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Abstract—The softwarization and virtualization of the fifth-
generation (5G) cellular networks bring about increased flex-
ibility and faster deployment of new services. However, these
advancements also introduce new vulnerabilities and unprece-
dented attack surfaces. The cloud-native nature of 5G networks
mandates detecting and protecting against threats and intrusions
in the cloud systems. Additionally, the evolving cyber-threat
landscape and the growing reliance on cellular networks for
mission-critical tasks reinforce the need for robust security
systems, which should be capable of detecting stealthy and zero-
day attacks.

Recent developments in Provenance-based Intrusion Detection
Systems (PIDS) address these requirements. These host-based
systems aim to analyze provenance graphs derived from system
calls to uncover any deviation from the expected benign be-
haviour of the host. Provenance graphs are structured as holistic
representations of the dependencies and causal relationships
between digital objects, and hence they fit well in the Service-
based Architecture (SBA) of 5G networks. However, deploying
PIDS requires substantial datasets of provenance graphs collected
from the relevant hosts. In this work, we propose a framework
to generate provenance graphs datasets for a 5G core network.
We provide an example dataset and evaluate the state-of-the-art
PIDS in protecting a 5G network core from various threats.

Index Terms—5G, provenance, dataset, service-based infras-
tructure, GNN

I. INTRODUCTION

Fifth-generation (5G) cellular networks bring forth many
advancements over previous generations. At the forefront of
those advancements are network virtualization and softwariza-
tion, which introduce more flexibility and expedite service
deployment. This is achieved primarily by converting many 5G
core Network Functions (NFs) into software micro-services.
Notably, the implementations of these NFs can be sourced
from an array of vendors, including third parties, following
the 5G Service-based Architecture (SBA). This significantly
alters the circle of trust, increases the 5G core network (5GCN)
attack surface and introduces new vulnerabilities.

The increased importance of 5GCNs in supporting mission-
critical services, coupled with the evolution of advanced
persistent cyber threats (APTs), highlights the necessity of
accurate intrusion detection systems (IDS). A critical example
is Operation Dianxun, which targeted numerous 5G providers
worldwide with a privilege escalation APT [1]. Additional
examples of such APTs are documented in the MITRE FiGHT
attack taxonomy [2].

Furthermore, traditional network flow-based IDS commonly
deployed in cellular networks are no longer sufficient. De-

tecting low and slow APTs from network traffic has become
much more elusive [3]. APTs can take days and consist of
multiple minor steps. With the enormous growth of traffic
in 5GCNs, APTs can easily disappear within benign traffic,
effectively neutralizing conventional IDS [4]. This inadequacy
is largely due to conventional IDS lacking the contextual and
temporal awareness between system events. Therefore, having
IDS analyze system calls on the network core is essential.

To leverage contextual and temporal information about
system events, researchers began structuring system call in-
formation into graphs, known as provenance graphs. This
led to the evolution of a new class of Provenance-based
Intrusion Detection Systems (PIDS). In PIDS, representing
system events as graphs enables the use of more sophisticated
Machine Learning (ML) models, particularly Graph Neural
Networks (GNNs) [5].

The advancements of PIDS, combined with the develop-
ments in 5G networks, strongly support utilizing PIDS within
5GCN. With service providers renting compute resources,
tenants start sharing physical hardware. In theory, each tenant
has separate virtual resources, but virtual isolation is not
always guaranteed. Therefore, if an APT is ongoing from one
of the tenants or their customers, the host must detect the
attack quickly and accurately, to prevent it from impacting
other tenants. PIDS show a lot of promise in this area.

Unfortunately, there remains a need for a dataset that
describes the benign behaviour of 5GCN for the PIDS to learn
from. While there are many efforts to provide datasets for ML
model training in 5G networks, these datasets predominantly
focus on the networking perspective rather than a system
perspective [6]–[8]. Most available datasets consist of labelled
PCAP files containing network packets rather than system-
level events.

