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Abstract—Artificial Intelligence (AI), particularly Machine
Learning (ML), has become prominent in network monitoring,
yet its practical adoption, such as for anomaly and intrusion de-
tection, remains limited. Standard AI/ML methods often exclude
experts, reducing trust and hindering practical implementations.
Active Learning (AL) allows to integrate admins and their expert
knowledge into the ML loop by leveraging expert-labeled data.
Together with self-training and automated decisions, AL can
enhance model performance, trust, and the ability to adapt to
system changes. In this work, we evaluate uncertainty-based
AL in network monitoring, offering a comprehensive parameter
study for best practices in real-world AI/ML adoption. To
this end, we evaluate stream-based and pool-based AL across
four datasets for various monitoring use cases and conduct a
parameter study on ten uncertainty measures, thereby identifying
scenarios benefiting from self-training. By analyzing the impact
of admin competence on model performance, we offer actionable
guidelines towards the practical implementation of AL.

Index Terms—Active Learning, Machine Learning, Traffic
Classification, Intrusion Detection

I. INTRODUCTION

In the past decade, Artificial Intelligence (AI), especially

Machine Learning (ML), has enjoyed increasing popularity

and has been widely applied in network monitoring and

management. However, when it comes to sensitive topics such

as network security, practical adoption has been poor, e. g.,

for anomaly and intrusion detection [1]. Academic research

on security-related topics lacks a holistic view [2], focusing

on either human or technical aspects, while neglecting the

interconnection of both [2]. Incorporating standard AI/ML

approaches further widens this gap and creates barriers [3], as

they take away the decision-making from the admins without

giving any information about the confidence or severity of their

decision, and provide no means to give feedback to the model,

ultimately reducing the trust of the admins. Having an admin

in the loop can be beneficial not only for the performance of

the model by incorporating expert knowledge, but also increase

its trustworthiness – one of the goals of the European AI Act1.

Originally, Active Learning (AL) aims to increase the

performance of an ML model by manually labeling as few

instances as possible via queries to an oracle [4], e. g., a

(human) expert or a more powerful model, and add these few

1https://eur-lex.europa.eu/eli/reg/2024/1689

selected instances to the (re)training data. A complementary

technique to AL is self-training [5], which consists of a base

classifier that classifies unlabeled data and, subsequently, adds

the instancs it predicts with high confidence to the (re)training

datasets. While AL aims for the most informative data (e. g.,

highest uncertainty), self-training targets the most confident

data to add to the model. Combining both techniques can

yield great benefits [5], i. e., making automated decisions for

obvious choices, while relaying less confident decisions to the

oracle, thus incorporating a human in the AI/ML loop.

In the context of communication networks, these approaches

help enable the real-world deployment of AI/ML solutions by

giving the users decisive power over critical administrative

decisions, while enriching the monitored data with expert

knowledge. When unseen devices, applications, or even zero-

day attacks start appearing in the network (i. e., equating to

potential labels the model was not trained on), the model may

not be very confident in its decision and thus relay it to the

expert admin for further inspection and relabeling. Ultimately,

this also helps keeping the model up-to-date and adapt to

network changes over time, e. g., mitigating concept drift [6].

Thus, the goal of this paper is to evaluate different ap-

proaches to evaluate ML uncertainty in the context of a wide

range of network monitoring tasks. We aim to fill the gap in lit-

erature by providing an extensive simulative parameter study,

including the admin competence level, confidence thresholds,

or the impact of self-training. With this parameter study, we

establish best practices towards enabling real-world adoption

of AI/ML-based monitoring with humans in the loop and self-

training models. The main contributions of this paper are2:

1) An evaluation and comparison of stream-based and pool-

based AL on the basis of four different datasets.

2) A parameter study on different uncertainty measures

in combination with the above stream-based and pool-

based AL with hundreds of thousands retrain loops.

3) The identification of scenarios that benefit from the

application of self-training in combination with AL.

4) An analysis of the influence of competence levels of

admins/oracles on the overall performance of the model.

The remainder of this work is structured as follows. In

2https://github.com/lsinfo3/cnsm2024-active-learning-evaluation
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Fig. 1: Overview of the AL training loop.

