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Abstract—This paper deals with the problem of energy
consumption minimization in Open RAN cell-free (CF) mas-
sive Multiple-Input Multiple-Output (mMIMO) systems under
minimum per-user signal-to-noise-plus-interference ratio (SINR)
constraints. Considering that several access points (APs) are
deployed with multiple antennas, and they jointly serve multiple
users on the same time-frequency resources, we design the
precoding vectors that minimize the system power consumption,
while preserving a minimum SINR for each user. We use a
simple, yet representative, power consumption model, which
consists of a fixed term that models the power consumption
due to activation of the AP and a variable one that depends
on the transmitted power. The mentioned problem boils down to
a binary-constrained quadratic optimization problem, which is
strongly non-convex. In order to solve this problem, we resort to a
novel approach, which is based on the penalized convex-concave
procedure. The proposed approach can be implemented in an
O-RAN cell-free mMIMO system as an xApp in the near-real
time RIC (RAN intelligent Controller). Numerical results show
the potential of this approach for dealing with joint precoding
optimization and AP selection.

Index Terms—Open RAN, Cell-free, SCA, Optimization

I. INTRODUCTION

Cell-free (CF) massive multiple-input-multiple-output
(mMIMO) systems is a key enabling technology for 6G
networks [1] seemingly merging and pushing forward two
key techniques already in use in 5G, namely, network
densification and massive MIMO antenna arrays. In a
nutshell, CF-mMIMO takes advantage of network MIMO by
assuming a large number of access points (APs) deployed
over the coverage area but with joint baseband processing
done by a central processing unit [2]. In fact, CF-mMIMO is
often described as a conventional mMIMO network whereby
the RF heads are pulled apart from the BS and randomly
(and densely) scattered throughout the coverage area. The
theoretical foundations underpinning mMIMO mostly apply to
the CF-mMIMO scenario. In particular, the so-called channel
hardening that virtually eliminates the fast fading effects
also applies to the CF-mMIMO scenario [3]. Furthermore,
its highly distributed topology brings the RF infrastructure
geographically closer to the users, thus effectively reducing
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the propagation losses. This theoretical gain is obtained at
the expense of costly and power-hungry equipment that
connects APs in-phase and quadrature (IQ) signals to the
central control unit and the requirement to maintain strict
synchronization among all APs.

Aligned with the Green Deal initiative promoted by the
European Union, energy efficiency will again be a fundamental
metric in the forthcoming wireless generation [4]. While power
consumption in mMIMO mostly addressed issues on radiofre-
quency and baseband processing units [3], CF-mMIMO must
consider new energy-related aspects such as the presence of
a dedicated fronthaul connection linking the APs to the CPU
and the fixed power expenditure each individual AP entails. In
practical networks, these fixed power terms represent the most
significant factor in total energy expenditure. In this context,
to reduce global power consumption, it might be wise to just
activate a few APs in order to attend to specific user data rate
demands. Techniques to dynamically switch on/off APs in an
attempt to maximize energy efficiency have been proposed in
[5] whereby a zero-forcing (ZF) precoder is combined with the
heuristic power allocation. Unfortunately, the maximization of
energy efficiency is carried out without providing the users
with any performance guarantees. Most previous works on
CF-mMIMO separate the precoder design from the power
allocation strategy. While the first one is carried out relying on
instantaneous channel state information (CSI), the second one
typically targets a specific performance objective such as max-
imizing the minimum user signal-to-noise-plus-interference
ratio (SINR) (Max-Min) or maximizing the network sum rate.

It has been recently proposed the use of CF-mMIMO within
the Open Radio Access Network (O-RAN) architecture [6],
representing a groundbreaking convergence of two disruptive
technologies. Open RAN’s disaggregated framework fosters
network operator inter-operability, driving down costs and
unlocking vendor diversity. When coupled with CF-mMIMO,
this synergy amplifies the benefits by breaking down tra-
ditional cell boundaries and leveraging distributed antennas,
maximizing spectral efficiency, extending coverage, and min-
imizing interference. This potent combination not only opti-
mizes resource utilization but also accelerates the deployment
of advanced wireless networks, empowering operators to meet
the ever-growing demands for connectivity.