Nevertheless, there are a few datasets that facilitate the train-
ing of ML models for provenance-based intrusion detection,
some more sophisticated than others. However, none of them
consider the 5G use case or provide a representation of benign
activity on a host running 5G core services. Since most PIDS
operate as anomaly detectors, there is a dire need to capture
benign activity in 5GCN. Furthermore, while there are some
frameworks for generating datasets whether based on network
traffic packets or system logs [9], our survey of the literature
has not identified a single comprehensive framework for
generating provenance graphs for training PIDS, particularly
in the context of 5G networks.
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Fig. 1. An abstract example of a provenance graph

While there may be some individual components for prove-
nance graph collection, with CamFlow [10] being the most
notable, there remains a significant gap in generating compre-
hensive datasets. Additionally, installing CamFlow on most
operating systems (OS) is non-trivial, making data collection
less accessible than desired. The main contributions of our
work are as follows:

• We design and develop a flexible framework, called
5GProvGen, to generate a dataset of provenance graphs
for 5GCN. To the best of our knowledge, this is the first
framework for generating provenance datasets.

• We generate a 5GCN provenance dataset using our frame-
work, which includes an array of benign and malicious
activities to train ML models for provenance-based PIDS.
This is the first dataset of provenance graphs aimed at
PIDS for detecting threats in 5GCN.

• We evaluate prominent, state-of-the-art PIDS on our gen-
erated 5GCN provenance dataset to showcase its efficacy
in facilitating the detection of several APTs.

We make the source code for 5GProvGen, the dataset gen-
eration setup, and the provenance dataset for 5GCN publicly
available1.

The remainder of our paper is organized as follows. Sec-
tion II summarizes the necessary background, covering the
evolution of provenance graphs and PIDS. Section III dis-
cusses the related works on datasets and frameworks. Section
IV details the design of our framework and the reasoning
behind our design choices. Section V describes our dataset
generation pipeline, while Section VI evaluates state-of-the-
art PIDS on our dataset. Section VII instigates future research
directions, and we conclude the paper in Section VIII.

II. BACKGROUND

In this section, we provide a high-level overview of prove-
nance graphs, their collection, and the intrusion detection
systems that leverage provenance graphs.

A. Provenance graphs

Provenance was initially used to track data integrity in
databases [10], [11]. Whole-system Provenance graphs were
introduced as an iteration on provenance to capture states
of system entities and file history [12]. These graphs offer
a holistic view of the system from initialization through its
life cycle, providing a significant amount of information that
could be leveraged to enhance the performance of ML-based
intrusion detection techniques [10].

System calls are the source of truth for provenance graphs.
While system calls and provenance graphs contain similar in-
formation (e.g., system call type, source process) [13], prove-
nance graphs organize the information to facilitate pattern
recognition for ML models. In a provenance graph, each node
represents a system entity, such as processes, files, or network
ports. The edges represent interactions between these entities,
such as reads, writes, and forks, along with the progression
of such events over time. This format allows ML models to
capture a more comprehensive contextual view of each system
entity and their behaviour, resulting in a better prediction of
their intentions [14]. Figure 1 shows an abstract example of a
provenance graph.

B. Provenance collection

The generation of provenance graphs is the first step in
utilizing PIDS. While different OS may provide built-in tools
to monitor and record system calls, these calls are not format-
ted as provenance graphs, and converting them is non-trivial.
Additionally, the system call information collected by the OS
might not be comprehensive. We found that built-in tools (e.g.,
auditD) occasionally generate events that are not complete
and do not indicate the source and destination of an edge.
Furthermore, when such tools operate in the user space they
lack the required access to information that is crucial to link
system calls to their respective containers in a containerized
environment.

An example of a built-in auditing tool is auditD. It is
available as part of the Linux security module (LSM) in Linux-
based OS [13]. Although it comes pre-installed with most
Linux builds and is relatively easy to run, the Linux audit
suite has its drawbacks. Running auditD causes significant
overhead, a major consideration in a cloud environment that
can impact providers’ revenue [15]. Furthermore, while auditD
is easy to configure and use for collecting system calls, the
information collected is incomplete (e.g., missing information
within each event), making the construction of provenance
graphs from system logs a substantial effort. This is especially
noticeable when compared to more comprehensive whole-
system provenance collection tools. Whole-system provenance
involves tracking and recording all system-level events and
interactions, providing a detailed and high-fidelity history
of system activities, states, and data flows, which aids in
analyzing system behaviour over time [12].