Section II, we give background information about AL, as

well as related work. In Section III, we specify our parameter

study and then we evaluate general influence factors on AL

in Section IV. Lastly, we summarize our findings and provide

an outlook for future work in Section V. This work is an

extension of our recently published extended abstract [7], in

which we depicted an outline of the study for this work.

II. BACKGROUND AND RELATED WORK

AL and Self-Training. Figure 1 shows a schematic AL

loop and the involved components. A base classifier outputs

label probabilities for newly seen instances. These probabil-

ities allow us to calculate the confidence of each prediction

and handle it accordingly. In case the model is confident

in its prediction, pseudolabels can be created by including

the instances to augment datasets for (re)training, at risk of

instances that were (confidently) wrongly labeled. In case the

model is not confident in its prediction, the instance is relayed

to the oracle, either represented by a human annotator or a

more powerful ML model. After potentially relabeling the

instances, they are fed back into the training data.

AL can be divided into three different approaches, namely

pool-based AL, stream-based selective sampling, and mem-

bership query synthesis [4], [8]. The pool-based approach

ranks all instances regarding predefined criteria and relays

the top ranked instances to the oracle, while the stream-

based approach makes an independent judgement for each

instance [4], i. e., pool-based AL operates in an offline manner,

while stream-based AL operates more in an online fashion [9].

A membership query generates new instances on its own. The

former two approaches make the most sense in the context

of our use case, since we are not interested in generating

synthetic instances. In the end, our goal is to improve the

model’s performance, while keeping the workload low.

AL in Networking. Traditional AL methods typically in-

volve retraining the model after each query [8], which can

be inefficient in practice [10]. Training and deploying a new

model constantly might not be feasible. Instead, we employ

AL in batches, where the model is retrained after multiple

new instances have been classified. In addition, the pool of

all unlabeled instances is often assumed to be fixed/known

beforehand [8], which is also impractical for network moni-

toring, as new data is constantly flowing through the network,

potentially at gigabyte or even terabyte scales. Storing all this

data indefinitely is not feasible. Thus, we assume dynamic

pools, potentially discarding data. So, in the context of this

work, we deviate from traditional AL, by assuming that for

the pool-based approach we relay the top n most uncertain

instances in a batch before retraining, i. e., static query sizes.

In practice, this could be implemented in constant memory.

For the stream-based approach, we relay all instances below

a certain threshold in a batch before retraining, i. e., dynamic

query sizes. Summarizing, we relax the definitions for both

approaches, since the pool-based approach does not know all

unlabeled instances beforehand, and the delayed retraining re-

duces the online nature of the stream-based approach slightly.

Querying Strategies. Regardless of the chosen AL ap-

proach, many querying strategies exist, i. e., how to choose

which elements to relay. In [4], the main querying strategies

have been identified as diversity-based approaches, approaches

based on the expected model change, and uncertainty-based

approaches. The latter is a natural fit due to the self-training

aspect of our use case, since it favors instances where the

model was most uncertain in its decision. The other two focus

more on picking the most informative instances, e. g., picking

mostly diverse instances, which do not necessarily need any

admin supervision, and thus, are out of scope for this work.

ML Confidence/Uncertainty. ML uncertainty refers to

predictive uncertainty, linked to not only assigning a label to

an instance, but a likelihood for each available class. Thus,

uncertainty is directly related to the model’s confidence in

its prediction. Luckily, many traditional ML but also Deep

Learning (DL) algorithms are capable of doing so, including

Random Forests (RFs) via majority voting or Neural Networks

(NNs) via softmax layers. Given these probabilities, we may

now formulate measures of confidence/uncertainty, e. g., by

simply looking at the highest class probability or calculating

the entropy of the class probabilities [8]. Given these measures,

we can then establish rankings or select appropriate thresholds

to relay interesting instances to an expert. Determining how

to configure these parameters and selecting the appropriate

strategy is a fundamental challenge.