In this paper, we focus on the optimization problem of
minimizing the power consumption of CF-mMIMO sys-
tems within O-RAN architectures, under minimum quality-of-
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service (QoS) requirements per user in the form of a minimum
SINR. Indeed, relying on the seminal work in [7], we revisit
the idea of minimizing the transmit power under minimum
SINR [7] for CF-mMIMO considering the fixed power con-
sumption term. In our case, and similar to what happens in [7],
the precoder design and power allocation steps merge, and
they are both carried out taking into account instantaneous
CSI, thus allowing the satisfaction of instantaneous SINR
constraints (rather than average). When only the transmit
power consumption is assumed, the optimization problem
has a convex reformulation [7] that permits a closed-form
solution. However, incorporating the fixed term transforms the
problem into a highly non-convex problem. In order to tackle
this new optimization problem, binary decision variables are
introduced that decide which APs are active, along with the
derivation of the corresponding precoding vectors. We propose
a convex relaxation based on the Penalty Convex-Concave
Procedure (PCCP) [8] able to handle the described problem.
The numerical results show the benefits of this technique
for joint precoding design and AP subset selection, which
minimize global power consumption while satisfying user
demands.

The paper’s outline is as follows: Section II introduces
the architecture of the Cell-Free O-RAN system, followed
by the System model in Section III. Section IV describes
the considered problem statement. Section V and Section VI
present the numerical results and conclusions, respectively.

II. CELL-FREE O-RAN ARCHITECTURE

Traditional RANs, with their hardware dependency, have
long posed challenges for network providers. These systems
often lead to vendor lock-in issues, significantly increasing
CAPEX and OPEX costs [9]. The struggle to incorporate
intelligence and build a collaborative, reliable network envi-
ronment has been a major hurdle [10]. The promise of next-
generation RAN solutions, which can manage the network in
real-time and respond quickly to scenarios using software-
defined vendor-neutral technologies, is a hope in this landscape
[11].

With Virtualization and RAN disaggregation being the
cornerstone, O-RAN technology aims to provide openness
and intelligence in network management [12]. One of the
latest essential foundations is the modernization of O-RAN
architecture by integrating it with cell-free technology [6].
This helps in improving the scalability and flexibility of the
network. Figure 1 shows the architecture of O-RAN Cell-
free technologies [6], incorporating power-saving eXtended
application (xApp). It consists of control, management, and
data layers. In the Management plane, there is a Service Man-
agement and Orchestration (SMO) layer equipped with Non-
Real Time RAN Intelligent Controller (RIC). The Non-RT
RIC constitutes a fundamental component of the Open RAN
architecture, specifically designed to manage RAN operations
with control loops exceeding one second. It supports third-
party applications, referred to as radio App (rApp)s, which
facilitate the optimization and management of RAN functions.

As an integral part of the SMO framework within the O-
RAN architecture, the Non-RT RIC connects to other network
elements through A1, O1, and O2 interfaces.

There is also a Near-Real Time RIC, which helps in
intelligent system management through xApps. In this work,
these xApps are considered to use the information from Open-
Radio Unit (O-RU)s to make decisions regarding power saving
by using a sophisticated optimization algorithm. The xApps
primary objective is to promote power efficiency within the
network. Moreover, The O-RUs are designed to support a cell-
free architecture for serving multiple User Equipments (UEs)
in a seamless manner. The Near-Real Time RIC interfaces via
A1 and E2 interfaces with other network elements.

Combining O-RAN and cell-free technologies provides vari-
ous benefits. It reduces signal interference and improves the ef-
ficient usage of power. As the APs cooperatively serve multiple
UEs, the traffic demands can be handled dynamically, which
in turn enhances capacity and coverage [6]. Nevertheless, it
also helps ensure network services’ consistent availability to
improve user experience and handle scalability and agility
cost-effectively in the long run [3]. The main components are:

• O-RU, Open-Distribution Unit (O-DU), and Open-Central
Unit (O-CU) whose functionalities are similar to that in
5G dis-aggregated RAN except with added support of
O-RAN based specifications and interface. Without loss
of generality, throughout this paper, we will refer to the
O-RUs as cell-free APs [13].