1https://github.com/abouelkhair5/5GProvGen
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TABLE I
DIFFERENT PIDS IN THE RECENT LITERATURE

Model Technique Used Output Granularity Publication year

Unicorn [16] WL labeling Scheme + Histogram Sketching + Clustering Timestamp Temporal Graph Snapshot 2020

KAIROS [17] TGN encoder + MLP Decoder Edges A summary graph of suspicious edges 2023

Flash [18] Word2Vec + GNN Representation Learning Nodes Suspicious Nodes 2024

On the other hand, the flagship whole-system provenance
collection tool is CamFlow. It offers an array of features
unavailable in built-in tools. CamFlow is designed to capture
provenance with each logged event containing all the nec-
essary information to map it to an edge in the provenance
graph without further preprocessing. Additionally, CamFlow is
directly integrated into the system’s kernel rather than the OS.
This is especially useful in containerized environments, where
it captures more information to determine which system calls
belong to which container. This is crucial in 5GCN since most
NFs are deployed inside containers. Finally, CamFlow offers
support for distributed environments out of the box, which
is important in a cloud environment where resources are not
necessarily on a single host.

More sophisticated provenance collection tools have been
released as part of The Defense Advanced Research Projects
Agency (DARPA) Transparent Computing (TC) program, de-
signed to minimize overhead and maximize coverage. How-
ever, these tools are not publicly available and, therefore, were
not considered in this work.

C. PIDS

Detecting anomalies in whole-system provenance graphs is
challenging due to the properties of these graphs. Provenance
graphs are dynamic, with nodes and edges timestamped with
creation and expiry time. They are also heterogeneous, con-
taining multiple node and edge types. These characteristics
complicate the use of many ML approaches that handle
simpler graphs [19].

The heterogeneity of provenance graphs can be addressed by
mapping different node and edge types to latent vector spaces,
the resulting vectors, called embeddings, can then be used in
the graph learning process [20]. An embedding is a mapping
of high-dimensional data, such as nodes and edges in a graph,
into a lower-dimensional vector space in a way that preserves
the inherent properties and relationships of the original data
[21]. Advances in Graph Neural networks (GNNs) have further
improved the handling of such heterogeneity [22].

Capturing the temporal dynamics in provenance graphs has
been more elusive. Initial attempts focused on simplifying the
problem by reducing the granularity of the sub-graph to be
evaluated [23]. The Weisfeiler-Lehman (WL) graph isomor-
phism test [24], an algorithm that iteratively relabels vertex
labels based on their neighbourhoods, is used to determine
whether two graphs are isomorphic. This is repeated until
either stable labelling is achieved or a difference is detected
between the graphs. For example, early PIDS considered

temporal snapshots and labelled them with the WL-test [24].
The distribution of the most common labels in the provenance
graph is then used as a baseline to determine any anomalous
sub-graphs [16].

Recent advancements in GNNs, such as Graph Attention
Networks (GATs) [25] and Temporal Graph Networks (TGNs)
[26], have significantly enhanced the ability to capture tempo-
ral dynamics. The embeddings used by these models contain
information not only about the events impacting each node
but also about when they occur and how far apart they are.
These models can analyze finer granularity interactions within
the graph. By leveraging these advancements, newer PIDS
can generate sophisticated embeddings for nodes and edges,
improving the detection of suspicious activities [17], [18].
Table I shows some recent PIDS along with their employed
approaches. We discuss their details in Section V-D.

III. RELATED WORKS

To date, no 5G provenance dataset is available for training
ML models for threat detection. Most efforts in the 5G context
have focused on Quality of Service (QoS) Key Performance
Indicators (KPIs) rather than security-oriented datasets [6]–
[8]. However, a few attempts have been made to generate 5G
datasets aimed at network security. For instance, 5G NIDD [4]
shares a similar motivation to our work. This work leveraged
a 5G testbed that closely mirrors a production environment,
and generated a rich dataset of benign behaviour. However, it
only focused on providing network flows in PCAP files.

In the realm of provenance graphs, several major datasets
have been leveraged for provenance-based research. Foremost
among these are the datasets provided by DARPA as part
of the TC Project. DARPA’s TC project included numerous
exercises, such as Engagement 3 (E3), Engagement 5 (E5), and
Operationally Transparent Cyber (OpTC) [27]. Each exercise
involved multiple groups, such as CADETS and THEIA,
responsible for tracking and tagging system activity. These
datasets were made publicly available by DARPA. However,
none of the benign behaviors available in the DARPA dataset
resemble the behavioral patterns in a 5G network.