Related Work. Table I summarizes existing approaches

with respect to the utilized AL and sampling strategies,

analyzed parameters, datasets and their corresponding use

cases. The majority of papers only focus on either pool- or

stream-based strategies, without explicitly comparing the two

approaches. In conjunction with the AL strategy, uncertainty

sampling is the most common sampling strategy. Here, many

works focus on making sophisticated additions to uncertainty-

based AL, e. g., via Out-of-Distribution (OoD) [20] or outlier

detection (OD) [22]. Other sampling strategies include Query-

by-Committee (QBC) sampling [11], [22], which makes use

of an ensemble of classifiers and their label probabilities,

density/similarity-based sampling [6], [9], which focuses on

selecting representative instances, or ranked batch mode,

which combines uncertainty with similarity [9], [11], [23].

Our work, in comparison, focuses on both stream- and pool-

based AL and performs a systematic comparison. We test

ten measures for uncertainty-based sampling to quantify the

impact the selected measure has on the model evolution.

Regarding different benchmarking parameters for parameter

studies, many works focus on the initial training size only

or simply have no variable parameters, e. g., thresholds are
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TABLE I: Comparison of our work to related work, table adapted/extended from Guerra-Manzanares and Bahsi [11].

Ref. AL Strats. Sampl. Strats. Benchmark. Params. Datasets Use Cases Self-Train. Human Err.

[12] Pool Uncertainty+Rare Category n/a
Contagioa

NSL-KDD [13]
NetFlow Datab

IDS � �

[14] Stream Uncertainty+Clustering n/a
CICIDS2017 [15]

CTU-13 [16]
IDS � �

[6]
Stream
Pool

Uncertainty
Density

QBC
Exp. Error Reduction

Initial Training Size
TRAbID [17]

ISCXVPN2016 [18]
ISCXTOR2016 [19]

IDS
App Det.

� �

[20] Pool Uncertainty+OoD Num. Unknown Classes NF-ToN-IoT-v2 [21] IDS � �

[22] Pool
Uncertainty+OD

QBC (3x)
Ranked Batch Mode

Pool/Batch Size
Num. Outliers

NIDS Alert Datab IDS � �

[11] Pool
Uncertainty (3x)

QBC (3x)
Ranked Batch Mode

Pool/Batch Size
Initial Training Size

Noise Level
MedBIoT [23] IDS � �

[9]
Stream
Pool

Extended Strats. of [6]
Uncertainty+RL

Ranked Batch Mode
n/a

CTU-13 [16]
DeCrypto [24]

IP Flowsb

Proto. Det.
IDS

Crypto. Det.
� �

[25] Stream Uncertainty+RL Initial Training Size MAWILAB [26] IDS � �

[27] Pool Uncertainty (2x) Initial Training Size
NSL-KDD [13]

SWaT [28]
IDS � �

[29] Stream Uncertainty
Uncertainty Threshold

Initial Training Size
CICIDS2017 [15]

CTU-13 [16]
IDS � �

[30] Stream Uncertainty+Drift Det. Initial Training Size NSL-KDD [13] IDS � �

[31] Pool Uncertainty
Initial Training Size

Noise Level
CTU-13 [16]
CTU-19 [16]

IDS � �

Ours
Stream
Pool

Uncertainty (10x)
Uncertainty Threshold

Query Size
Admin Competence Level

ISCXTOR2016 [19]
ISCXVPN2016 [18]
CICIOT2022 [32]
CICIDS2017 [15]

IDS
App. Det.
Dev. Det.

� �

ahttp://contagiodump.blogspot.fr/, bReal-world data collected by authors; not available. chttps://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

TABLE II: Overview of utilized datasets.

Name Abbr. Use Case Size Features Classes

ISCXTOR2016 TOR App. Det. 3360 23 8
ISCXVPN2016 VPN App. Det. 18 758 23 7
CICIOT2022 IOT Dev. Det. 229 757 44 3
CICIDS2017 IDS Intr. Det. 692 703 77 6

often fixed. Additionally, the effect of self-training is seldom

explored. The majority of works also assumes that the admin

always makes the correct decision. While this may be true

for use cases in the visual domain, classifying network traffic

with respect to detecting anomalies or network intrusions is a

much more complex task. Thus, besides an expert oracle, we

also look at noisy or even malicious oracles, as proposed by

Miller et al. [33]. In summary, our work depicts an overarching

parameter study regarding the many factors that influence the

performance of AL, including human errors.

III. METHODOLOGY

Use Cases/Datasets. As we have seen in Table I, IDS is the

most common use case when it comes to network monitoring.