• Near-Real Time RIC to control/optimize RAN elements
and resources based on fine-grained data using online
Artificial Intelligence (AI)/Machine Learning (ML) based
services. It is suitable for applications with latency re-
quirements between 10 ms and 1s [14]. Herein, the power
saving xApp is placed in Near-Real Time RIC, selecting
the best subset of APs to be active at a particular time to
handle the service requirements of users efficiently.

• Non-Real Time RIC to control/optimize RAN elements
and resources based on coarse-grained data using online
AI/ML services [14]. It is suitable for applications with
latency requirements greater than 1s. It also provides
policy-based guidance to near-real Time RIC.

III. SYSTEM MODEL

Consider a cell-free scenario with K User terminals /
User Equipments (UEs) and N Access Points (APs). In the
following, we assume that APs are equipped with NAP > 1
antennas. APs are connected through a high-speed link to a
central controller. We assume that UEs are equipped with a
single antenna.

A. Channel Model

Let us denote by β[n]
k the large-scale propagation losses (i.e.,

path loss and shadowing) of the link joining APn and UE
k, and which can be expressed as β[n]

k = ζ
[n]
k χ

[n]
k with ζ

[n]
k

representing the distance-dependent path loss

ζ
[n]
k [dB] = ζ0 + 10α log10

(
d
[n]
k

)
, (1)
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Fig. 1. Cell-free O-RAN Architecture.

where ζ0 is the path loss at a reference distance of 1 m,
d
[n]
k is the distance from AP n to UE k and α is the path

loss exponent. The term χ
[n]
k corresponds to the shadow

fading component modeled as a spatially correlated log-normal
random variable with zero mean and variance σ2

χ whose
spatial correlation model is described in [ [2], (54)-(55)].
The resulting downlink channel vector h

[n]
k ∈ CNAP×1 from

the k-th UE to the n-th AP (including both large-scale and
small-scale fading) can then be generically characterized as a
correlated Rayleigh fading channel h[n]

k ∼ CN (0,Rnk) with
Rnk denoting the NAP × NAP spatial channel correlation
matrix subject to the constraint Tr (Rnk) = β

[n]
k /NAP. For

later convenience, we define hk =
[
h
[1],T
k , · · · ,h[n],T

k

]T
as

the NAP × 1 vector collecting the overall channel responses
from the N APs to user k.

B. Uplink training and channel estimation
During the UL training phase, all K UEs simultaneously

transmit pilot sequences of τp samples to the APs and thus,
the NAP ×τp received UL signal matrix at the n-th active AP
is given by

Y [n]
p =

√
τpPAP

p

K∑
k=1

h
[n]
k φT

k +N [n]
p , (2)

where PAP
p is the available pilot symbol power, φk denotes

the τp×1 training sequence assigned to UE k, with ∥φk∥2 = 1,
and Np

[n] ∈ CNAP×τp is a matrix of independent identically
distributed (iid) zero-mean circularly symmetric Gaussian ran-
dom variables with standard deviation σu. Define now the
projection of Y p

[n] on the k-th training sequence

y̆
[n]
pk = Y [n]

p φ∗
k =

K∑
k′=1

√
τpPAP

p h
[n]
k′ φ

T
k′φ∗

k +N [n]
p φ∗

k. (3)

Standard results from estimation theory allow the MMSE
channel estimate between of h[n]

k to be expressed as

ĥ
[n]

k =

(√
τp

(
PAP
p

)
/σ2

u

)
RnkΨ

−1
nk y̆

[n]
pk , (4)

where

Ψnk = τp
(
PAP
p /σ2

u

) K∑
k′=1

Rnk′
∣∣φH

k′φk

∣∣2 + IN . (5)

