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Abstract—In-network computing has emerged as a promising
approach to offload ML-related functionality from servers to
network devices, leveraging the advanced capabilities of pro-
grammable network devices and expressive data plane program-
ming languages such as P4. By implementing ML models in the
data plane, we can achieve high throughput and low latency
inference, reducing server loads, and enhancing response times.

This work proposes a novel hierarchical deployment for Deci-
sion Tree models (HDT) within the network data plane, designed
for real-time flow classification of the network traffic. The
hierarchical structure breaks down a complex classification into
multiple levels each one refining the classification progressively.

Our results demonstrate the feasibility and efficiency of
executing Hierarchical Decision Tree models in the network
data plane, achieving high performance in classifying a 12-class
classification scenario. The HDT performs better in the data
plane by 26% compared to a flat Decision Tree implementation
and 12% compared to a flat Random Forest implementation.

Index Terms—Programmable switch, machine learning, in-
network inference, P4

I. INTRODUCTION

The SDN paradigm and data plane programmability [1]
(e.g., programmable switches, smartNICs) give the capability
to offload or accelerate data processing. SDN supports context-
aware, and user-specific services by introducing virtualized
network services at the edge of the network, near the end users
to reduce end-to-end latency, time-to-response, and unneces-
sary utilization of the core network, while providing flexibility
for resource allocation [4], [24].

Meanwhile, the high throughput and low latency potential
of programmable network devices like P4 switches make them
suitable candidates for reducing the processing load on edge
devices. This opens new opportunities in the context of ma-
chine learning, where in-network computing can significantly
enhance the performance of ML inference tasks. By deploying
the ML models in the network data plane, real-time data
processing is achievable, limiting the required communication
with centralized servers and reducing latency. Furthermore, the
benefits of in-network processing can be applied to multiple
applications like key-value caching [21], lock management
[22], and DDoS attacks [23].

Performing inference of ML models for real-time classifi-
cation tasks in programmable switches has various challenges.

While programmable network devices offer enhanced process-
ing capability compared to fixed silicon devices, they still
impose constraints on the available resources (e.g., limited
available memory), the lack of floating-point operations, and
the restricted set of ALU operations per pipeline. Therefore,
deploying complex ML inference tasks in the data plane with
significant performance benefits remains challenging.

Embedding an ML model within a single programmable
network device is not trivial since the resource limitations
in the programmable network devices limit the size of the
ML model that can be deployed [17], affecting the model’s
performance. Switches use most of their resources for funda-
mental networking operations but leave available resources for
inference tasks [16]. The number of supported Match Action
Units (MAUs) is between 12 and 20 per pipeline, with four
pipelines per switch, limiting the supported functionality. The
memory capacity of the tables is in the range of hundreds of
megabits, typically distributed across various pipelines within
the programmable network device.

Studies have demonstrated the potential of integrating
trained ML models into resource-constrained programmable
switches [2], [3]. However, existing solutions often face sig-
nificant restrictions, especially when coping with complex in-
ference tasks. The increased complexity of the ML models and
the large number of classes challenge the existing frameworks
to meet performance requirements. Solutions should demon-
strate better scalability to complex ML models, especially in
multiclassification scenarios, indistinct feature boundaries for
classification decisions, and high resource utilization. Deploy-
ing very large and complex ML models, such as DNNs, in
programmable switches will exhaust the available resources
and fail to meet performance requirements [7].

By splitting the complex classification tasks into simpler
ones, we can address the issues mentioned above. In this
context, this work proposes a tree-like hierarchical structure
of the Decision Tree model for traffic flow classification,
where higher levels make initial distinctions, with subsequent
levels refining the classification to fewer classes until the
final classification decision is made. The HTD classifies more
classes with better precision compared to Random Forest and
Decision Tree implementations. The critical elements of the
hierarchical tree classifier include class grouping, hierarchical
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class relationships, and progressive classification refinement
through the multiple levels design. At every level, one or more
DT models are executed to decide on the next tree branch. By
developing the hierarchical Decision Tree classier, we make
the following contributions:

• Enhance the performance of Decision Tree inference
for multiclass classification scenarios with a comparative
analysis against flat implementations of Decision Trees
and Random Forests in the data plane.

• Enable the decomposition of complex classification prob-
lems into simpler tasks, reducing class overlap and mis-
classification.

• Achieve efficient resource utilization and implementation
of the algorithm in the ingress pipeline of the P4 v1model
architecture.

The remainder of this paper is structured as follows. Section II
discusses the literature related to Machine Learning inference
offloading approaches. Section III introduces the Hierarchical
Decision Tree model and methodology. Section IV discusses
the experimental setup and the results. Finally, section V
concludes this paper.