This work also looks at application and device detection,

giving a more well-rounded view over the topic of AL. Table II

depicts a summary of the datasets we utilize.

For the first use case of application detection, we utilize

two datasets: ISCXTOR2016 [19] and ISCXVPN2016 [18].

Both datasets provide two scenarios (A and B). Scenario A

concerns the distinction between VPN/Tor and non-VPN/Tor

traffic, while scenario B is about the classification into dif-

ferent applications in the network, such as VoIP or chatting.

Both datasets contain the same amount of features and labels,

except the streaming class, which is subdivided into audio and

video streaming for the TOR dataset. We utilize scenario B,

as the multi-label classification is a more complex problem,

especially since it contains applications with and without the

use of a VPN/Tor. The contained features are extracted in 15 s
timeslots, and contain statistics over inter-arrival times (IATs),

flow duration, bytes, and more.

For the second use case of device detection, we utilize

the CICIOT2022 [32] dataset that comes with six types of

scenarios, including interactions of devices or even malicious

devices. For this work, we utilize the already preprocessed

dataset provided by the authors, which contains only traffic

from non-anomalous devices and includes devices from classes

like home automation, camera, and audio. It contains features

about utilized protocols, information in relation to preceeding

packets (e. g., size of the last 20 packets or IAT), and more.

For the last use case of intrusion detection, we utilize the

CICIDS2017 [15] dataset. It contains five days, which all

represent different attack scenarios. We utilize the Wednesday-

subset, which contains five types of Denial-of-Service (DoS)

and distributed DoS (DDoS) attacks. The dataset contains

flow-based features, including the flow duration, and statistics

about packet sizes and IATs. Here, we excluded features such

as IP addresses/ports to avoid overfitting on artifacts, which

may not be representative of real-world attack scenarios.

ML/AL Workflow. Firstly, like in traditional ML, the data

is split into a training and a test set. For this, we create

three different training and test splits while ensuring that each

instance is used for testing and training at least once. The

training set is split again, into the initial training data (i. e.,

the data which the pre-AL model is trained on as a baseline),

as well as several batches. These batches are used to simulate

newly arriving data instances. The data is preprocessed by

min-max scaling and extracting the top features. The scaler

and top features are re-evaluated after every batch iteration.

To clarify the full AL loop in-depth, Figure 2 depicts the

overall workflow. At the start, the initial training data is used to

train the initial ML model, which serves as the baseline (step

0©). With this initial model, the instances in the first batch

are classified (steps 1© + 2©). The corresponding predictions

are then evaluated regarding the confidence of the ML model.

If a decision was not made with confidence, the instance is
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Fig. 2: Overall workflow of the AL loop simulation.

forwarded to the oracle (step 3©), and after examination by

the oracle it is included into the retraining data (step 4©). If

the decision was made with confidence, however, it is included

directly into the retraining data if self-training is enabled (step

5©). This means, that if self-training is disabled, all instances

that are over the confidence threshold are dismissed for the

stream-based approach. Similarly, for the pool-based approach,

all instances that are not contained in the ranking of the most

uncertain instances are also dismissed. After processing the

whole batch, the retraining data is then used to train a new

model (step 6©). After every iteration, the model is tested via

the test data, to evaluate its prediction performance (step 7©).

The test data is not included in the (re)training in any way.

It is an independent part of the data, only utilized for this

performance evaluation. After this performance evaluation, the

next batch is used as input to the retrained model and all the

instances get classified (steps 8© + 9©). Then, this loop (steps

3©- 9©) begins anew, until all batches have been included.

ML/AL Parameters. Table III depicts the simulation set-

tings. To obtain initial training sets that contain a similar

amount of instances, the initial training data is set to 10 %,

1 %, 0.1 %, 0.01% of the full training data for the smallest to

largest dataset, respectively. TOR and VPN scenarios utilize

twice as many features as IOT and IDS scenarios, since the

former are more complex datasets, while the latter already

show high accuracies for less initial training data and fewer

features. We utilize a Random Forest (RF) with 100 Decision

Trees (DTs) and tree depth of 20 to avoid overfitting. It enables

the calculation of probabilities by simply taking the percentage

of DTs, that voted for a specific class label. RFs perform

reasonably well with default values [34], even without any

hyperparameter tuning, enabling our large AL parameter study.