Apart from DARPA’s contributions, provenance datasets
have been relatively sparse, often limited to simpler datasets
released alongside specific models. For example, the authors
of Unicorn [16], a prominent open-source provenance graph-
based anomaly detector, published their dataset. Another ex-
ample is Streamspot [28], where the published dataset has
become a standard for evaluating provenance-based anomaly
detection models due to its proprietary yet simple format. The
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widespread use of Streamspot’s dataset facilitates analytical
comparison across different intrusion detection approaches.

AutoCES [9] was one of the inspirations for our work.
AutoCES aimed to generate datasets for system call logs, but it
had several shortcomings. All system call logs were collected
using the Linux audit suite, which introduces significant over-
head. Moreover, the events within the dataset lack the critical
information needed to convert the logs to a provenance graph
unlike events collected by a tool such as CamFlow. Finally,
AutoCES primarily focused on an IoT scenario rather than a
5GCN.

With this work, we aim to fill the gap by providing a dataset
of provenance graphs generated by a 5GCN. This should
enable better training of PIDS to be utilized in 5GCN. We also
pave the way for other researchers to generate further datasets
in different scenarios, making training PIDS more accessible
for other use cases.

IV. 5GPROVGEN FRAMEWORK

In this section, we detail the design of our 5GProvGen
framework. 5GProvGen consists of four main components,
namely Orchestrator, Collector, Activity Generator, and An-
notator, as shown in Figure 2. We discuss each of these
components and their respective functions. We also expose our
labelling (i.e., annotation) approach for the generated datasets.

A. Orchestrator

The orchestrator is the backbone of the 5GProvGen frame-
work, managing the entire pipeline of dataset generation. It
controls the configuration, initialization, and termination of
provenance collection, ensuring that the necessary data is
collected accurately while minimizing overhead. By handling
these tasks, the orchestrator allows for a seamless transition
between different stages of data collection and activity simula-
tion, making the dataset generation process quite hands-off. It
also ensures that the environment is properly set up before any
activities commence, and systematically shuts down processes
to ensure no data is lost or corrupted.

In addition to managing the collection process, the or-
chestrator schedules the sequence of necessary activities. It
triggers the activity generator to simulate various services and
attacks at different intervals, facilitating a dataset that includes
a wide range of scenarios. This scheduling capability allows
the orchestrator to create a realistic network environment that
closely mimics real-world usage patterns. The orchestrator also
handles the management and storage of system calls, ensuring
that all collected data is organized and easily accessible for
further analysis.

A critical function of the orchestrator is to keep a detailed
log of all activities and their corresponding timestamps. This
includes recording the start and stop times of each activity,
as well as any notable events that occur during the simula-
tion. These timestamps are essential for accurately labelling
the dataset and separating provenance graphs that contain
either benign or malicious behaviours. By maintaining precise
records, the orchestrator facilitates the post-processing and

analysis phases, allowing the annotator to label graphs and
correlate them with the system’s behaviour. This logging
ensures the dataset’s reliability and usefulness for training and
evaluating ML models for intrusion detection.

We also built the orchestrator to be modular and con-
figurable. Both the collector and activity generator can be
modified separately without needing to update the orchestrator,
as long as they meet their class definitions. The orchestrator
is also configurable to change the duration of the dataset, the
number of benign and malicious activities, their types as well
as the schedule strategy for each.

B. Collector

We use CamFlow as our primary tool for whole-system
provenance collection. The rich semantics of the events col-
lected by CamFlow facilitate building provenance graphs from
the system calls. Many of the existing models (e.g., Unicorn)
support CamFlow-generated logs. We write the logs in the
W3C format, which is supported by CamFlow out of the box.

Importantly, CamFlow is integrated at the kernel level, al-
lowing it to distinguish activities between different containers.
This is in contrast to tools such as auditD, which operate at
the OS level. Furthermore, CamFlow’s support for multiple
hosts is crucial to extend our framework in the future, given
the cloud-native nature of 5GCN.

We configure CamFlow to collect all system call types, as
deeper GNN models can capture patterns and detect minor
cues that could signify anomalous behaviour. For ML models
that do not consider all node and edge types, we filter the data
in post-processing before model evaluation.