II. RELATED WORK
Selecting the suitable ML model for offloading inference

capabilities is essential to mitigating the resource constraints in
programmable switches. Studies have explored the potential of
offloading Neural Networks (NNs), particularly Binary Neural
Networks (BNNs), to programmable devices [6], [7].

Although NNs can achieve higher performance, the resource
limitations and restricted mathematical operations available
in programmable switches present significant challenges. To
overcome these constraints NetNN [19] deploys NN across
multiple programmable switches (one neuron per switch) to
develop an IDS in the programmable data plane, but NNs are
more suitable for data plane devices like smartNICs or FPGA-
enhanced switches [8], which offer more resources. However,
smartNICs are typically deployed at specific locations in the
network, providing line-rate inference only at those points,
while FPGA-enhanced switches or distributing the NN neurons
across multiple programmable switches introduce considerable
additional costs when deployed at scale.

Many works in literature use Decision Trees (DTs) and
Random Forests (RFs) for inference on programmable network
devices. The DT model is a supervised learning algorithm
characterized by a tree-like structure used for solving re-
gression and classification problems. This structure consists
of a root node, intermediate nodes, and several leaf nodes,
each representing a classification decision. DTs align well
with the PISA architecture [5], yielding superior performance
compared to other ML models, such as SVM, Naïve-Bayes,
and K-means [2].

Two main techniques are used to implement the DT in-
ference into the data plane: the depth-based approach [10],
[17] and the encoded-based [3], [9] approach. The depth-
based approach maps each level of the DT model to an M/A
stage, creating a dependency between the number of stages

and the tree’s depth. Conversely, the encoded-based approach
maps each feature to a M/A table and encodes the ranges
of the feature values. The final classification is determined
using a code-to-leaf M/A table, which maps the combined
feature codes to a specific leaf node. While the encoded-based
approach eliminates the correlation between the tree’s depth
and the M/A stages, it demands more memory as the number
of features increases. Ilsy [9] uses programmable switches to
map the DT classification model and classify network data. In
pHeavy [12], heavy flows are classified while simultaneously
the size of the DTs is reduced, and memory is dynamically
managed. The pForest [10] solution executes the inference of
Random Forest (RF) models within programmable switches
to classify traffic flows. The methodology for mapping the RF
model inference to the data plane is the same as that of the DT
models. Each individual tree within the RF is developed sep-
arately, independently classifying the input data, and the final
classification decision is realized through a voting table im-
plemented in a M/A table. The voting table applies a majority
voting mechanism, aggregating the outcome generated from
the individual trees to produce the final classification decision.
Planter [3] is a framework designed to translate tree-based
ensemble models for deployment in programmable switches.
It supports ML models such as Random Forest, XGBoost, and
Isolation Forest. It separates the dependence of M/A stages
from the tree depth by employing one dedicated table for
each tree and one for each feature. The encoded-based model
mapping technique used by Planter is also adopted by works
like Flowrest [18] and Henna [15], which develop RF flow-
level classification and packet-level classification, respectively,
for multiclass scenarios in hardware programmable switches.

III. HIERARCHICAL DECISION TREE DESIGN

A. Control Plane ML Model Training

The design of our HDT comprises control and data plane
components, as shown in Figure 1. The ML model is trained
in the control plane and relies on Scikit-Learn libraries for
model preparation. Each level of the HDT model is trained
separately, using different features at each level and ensuring
that the samples processed at one level are either classified
or passed down to the next level for further processing. Each
level is independent, excluding samples from previous levels or
those belonging to different nodes. The optimization of the ML

Fig. 1. Overall high-level architecture of HDT showing both the control and
data plane.
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model at each level is achieved by tuning the hyperparameters
using grid search techniques.

The hyperparameters that have the biggest impact on
each Decision Tree of the HDT design are max_depth,
min_samples_leaf, min_samples_split, and criterion. The
min_samples_leaf ensures that there is a minimum number
of samples at each leaf node, preventing overfitting. Similarly,
min_samples_split specifies the minimum number of samples
required to split an internal node, ensuring that splits are done
only when there is sufficient data to justify them. Furthermore,
the criterion parameter, which is set to gini, measures the
impurity of a node and creates balanced splits, making the
tree more robust to changes in the data and mitigating the
overfitting risk. The max_depth parameter controls the max-
imum depth of the tree. Deeper trees capture more details
from the training data, which can lead to higher accuracy but
risks overfitting to the noise of the data. In our HDT, the
max_depth parameter varies in each decision tree from 5 to
25. The first level achieves better accuracy with a tree depth of
25, but the rest of the levels use smaller tree depths. The depth
of the tree impacts memory usage, and very deep trees are
impractical [10], [20]. By using the standard hyperparameter
tuning techniques and due to the hierarchical structure, which
splits the classification task into smaller sub-tasks at each
level, the HDT reduces the configuration rules needed to
express the model by 40% compared to a Random Forest
implementation with three trees, indicating that HDT uses
less memory than an RF implementation. HDT also has the
same number of rules as a Decision Tree implementation with
a max depth of 15 despite using 5 DT to make the final
decision. In a single DT, when the problem is complex and
the tree depth is increasing, the number of rules increases
exponentially [11], while in HDT, this is not the case due to
its hierarchical structure. The feature selection process for the
HDT model considers the constraints of the data plane, such
as the absence of floating-point and mathematical operations.
To circumvent these limitations posed by the programmable
switch architecture and the need to bound execution time, we
approximate the feature values and represent them as integers.
The loss of accuracy after approximating the feature values is
between 0.6% and 1.6%, with the flow duration feature value
experiencing the biggest loss (1.6%), but this low accuracy
loss does not affect the classification result.