The rest of the original training data, that is not used for the

initial ML model, is divided into 25 batches in all scenarios.

Our virtual admins are also parameterized. Since we are

merely interested in the fraction of (in)correct decisions, each

admin is represented by a simple probability that they know

the label. Otherwise, a random guess is taken. We have seven

admin types, evenly spaced out between 0 and 1: best (expert

admin, 1), better
(
5

6

)
, good

(
2

3

)
, mediocre

(
1

2

)
, bad

(
1

3

)
,

worse
(
1

6

)
, and worst (0, random guess). We also model an

eighth adversary admin, who permutes the labels in a pattern.

Uncertainty Measures. Various uncertainty measures may

be utilized to either define a threshold, when an instance is

deemed not confidently classified (stream-based) or to rank

all instances (pool-based). The first and simplest uncertainty-

TABLE III: Parameter settings for all four scenarios.

Dataset Initial Training Size # Features ML Model # Batches

TOR 10 %
VPN 1 %

20

IOT 0.1 %
IDS 0.01 %

10
RF20 25

based approach we utilize is querying instances whose pre-

ferred class label is least confident [8]. Henceforth, we refer

to this strategy as MAX, since the uncertainty for an instance x

is calculated by simply taking its maximum label probability,

so maxi∈Y P (Ŷ = i|x), where Y is the set of possible labels.

Even though the maximum label probability will never exceed

1, we can still normalize it, as the minimum probability will

always be at least 1

|Y| . Since simply taking the maximum

label probability may not be sufficient, another possibility is

the margin-based approach [11]. Henceforth, we refer to this

as DIFF, since the uncertainty for x is the difference of the

highest two label probabilities, that the classifier assigned to

that instance. This already lies between 0 and 1.

An uncertainty measure that implicitly includes all label

probabilities is the Shannon-Entropy (SE). The SE is a mea-

sure of “chaos”, thus it is minimized for events that are

100% certain. In contrast, a vector of uniformly distributed

probabilities maximizes the SE. Henceforth, we refer to it as

ENT , defined via −
∑

i∈Y P (Ŷ = i|x) logP (Ŷ = i|x). We

can normalize this measure by dividing by the maximum SE.

Another possibility to include all label probabilities in

the uncertainty measure is by taking the distance of the

vector to a uniform distribution, since a uniformly distributed

label probability equates to highest uncertainty. We calculate

dist(Ŷ,U|Y|), where Ŷ is the probability vector of a single

instance put out by the ML model and U|Y| is the vector of

uniform probabilities. In general, we henceforth refer to this

measure as DIST . The question how the function dist(x)
is defined arises now. There are many generic distance met-

rics, so we opt to include seven, namely Euclidean (EUC),

Manhattan (MAN), Chebyshev (CHE), and Wasserstein (WS)

distance, as well as the Kolmogorov-Smirnov statistic (KS),

Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence.

For brevity’s sake, we refrain from providing detailed de-

scriptions of the above metrics. Instead, we will explain them

on-the-fly if they are of relevance in the remainder of this

work. We can normalize all metrics by dividing through

the maximum distance to a uniformly distributed probability

vector, which occurs when the probability vector has a label

probability of 1 for one of the labels.

For stream-based AL and since we normalized all measures

to take values between 0 and 1, we search this range in 0.1

increments, resulting in nine threshold values. For the pool-

based approach this normalization is not necessary, since only

the ranking is important. Here, we search in relation to the

batch size, i. e., 10% are forwarded, 20% and so on. So, we

also have nine different parameters here.

IV. EVALUATION

Pool- vs. Stream-based AL. For our evaluation, we follow a

top-down approach and start with an overall comparison of the
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(a) self-training enabled (b) self-training disabled

Fig. 3: Scatter-plots illustrating the trade-off between accuracy and admin workload after termination of all 25 batches.

performance of pool- and stream-based AL. Figure 3 depicts

all possible parameter combinations of thresholds/query sizes

and uncertainty measures for the expert admin. The x-axis

depicts the sum of relayed decisions after termination of the

25 batches, while the y-axis depicts the final F1-score (micro)3.