C. Activity Generator

The activity generator is designed to be extendable by any
user of the framework, allowing the addition of various types
of activities to generate a dataset. We provide example classes
of both benign and malicious activities that can be used as
templates. As long as these activities implement the activity
interface, they can be integrated into our activity generator
and work seamlessly with the orchestrator. Furthermore, each
activity class is designed to consume a log file where the nec-
essary timestamps for labelling the data are written, ensuring
accurate and organized dataset generation.

D. Annotator

The granularity of labelling in our dataset includes both
whole graphs and temporal snapshots as small as one minute.
This approach primarily relies on timestamps marking the start
and duration of attacks to recognize anomalous behaviour.
Time-based labelling is a standard method in the literature
(e.g., AutoCES, Streamspot) due to the sheer volume of events
generated by provenance collection tools, which makes it
challenging to label specific events or processes directly [9].

Currently, provenance collection tools do not provide mech-
anisms to highlight specific events, and narrowing down
malicious activities based solely on processes is impractical.
A single process can generate thousands of events, with only
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Fig. 2. An overview of 5GProvGen framework components and dataset generation setup

a minor fraction being malicious. This limitation necessitates
the use of time-based labelling to manage the data effectively.
The only datasets offering finer-grain labels are those provided
by DARPA, which benefit from extensive resources. However,
DARPA’s tools are closed-source, and their level of resource
allocation is not available to the broader research community.

To address these constraints, we meticulously record times-
tamps for the initiation and termination of each activity,
whether benign or malicious. For activities involving multiple
steps, we attempt to capture timestamps for each stage. These
precise timestamps allow us to segment the data into discrete
time windows, which can then be labelled accordingly. This
method ensures that each time window reflects the activity
occurring within it, providing a clear and organized dataset
for training and evaluating PIDS. By maintaining detailed
logs of activity timings, we enhance the dataset’s usability
for anomaly detection.

V. DATASET GENERATION

In this section, we detail our setup to generate the prove-
nance dataset for 5GCN. We present the hardware and soft-
ware leverage, benign and malicious activity implementations,
and the pipeline to generate and parse the dataset.

A. Setup

We leverage a high-performance compute node, which in-
cludes a dual Intel Xeon Silver 4314 CPU @ 2.40GHz, 1TB
memory, and 2x Nvidia A40 GPUs, to generate the majority
of the activity (e.g. running the 5GCN) as well as conduct
the provenance collection. This node is depicted as Host 1 in
Figure 2. Host 2 in the figure is an Intel NUC Skull Canyon,

powered by an Intel i7 CPU @ 3.50GHz and 16GB memory.
Host 2 is exclusively to run the User Equipment (UE) and
gNB simulation for it to not be included in the dataset.

We utilize Kubernetes to orchestrate and control our con-
tainerized cluster, ensuring a modular and flexible setup. Our
5G testbed leverages a modified version of Open5GS network
core, which allows each NF to run in a separate container
within the Kubernetes cluster. [29] This configuration ensures
efficient management and scalability of the NFs, maintaining
the testbed environment as close as possible to the real-world
setting. We also use UERANSIM to simulate a gNB and an
array of UEs.

In the network core, we deploy two slices with different
bandwidth requirements. These slices share some NFs but
have independent User Plane Function (UPF) and Session
Management Function (SMF). By separating the UPF and
SMF for each slice, we can observe the performance and
interactions of different service types within the network core,
providing a more pertinent dataset for training ML models.
Finally, we attach 10 UEs to each slice. These UEs run on a
different machine. This separation is crucial to prevent cross-
contamination of activities, and allow for training ML models
exclusively on the network core behaviour. Figure 2 depicts a
high-level overview of our dataset generation setup.

B. Benign Activity

To generate benign data, for each UE, we deploy a custom
random activity generator that selects different activities at
random intervals. The available activities include browsing the
web, downloading files, and streaming YouTube videos. The
activity generator aims to mimic normal human behaviour by
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varying both the types of activities and their timing. This ap-
proach ensures that the generated traffic patterns are dynamic
and realistic, closely resembling real-world user behaviour.
The corresponding traffic flowing through the 5GCN results
in the different NFs interacting and handling user requests,
which are recorded.