The HDT performs flow-level classification, meaning that it
keeps track of the state of the feature values per flow over time.
To achieve this, it needs to maintain state information. The
importance of the features is evaluated by the Mean Decrease
in Impurity (MDI) metric, which is used to select the most
suitable features for the classification process. These features
include flow-level features, such as flow duration, number of
bytes transferred from source to destination, number of bytes
transferred from destination to source, TCP connection setup
time, as well as packet-level features like service type and
transport protocol. Figure 2 illustrates the HDT classifying
incoming traffic through a series of Decision Trees. The first
level separates incoming traffic into ‘Normal’ or ‘Attack’. The

‘Normal’ flows are forwarded to the appropriate output port,
but for traffic classified as ‘Attack’, the corresponding flows
are further classified to Attack groups 1 to 3. The last level
Decision Trees classify the traffic to the specific attack type.

Fig. 2. Hierarchical Decision Tree flow classification of different attack types.

B. Data Plane Inference

The inference task is offloaded to the Data Plane, where
the incoming packets are parsed to extract the necessary values
from the header. In contrast to similar frameworks like Henna,
the proposed hierarchical DT operates solely within the ingress
pipeline. It leverages only DT models to classify flows and
implements a streamlined model mapping method, using only
one M/A table per decision tree. Unlike most existing frame-
works [3], [9], [18] in the literature, which use one M/A table
per feature and an encoded table, the HDT follows a different
direction, which is the simplified encoded-based approach, like
Mousika [13], Netpixel [11], and pHeavy [12]. This approach
involves a single decision table for classification where the
feature values serve as inputs and range-match is used for
labelling. This approach can potentially exceed the available
memory on a programmable network device if a tree model is
complex. By employing HDT, this risk is mitigated since its
hierarchical structure necessitates fewer configuration rules to
represent the ML model through successive levels. This design
saves resources, maintains robust classification performance,
and is more suitable for offloading tree-based ML models
in programmable networks. Following the simplified encoded
approach, we use less memory and fewer stages to map the
ML model to the PISA architecture. Moreover, it allows the
HDT to scale up in multiclass classification scenarios where
an HDT with many levels can be used.

C. Flow Table Design

To manage flow-level classification, a unique identifier is
created using crc32 hash checksum derived from the 5-tuple,
which includes the source and destination IP addresses, source
and destination ports, and transport protocol identifier. Also,
an index value is generated, using crc32 hash checksum using
the same 5-tuple, to point the flow-id to the register and
ensure that each flow is correctly associated with its respective
data, such as flow-id, packet counters, etc. The primary role
of the flow index is to detect hash collisions, which occur
when different inputs can produce the same output, leading
to potentially incorrect flow-id classification. The restricted
size of the registers and the high volumes of flows passing
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through the switch can lead to frequent hash collisions, which
are challenging to manage and absorb. Collisions in HDT
are rare because after the flow is classified, it is removed
from the table after a defined time interval. The count field

TABLE I
FLOW TABLE INCLUDING TWO FLOWS WITH ITS FEATURE

VALUES, PACKET COUNTS, AND CLASSIFICATION DECISION

Flow ID Count Class Feature1 · · · Feature n
1 5 1 124 · · · 12
2 0 - 0 · · · 9999
3 21 2 10 · · · 120