The channel estimate ĥ
[n]

k[n] and the MMSE channel estima-
tion error h̃

[n]

k = h
[n]
k − ĥ

[n]

k are uncorrelated random vectors

distributed as ĥ
[n]

k ∼ CN (0,Γmk), and h̃
[n]

k ∼ CN (0,Amk),
respectively, where
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Γnk = τp
(
PAP
p /σ2

u

)
RnkΨ

−1
nkR

H
nk (6)

and

Ank = E
{
h̃
[n]

k h̃
[n],H

k

}
= Rnk − Γnk. (7)

C. SINR computation

We aim to optimize the downlink transmission, assuming
perfect channel state information. This is, the downlink trans-
mission is performed by a central controller which has a
perfect estimation of hk ∈ CNNAP×1 for k = 1, . . . ,K. Vector
hk collapses the channel vector of each AP

hk =
(
h
[1],T
k , . . . ,h

[N ],T
k

)T

, (8)

where h
[n],T
k ∈ CNAP×1 is the channel vector between the

n-th AP and the k-th UE.
The received signal by the k-th UE can be written as

yk = hH
k wksk +

K∑
j ̸=k

hH
k wjsj + nk, (9)

where sk is the unit norm zero mean symbol of the k-th UE
and wk ∈ CNNAP×1 the transmit precoding vector. Note that
transmission takes place in all APs simultaneously so that the
n-th AP is transmitting

t[n] =

K∑
k=1

w
[n]
k sk, (10)

where w
[n]
k ∈ CNAP×1 is the precoding vector at the n-th AP

transmitting the symbol to the k-th UE. Remarkably

wk =
(
w

[1],T
k , . . . ,w

[N ],T
k

)T

. (11)

We consider total power constraint

K∑
k=1

∥∥∥w[n]
k

∥∥∥2 ≤ Pn, n = 1, . . . , N (12)

where Pn is the available power at the n-th AP. The attainable
rate of the k-th user is

Rk = log2 (1 + SINRk) , (13)

where

SINRk =

∣∣hH
k wk

∣∣2∑K
j ̸=i

∣∣hH
k wj

∣∣2 + σ2
. (14)

IV. PROBLEM STATEMENT

In this scenario, we consider minimizing the global power
consumption guaranteeing a certain minimum SINR, γ0 to all
terminals. We model the Total Power Consumption (TPC) as
follows

TPC =
1

η

K∑
k=1

∥wk∥2 +
N∑

n=1

PFIX,n (15)

where η is the high power amplifier efficiency, η ∈ (0, 1]
assumed to be the same for all APs and all antennas. The term
PFIX,n denotes the fixed consumed power due to backhauling,
circuitry power consumption, and control signaling of the n-th
AP in case it is active. This power consumption model aligns
with other related approaches to the energy consumption of
CF-mMIMO systems [4], [15].

Mathematically, this can be written as

minimize
{wk}K

k=1,U

1

η

K∑
k=1

∥wk∥2 + PFIX|U|

subject to
K∑

k=1

∥∥∥w[n]
k

∥∥∥2 ≤ Pn n = 1, . . . , N (16)

SINRk ≥ γ0 k = 1, . . . ,K

U ⊆ V,

where V denotes the set with all the APs and | · | denotes the
cardinality of the set. We assume all APs have the same fixed
power consumption PFIX . The aforementioned cardinality
problem can be re-written as follows

minimize
{wk}K

k=1,{bn}
N
n=1

1

η

K∑
k=1

∥wk∥2 + PFIX

N∑
n=1

bn

subject to

C1 :

K∑
k=1

∥∥∥w[n]
k

∥∥∥2 ≤ bnPn n = 1, . . . , N (17)

C2 : SINRk ≥ γ0 k = 1, . . . ,K

C3 : bn ∈ {0, 1} n = 1, . . . , N.

