essentially very similar to traditional
IDS, only with models instead of signatures. While it may
seem more laborious to train each model separately, it may
be simpler – each model would be trained on traces of a
particular attack, the dataset of background traffic can be
shared, and underperforming models can be easily turned off
or retrained separately. However, computational performance
may be hindered severely. Second, we may use multi-label
classification – the model is trained on the dataset, in which
each attack class is labelled separately, and the detected
intrusion may be labelled with one or more such labels. Such
an approach is more difficult even from the ML perspective
and requires much more elaborated datasets, but may provide
valuable insights into attacks and anomalies that would not fit
into one category. AS a side note, we dot consider explainable
AI (XAI) to be a reasonable solution to this problem, since
it is time- and resource-consuming and only pinpoints the
features that caused classifying the input vector as malicious

– a security analysts should rather analyze the raw network
traffic and correlate it with other sources (e.g., systems logs
and threat intelligence), since the features can be too abstract.

Finally, we should invest into usability of ML-IDS in
the training phase and possible re-training. If the ML-IDS
are to be used widely, we should not expect the users to
gather knowledge of ML to train their own models. Instead,
we should facilitate or outsource the training – pre-trained
models could be shared publicly or be provided by commercial
enterprises, especially for ensemble-based systems. End used
would then use the pre-trained models directly or re-train them
with the sample of their own background traffic, thus avoiding
dealing with the datasets and labeling malicious patterns.

C. Is it really worth it?
There is a popular concept in the world of DevOps, the

pet and cattle analogy [26]. In essence, pets are devices and
services to which we pay special attention; they are given
unique names and are often configured and maintain manually,
paying attention to many details, and spending much time on
them. The cattle refers to devices or services that are deployed
often in large numbers and configured and maintained mostly
automatically, and no special attention is given the individual
assets when an issue arises since they can often be easily
replaced or redeployed. While we are not in the DevOps field,
we can still get inspired by this concept – so far, we have
only seen ML-based IDS acting as a pet. It is hard to imagine
the ML-IDS to act as cattle as that would require significant
development in the areas outlined in Section III.

We would like to encourage anyone working with ML-
IDS to "groom their pets," since this is the way to resolve
the issues around ML-IDS. However, we argue that the way
forward is turning the pets into cattle, i.e., preparing an ML-
IDS that is easy to deploy, configure, and use. We understand
that a well groomed pet may present a great contribution
to the user, but at this moment, it typically means that a
dedicated person is sacrificing time and effort to only one
tool in the cybersecurity toolset. Given the worldwide shortage
of cybersecurity professionals and the increasing workload of
often understaffed teams, we may ask whether it is really worth
it to spend resources on ML-IDS.

D. Are there any alternative approaches?
Even if it seem, by the sheer number of publications, that

training the ML models to perform intrusion detection is the
dominant approach, it is not a single one. A viable alternative
of leveraging AI and ML in intrusion detection is letting the AI
generate signatures for traditional IDS [27]. Such an approach
allows for leveraging AI without the need of touching the
existing monitoring and detection infrastructure. Preliminary
results are promising and may be deployed immediately, and
if successful, may persuade users into adopting AI/ML-based
solutions faster than ML-IDS.

V. CONCLUSION

The research in machine learning for intrusion detection
has produced numerous publications and even became overly
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hyped topic. Despite the number of publications in over a
decade, we still do not see that many implementations, com-
mercial products, nor field trials. Researchers and practitioners
has even started to question the role of ML in cybersecurity
and its applicability. In this paper, we analyzed the ML-based
intrusion detection from the perspective of network security
management and operations and raised number of questions
regarding the deployment and effective and efficient use of
ML-IDS. Our major finding is that while ML-IDS exceeds
traditional IDS in detection capabilities, it is for the cost of
extensive expert labor, lack of configuration, and frequently
also inability to understand what was detected. We argue
that at the moment, ML-IDS present an interesting tool for
cybersecurity experts with sufficient knowledge of ML and
plenty of time and resources to deploy it successfully.

In our future work, we are going to further survey and
analyze the domain of ML-IDS, look up prototypes and
implementations, and scrutinize them under operationally-
relevant conditions. We would also like to raise awareness
of operational issues of cybersecurity and steer the research
community towards the applicable results. We hope the effort
spent on researching ML-IDS will not go in vain, but that the
discussed issues of ML-IDS will be resolved and applied in
practice.
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