C. Malicious Activities

To generate the non-benign portion of the dataset, we focus
on attacks that target containerized systems, networks, or any
specific module of the 5G network. We chose an array of
attacks to validate that ML models trained on our dataset’s
benign activity can detect varying malicious patterns.

• Denial of Service: An attacker may overload the host
server by consuming more computational resources than
authorized. As a result of this attempt, the host may deny
service to benign users, referred to as Resource Exhaus-
tion. This attack proves possible in container systems
where a container with limited privileges can abuse host
resources, such as CPU and RAM. We execute a script
from inside the container, exhausting the resources of the
container’s host in this malicious activity [9]. This attack
relates to the endpoint denial of service technique that
falls under the impact category of the MITRE taxonomy
[2].

• Container Escape: Containers are well-known for creat-
ing idealized subsystems that share resources with the
host. These resources include, but are not limited to
processors, memory, and storage. Containers may need
to be isolated from the host system since the container
user may not be the host’s administrator. The presence
of certain vulnerabilities in the creation of the container
allows the non-privileged user to execute commands as
the host administrator. This is referred to as Host Execu-
tion. Primarily, the vulnerability is due to the container
being over-privileged, mounting the host file system, and
running commands that are not normally permitted on
the host. In this malicious activity, we create a file
in the host file system, leading to password bypassing
for a privileged user, and escalating privileges of the
attacker from container sudoer to host sudoer [9]. This
attack combines elements from the privilege escalation
and the credential access categories of the MITRE FiGHT
taxonomy [2].

• Network Service Scanning: Every service on the Internet
is accessed via its host IP address and service port. How-
ever, the attacker is not always aware of what services
a host offers, and which ports the services are running
on. In this malicious activity, in an enumerative manner,
the attacker attempts to communicate with the host IP
address via every possible port number and takes a record
of which ports are open, filtered, or closed. This attempt
is referred to as Port Scanning. In this malicious activity,
we use the nmap software to scan ports on one of the
5G Access and Mobility Management Function (AMF),
which is a service normally exposed to the Internet [2].

TABLE II
GENERATED SUB-DATASETS AND THEIR COMPOSITION

Name Duration # of Events Size Types

Benign-1 24 Hours 300M 131 Gbs All benign

Benign-2 36 Hours 45B 1.7 Tbs All benign

Hybrid-1 25 Hours 310M 140 Gbs Hybrid

Hybrid-2 36 Hours 45B 1.8 Tbs Hybrid

Malicious-1 1 Hour 6M 3.4 Gbs All malicious

Malicious-2 4 Hour 30M 15 Gbs All malicious

• Network Function Service Discovery: In a network, an
attacker may be concerned with how the devices in the
network are connected. In a 5G core, connections are
virtualized between containers of the cluster to implement
the architecture of the network. Network Mapping is the
attacker’s attempt to identify the connections between the
different devices in a network. In this malicious activity,
we use the nmap software to reveal the modules and
IP addresses of a 5G core architecture as a network
user Both this attack and the previous one map into the
reconnaissance category of the MITRE taxonomy [2].

• Fraudulent UE Registration: The overexposure of the
Unified Data Management (UDM) may lead to manual
requests. Failure to filter such requests may introduce
a vulnerability that would allow an attacker to send
manual requests using curl, for example, to Register
Unauthorized UE. In this malicious activity, we reproduce
the attack by making a POST request to the UDM service
as a fake AMF, asking to register a malicious UE. This
attack falls into the impact and execute categories of the
MITRE taxonomy [2].

D. Pipeline

We run multiple collections of varying durations to provide
different amounts of data for ML models to learn benign
behaviour. Our collection starts by deploying the core and
monitoring it for a few minutes. Once the core is up and
running we enable the whole-system provenance collection
for CamFlow. We do not record the core deployment by
default, as it is a small subset of the benign behaviour and
is not the expected standard behaviour. However, we provide
a configuration flag to include it in the collection.

Once the collection starts, we spin up an instance of the gNB
and the UEs. We do include the registration process of each
UE, as this is expected to happen frequently during the normal
operation of a 5G core network. We also drop connections for a
few UEs at random and re-register them. We intentionally run
the UEs and the gNB on a different host to collect the activity
of the 5GCN exclusively. Figure 3 provides an overview of
our dataset generation pipeline.