This latter optimization problem is non-convex due to
constraints C2 and C3. Let us focus on how to deal with
these non-convex constraints. As reported in [14], constraint
C1 can be rewritten as

1

γ0

∣∣hH
k wk

∣∣2 ≥ K∑
j ̸=k

∣∣hH
k wj

∣∣2 + σ2. (18)

This last expression shows that an arbitrary phase shift does
not affect the constraint. Therefore, we can consider a real
solution such that its imaginary part ℑ

(
hH
k wk

)
= 0. In this

context, we can transform the original constraint into
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1
√
γ0
ℜ
(
hH
k wk

)
≥

√√√√ K∑
j ̸=k

∣∣hH
k wj

∣∣2 + σ2, (19)

which is a convex constraint. Alternatively, C3 is a binary
constraint whose quadratic definition, as reported in [16], can
be written as

bTEib− bTei = 0. (20)

where Ei is a zero matrix whose i-th diagonal element is
equal to 1 and ei is a zero vector whose i-th entry is equal to
one. This equality constraint can be divided into two different
constraints, namely

bTEib− bTei ≤ 0 (21)

bTEib− bTei ≥ 0. (22)

While the first constraint is convex, the latter is concave.
For this last constraint, we resort to the Concave-Convex
Procedure (CCP), which sequentially approximates the con-
cave parts of the problem by its first order Taylor expansion.
Starting from an initial point z, CCP algorithm linearizes the
non-convex part, by linearizing it by its affine approximation,
leading into the following constraint

bTei + zTEiz− 2ℜ
(
zTEib

)
≤ 0. (23)

Bearing in mind the above discussion and the use of slack
variables s, the original problem at the t-th step becomes

minimize
{wk}K

k=1,{bn}
N
n=1,{sn}

N
n=1

1

η

K∑
k=1

∥wk∥2+PFIX

N∑
b=1

bn+λ

N∑
n=1

sn

subject to

C1 :

K∑
k=1

∥∥∥w[n]
k

∥∥∥2 ≤ bnPn, n = 1, . . . , N,

C2.1 :
1
√
γ0
ℜ
(
hH
k wk

)
≥

√√√√ K∑
j ̸=k

∣∣hH
k wj

∣∣2 + σ2,

k = 1, . . . ,K,

C2.2 : ℑ
(
hH
k wk

)
= 0, k = 1, . . . ,K,

C3.1 : bTEib− bTei ≤ 0, n = 1, . . . , N,

C3.2 : bTei + zTt Eizt − 2ℜ
(
zTt Eib

)
≤ si. (24)

The penalized concave-convex procedure is summarized in
Algorithm 1. Note that slack variables si are introduced to
avoid the need for an initial feasible solution. In our case, we
consider as initial solution the one that uses all APs.

Algorithm 1 PCCP optimization for On/Off Optimization

1: Initialization of z(0),b(0), w(0) to random initial points.

2: Set t = 0 and define the values of ψ, Tmax, ω, λmax, ρ and
λ(0)

3: while
∑2N+1

m=1 sm ≤ ψ and ∥b(n) − b(n−1)∥ ≥ ω do
4: if t < Tmax then
5: Compute b(n) according to (24).
6: z(n+1) ← b(n);
7: λ(n+1) ← max(λ(n)ρ, λmax);
8: t← t+ 1;
9: else

10: t← 0;
11: Initialize with a new random value z(0);
12: Set up λ(0) again;
13: Output the final solution w∗,b∗;

V. NUMERICAL RESULTS

This section quantifies the performance of the joint AP
selection and power consumption minimization algorithm in
a cell-free mMIMO O-RAN scenario.

The power saving xApp is placed in Near-RT-RIC, as shown
in Figure 1. We consider N=15 APs with four antennas
each. The channels are generated following a complex normal
distribution of zero mean and unit variance. The number of
users K is considered to be 10. The maximum transmit power
is fixed to 1W, maximum value of penalty parameter λmax

is fixed to 104, maximum allowed constraints violation ψ
is 10−5, initial value λ(0) is set as 5 · 10−2, multiplicative
update value ρ is fixed to 2, maximum number of iterations
Tmax is 102 and finally 10−5 is assigned to maximum allowed
constraints violation ω. All the experiments are run for 100
Monte Carlo runs.