holds the number of packets for each flow, and the class field
holds the classification result for the specific flow using the
packet recirculation feature. In HDT, we perform early packet
classification to achieve faster threat detection and mitigation.
Based on our experiments with real packet traces containing
various attack types, we observed that the fourth packet in
every flow typically provides the most reliable attack type
detection. Consequently, we make the classification decision
after calculating the feature values from the first four packets
of the flow. In this work, we do not take any action for
the remaining packets of the flow after the flow is classified
as malicious, but since the flow table is updated with the
classification decision, a straightforward action is to drop the
remaining packets of a malicious-classified flow.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental setup for evaluating the HDT model
was developed on the v1model architecture using the BMv2
software switch. This setup was deployed on a host system
equipped with a 4-core Intel i7- CPU and 32GB of RAM.
The same host was also used to run the baseline models
against which the performance of HDT was compared. We
have assessed the performance benefits and feasibility of our
HDT design and report on the precision, recall, and F1-score of
the HDT model against data plane implementations of Random
Forest and Decision Tree models. The DT model has been
used to deal with traffic classification problems in previous
ML offloading scenarios [3], [9], yielding good performance,
and it can serve as a baseline to compare it with the HDT
model. The DT model cannot scale well in larger models,
requiring more resources compared to HDT. The RF model
is an ensemble learning method that uses multiple Decision
Trees during training and makes a classification decision based
on a majority vote from diverse Decision Trees. Like the
RF, the HDT uses multiple DTs to get the final decisions,
but in a different manner. The HDT manages complexity
through hierarchical structuring, while RFs exploit ensemble
learning. HDTs scale by dividing decisions into simpler steps
at each level, while RFs scale by adding to the number of
DTs. Moreover, HDTs follow a sequential decision process
through a hierarchy, whereas RFs make decisions in parallel
across multiple decision trees and then combine the results.

To test the differences between the HDT and the RF, we
have compared the performance of both control and data plane
implementations.

The UNSW-NB15 dataset has nine types of attacks, specif-
ically, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode and Worms were used to train
our HDT model and evaluate its performance. This dataset
comprises 49 network features and a class label. The attack
categories Analysis and Backdoor could not be reliably trained
and detected by any of the three models used: Decision
Trees, Random Forest, and Hierarchical Decision Trees. Due
to this unreliability, these attack categories were excluded from
testing phases in the evaluations conducted for the data plane
and control plane results. The traffic was injected into the
BMv2 software switch from a server using Tcpreplay [14] to
replay the pcap files.

B. Results

Figure 3 presents the comparison of the control plane
performance between HDT, DT, and RF classification models
in the context of attack types. The x-axis of the graph shows
the categories of attacks and the attack groups, which are
the intermediate level in the HDT model. When traffic is
classified as an Attack, the next classification level is grouping
similar attack types, narrowing the number of classes for
the final classification. The criterion for grouping the attack
types in this scenario is feature correlation, as attacks that
can be classified by common features are grouped together.
The y-axis shows the f1-score achieved for every attack type
using the different ML models. The results show that HDT
outperforms DT and RF in the control plane implementations.
Figure 4 demonstrates that the trend observed in the control

Fig. 3. Comparison of F1 score between Decision Tree (DT), Random Forest
(RF), and Hierarchical Decision Tree in the control plane.

plane is consistent in the data plane, where HDT outperforms
both the DT and RF baselines. The results indicate that HDT
provides higher precision and reliable attack detection when
implemented in the data plane, thus making it a promising
candidate for real-time threat detection. As highlighted in
Table II, HDT implementation yields performance gains from
23% to 26% compared to the flat implementation of a Decision
Tree and 11% to 12% compared to the flat RF implementation
in the data plane. In the control plane, the precision gain for
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Fig. 4. Comparison of F1-score between Decision Tree (DT), Random Forest
(RF), and Hierarchical Decision Tree in the data plane.

TABLE II
COMPARISON OF PERFORMANCE METRICS BETWEEN DATA PLANE AND

CONTROL PLANE

Data Plane Control Plane
DT RF HDT DT RF HDT

Precision Weighted 65 76 88 82 84 94
Recall Weighted 60 75 86 82 81 94

F1-Score Weighted 63 76 87 82 82 94

HDT compared to the flat DT and RF implementations is 12%
and 10% respectively.

V. CONCLUSION

We present a Hierarchical Decision Tree (HDT) model and
its implementation as an effective approach to enhance ML
inference performance in programmable network devices. The
experimental results demonstrate better performance in flow-
level multiclass classification for HDT when compared to
implementations of flat DT and RF models. The design of
HDT is highly flexible as it allows different number of nodes
and different types and number of features at every level of the
HDT. At the same time, it allocates fewer resources to perform
classification tasks compared to similar frameworks in the
literature. For example, it uses solely the ingress pipeline while
other frameworks use both pipelines to take the final classi-
fication decision. At the same time, the hierarchical format
requires less memory to express the HDT model. Our results
show that HDT achieves superior classification accuracy and
resource efficiency. Specifically, HDT outperforms traditional
flat Decision Tree and Random Forest models. Furthermore,
the hierarchical design significantly reduces computational
and memory overhead, enabling real-time traffic classification
with minimal latency. This makes HDT a promising solution
for deployment in high-speed network environments where
efficient and accurate traffic classification is critical.
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