E. Description

We have collected 6 sub-datasets, each ranging in duration
from 1 hour to 36 hours. These sub-datasets contain 2 pure
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Fig. 3. An overview of the data pipeline

benign collections, 2 pure malicious, and 2 benign behaviours
with attacks being triggered at random time stamps. All the
datasets are available in the W3C format as the default output
of CamFlow. We also provide the parsed version to match
that of Unicorn [16] as it consumes much less disk space and
facilitates the processing of the provenance graph with other
models (e.g. Flash, KAIROS). The dataset description and the
statistics about each collection are available in Table II.

VI. DATASET EVALUATION

In this section, we describe how we feed our generated data
to the state-of-the-art PIDS and evaluate their performance. We
cover the challenges faced when parsing and processing the
data as well as the different parameters we evaluate against.

A. PIDS models

A summary of the models we chose to evaluate and their
respective approaches is presented in Table I. Unicorn is one
of the earliest PIDS that attempts to capture the temporal and
contextual dynamics of system calls through a provenance
graph. It offers the most coarse granularity out of the evaluated
models as it produces an anomalous temporal snapshot that
could include thousands of nodes. However, it has been the
standard baseline for many other models. Therefore, we chose
it to be our starting point. Furthermore, Unicorn is one of the
best-maintained open-source PIDS currently available.

Flash is a more recent attempt at leveraging GNNs to
detect anomalies in provenance graphs. Unlike Unicorn, Flash
provides an output with finer granularity, highlighting all the
suspicious nodes that display anomalous behaviour. To even
the ground for comparing Flash versus Unicorn, we follow the
same approach as the authors of Flash, where they determine
whether a snapshot or a sub-graph is suspicious based on
the number of suspicious nodes it contains, i.e., they use a
threshold for the number of suspicious nodes a graph can have
before the whole graph is considered suspicious.

KAIROS is also a fine-grained PIDS, which highlights
anomalous edges. This is the finest granularity we consider,
as an edge pertains to a singular interaction between entities.
Similar to Flash, we try to even the comparison with Unicorn
and attempt to determine whether a graph is suspicious based
on the number of suspicious edges it contains. This not only
facilitates the comparison with Unicorn but also acts as a
common ground as Flash and KAIROS would otherwise be
difficult to compare.

There are other models (e.g., CAPTAIN [30]) that have not
been included in this comparison. Primarily, we prioritized
models that rely on unsupervised learning as it requires only
benign behaviour for training and enables detecting zero-day
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Fig. 4. Training dataset size needed to achieve the best performance

attacks. This is important since all of our training datasets are
attack-free. We also prioritized models with a robust open-
source implementation, as we could not verify the accuracy
of our implementation to mention closed-source implemen-
tations of other authors. Models like Prographer [31] report
better results, however, the unavailability of their source code
prevents us from confidently reproducing their results.

B. Parameters

During the evaluation of different models on our dataset,
we noticed that all of the models perform reasonably well in
detecting anomalous behaviour, demonstrating perfect recall
in most cases. However, the main challenge was minimizing
the false positive rate and maximizing precision. Therefore, we
evaluated the PIDS with different collection durations and time
window sizes, used for splitting the dataset into chunks before
feeding it to the models. However, we did not evaluate with
different hyper-parameter settings to stay as close as possible
to the authors’ implementations of their respective models.

Another goal was to evaluate the amount of data needed
for model convergence, along with the overhead and runtime
for each model during training and inference. While training
can be done offline, it was important to look at the amount of
training data, in case there is data drift and model retraining
is needed. The inference time was also incredibly important,
as these models will ultimately be deployed to monitor the
network and infer anomalies as close to real time as possible.

C. Results

The goal of this evaluation is to demonstrate that the benign
behaviour generated by our framework is learnable. This can
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TABLE III
BEST PERFORMANCE OF EACH MODEL

Model Window Size (mins) Accuracy Precision Recall F1-score Training Time (hours) Inference Time (mins)

Unicorn [16] 20 60.87% 12.90% 100.0% 0.2286 5 22 (6 time windows)

Flash [18] 0.05 86.67% 87.50% 83.33% 0.6757 0.5 10 (330 time windows)

KAIROS [17] 0.5 100.0% 100.0% 100.0% 1.0000 1 58 (100 time windows)

be evaluated by considering the accuracy, precision, and recall
of each model. We prioritized precision and recall as the
goal is to successfully detect all malicious activities while
minimizing false positives. Therefore we relied on the F1-
score to determine the best performance of each model as it
combines both precision and recall. Table III summarizes the
best performance achieved by each model.