Fig. 2. Mean number active APs and average transmit power as a function
of SINR.

Fig. 2 helps understand the relationship between SINR,
number of active APs, and power consumption. Our work aims
to jointly optimize total power consumption and beamforming
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design. A direct consequence of solving the problem (24) is
to select the best set of access points to be activated. The
results show that the mean number of active access points
monotonically increases with SINR. An increase in SINR
signifies better signal quality at the UEs, requesting demands
for more active access points, leading to a gradual increase
in power consumption. The results show that up to 7dB to
fulfill the SINR constraints implies a slight increase in the
total power. On the contrary, for values higher than 15dB,
there is a huge increase in total transmit power, around 9dB,
to guarantee the quality of service. This analysis highlights
the significant tradeoff between network performance in terms
of UE’s quality of service and energy efficiency, which, as a
consequence, results in increasing active APs.

Fig. 3. Effect of changing the number of users on active APs and transmit
power.

Fig. 3 shows the impact of increasing the number of UEs
on the average transmit power and the mean number of
active access points. For this analysis, the SINR value was
fixed to 4dB. As the total number of UEs rises, there is a
consistent increase in the number of APs activated to serve
these users. In the same way, the transmit power is also
increased. To maintain the quality of service, in terms of SINR
at the terminals, a higher number of active points needs to be
increased, having an impact on the total transmit power in the
system.

The Fig. 4 shows the Empirical Cumulative Distribution
Function (ECDF) of the actual number of active APs corre-
sponding to 100 Montecarlo runs for SINRs equal to 4dB and
7dB, the number of available APs N = 10, and the number
of UEs K = 21. More access points need to be activated as
the SINR constraint increases, shifting the ECDFs of required
APs further to the right. This is because to find a feasible
solution in higher SINR regimes, a larger minimum amount
of APs is needed, as shown in the 7dB case. Around 90% of
cases require 8 APs to fulfill the constraints. Furthermore, the
figure shows that for lower values of SINR, i.e., 4dB, broader
solutions in terms of active APs are found. For this case, the
total amount of APs required ranges from 6 to 10.

Fig. 5 investigates the effect of increasing the total number
of users on the feasibility of finding optimal solutions to

Fig. 4. Empirical Cumulative Distribution Function of the number of active
APs for different SINRs.

Fig. 5. Feasibility of finding an optimal solution for various SINRs.

problem (24). Having this aim in mind, different SINR values
were evaluated, namely 4dB, 7dB, and 10dB, with the number
of available APs N = 10. In the case of 4dB SINR, when
the number of users in the system is higher than 30, in some
instances the problem becomes unfeasible. Similarly, for cases
of 7dB and 10dB, this unfeasibility effect starts earlier when
the number of users is 25 and 19, respectively. The rationale
behind this behavior is that for the given number of APs
and antennas, N = 10 and K = 4, respectively, fulfilling
the quality of service constraints becomes unfeasible for a
higher number of users. This effect is consistently increased,
and when the number of users reaches 40, the optimization
problem completely fails in finding a feasible solution for all
the listed SINRs. Note that increasing the number of APs
and/or antennas would allow for a higher number of users
to be served before reaching unfeasibility.

VI. CONCLUSIONS

This paper presented a novel approach for addressing the
energy consumption minimization problem in Open RAN
CF-mMIMO systems while guaranteeing the quality of ser-
vice requirements per user. This problem involves the joint
precoding design and the AP selection, with a minimum
SINR requirement for each user. The combinatorial nature
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of the problem makes it computationally demanding, and a
sub-optimal method was presented, based on the penalized
convex-concave procedure. Our technique offered a promis-
ing solution, demonstrating its efficacy through numerical
simulations. Furthermore, the proposed approach, which can
be implemented as an xApp in the near-time RIC, holds
significant potential for practical implementation of O-RAN-
based CF-mMIMO systems.
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