Unicorn required the most amount of training data and
the longest training time. In the original work, the authors
evaluated 3 days of data collected using CamFlow. However,
we trained it with both 24- and 36-hour collections. For
the 24-hour collection, we evaluated Unicorn with different
time windows to see how the accuracy changes with smaller
time windows. We also compare run time for different time
windows. In the original work, the authors split the 3 days
into 125 graphs with each graph lasting around 35 minutes. In
our evaluation, we achieved the best accuracy when splitting
the 24-hour collection into 70 windows, each lasting about
20 minutes. As mentioned before, the main challenge was
to reduce the false positives, while false negatives were non-
existent across different time window sizes.

Both Flash and KAIROS also showed very high accuracy.
For KAIROS, we built custom Jupyter notebooks that are
heavily based on the author’s original Python files. Our
notebooks parse our dataset and store the parsed nodes and
edges in a Postgres database as required by the author’s
implementation. From there, the rest of the code is the author’s
default implementation. Our evaluations consistently resulted
in accuracy and precision above 95%. It was non-trivial to
produce summary graphs, due to our dataset being labelled
on a graph level rather than the edge level, similar to the
datasets provided by DARPA. Furthermore, all the examples
of summary graphs provided by the authors were generated
on the DARPA datasets, which are labelled on the event level.

With Flash, the only caveat was that when fed the whole
dataset, Flash would run for multiple days and produce very
high false positive rates marking almost every benign window
as malicious. This was despite our dataset being similar in
format and size to the dataset provided by Unicorn, which the
authors evaluated their model on. However, upon discussion
with the authors, we were advised to sample the dataset and
use much smaller graphs for training and inference, which
resulted in a similar performance as reported by the authors.

VII. FUTURE DIRECTIONS

A. Distributed environment

One of the main advantages of CamFlow is its ability to
collect provenance across multiple hosts in a distributed envi-
ronment. However, for the sake of simplicity and to facilitate
recreating our setup, we focus on a single-host deployment.
We leave the exploration of multi-host 5G core deployment to
future work, which would require the utilization of a multi-
node cluster to host the environments containers and the prove-
nance collected from the different hosts to be combined. This
would allow us to study the impact of distributed provenance
on model performance. It would also provide an opportunity
for online threat detection in a distributed infrastructure.

B. Better models

The more recent models we evaluated performed very well,
leaving little room for improvement in detection accuracy.
However, there are still areas to explore to decrease the
human effort required for post-detection analysis. While some
models, such as KAIROS, provide reasonably succinct sum-
mary graphs, there is no reasoning provided on which entities
were included in the summary graph. Being able to pinpoint
dimensions in the embeddings that caused an anomaly and
decoding it back to real-world features or certain events in a
node’s history as a cause for suspicion, could be incredibly
helpful.

Furthermore, some pointers towards the type of attack
represented by the summary graph, the vulnerabilities that
were exploited, or the customer information in jeopardy,
could provide meaningful insights for mitigating the threat.
This could potentially be achieved by building a multi-modal
system, where the generated summary graph is further fed to
a classification model that provides such insights.

C. Minimize overhead

Although CamFlow entails much less overhead compared
to auditD, it still results in substantial overhead during prove-
nance graph collection. This can be mitigated by restricting the
collected edges and nodes through a prerecorded configuration
file. Nevertheless, high computing resources are needed to
collect a dataset of the magnitude we achieved. Therefore, it is
worth investigating other kernel tools that can collect system
calls while retaining the ability to identify which system call
belongs to which container.
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VIII. CONCLUSION

In this work, we presented 5GProvGen, a framework for
generating provenance datasets. We argue for the use of
provenance-based IDS in the containerized 5G core. Hence, we
also generate a provenance dataset for 5GCN. We evaluate the
generated dataset using state-of-the-art PIDS and demonstrate
its efficacy in facilitating ML models in detecting several
APTs. To the best of our knowledge, this is the first modular
framework to generate a dataset of provenance graphs for
PIDS. We make the source code and the dataset publicly
available to facilitate further research in securing 5GCN.
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