The various plots also contain Pareto fronts and Pareto anti-

fronts. The Pareto front depicts all strategies, that provide

the best trade-off between maximizing the F1-score while

minimizing the admin workload. Analogously, the anti-front

depicts all strategies, that provide the worst trade-off. The

figures also include random sampling as a baseline, which

is not considered in the front calculation, since we are mainly

interested in the comparison of stream- and pool-based AL.

Generally, the TOR and VPN use cases have a lower

accuracy than the IOT and IDS datasets. For all scenarios,

the strategies lay on a curve that rises fast at first and then

flattens out or even decreases again in some cases, and there

is no clear “winner” at first sight. Both stream- and pool-

based AL outperform random sampling. Especially when self-

training is enabled, stream-based AL has a slight edge over

pool-based AL. If self-training is disabled, both strategies are

more intertwined and the overall accuracy is generally higher.

Naturally, pool-based AL is evenly spaced out w.r.t. the x-axis,

whereas for stream-based AL, it is dependent on the dataset.

Discussion: In general, TOR and VPN perform worse,

since they are smaller datasets, and the differences between

the labels (i. e., the applications) might be less obvious than

for device classes or intrusions vs. normal traffic. Generally,

if self-training is enabled, stream-based AL performs better

since it is adaptive, i. e, if there are only a few “interesting”

instances in a batch, pool-based AL still chooses a fixed

amount of instances, potentially including less interesting

ones. Analogously, if there are many interesting instances in

a batch, pool-based AL will miss out on forwarding them to

the admin, while also at risk at being pseudolabeled wrongly.

The results without self-training are generally better. The

model autolabels only instances it has seen before, so the

information gain is minimal and the pseudolabels always come

3We also looked at the macro-avg. F1-score, but trends generally remained
similar, while the score itself was slightly lower due to imbalances.

(a) with self-training

(b) without self-training

Fig. 4: Influence of different admin types.

with the possibility of errors. This is also the reason, why

for non-self-training scenarios the accuracy sometimes drops

off again with more instances relayed. If the query size is

set too high or the threshold is too strict, the admin will

also see more uninteresting instances, which dilute the actual

interesting information when including them in the retraining.

In summary, even though the stream-based AL seems to

have a slight edge over the pool-based approach, since it

implicitly adapts the amount of relayed elements, i. e, if the

model gets more confident over time, fewer elements are

relayed, stream-based AL only makes sense if there is an

attentive admin that verifies the relayed instances in a timely

manner. Otherwise, the queries will queue up, equating to an

unranked pool-based approach, taking away the online nature

of this approach. Depending on how much traffic is flowing

in the network, this might not be feasible.

Self-Training. To investigate self-taining further, Figure 4

illustrates exemplary how the accuracy and workload (i. e., the

number of decisions forwarded to the admin) change over the

course of the AL simulation for the VPN dataset, for stream-

based DIFF with a threshold of 0.8 (henceforth: DIFFS
0.8).

The x-axis contains the batch iterations, starting at 0 for the

initial model. The y-axis shows the micro-averaged F1-score

and workload, respectively. The red dotted line illustrates the

2024 20th International Conference on Network and Service Management (CNSM)



F1-score for the initial model, while the solid magenta line

depicts the model performance when using the full training

data as ground truth. The rest of the lines depict admin profiles.

Figure 4a illustrates the changing F1-score and workload

when self-training is enabled. Naturally, the more competent

admins increase the accuracy over time, while the worse ones

show mixed results. Interestingly, even the bad and worse

admins show a slight upwards trend after initially dropping

below the baseline. The bad admin is even able to surpass the

initial model after some time. Regarding the workload, the

better the admins are, the more they decrease their workload

over time. One exception is the adversarial admin, which also

decreases the workload over time. Analogously, Figure 4b

illustrates the changing F1-score and workload when self-

training is disabled. The trends for the accuracy remain similar.

Though, the better admins here, as mentioned in the previous

section, benefit from disabling the self-training. Here, the best

admin even surpasses the ground truth model, even though the

model was trained with less data. In contrast, the performance

for worse admins, including the adversary, is now drastically

decreased. Regarding the workload for the admins, more

decisions are now relayed to the admins. Only the two best

admins and the adversary are able to decrease their workload,

while the others now show a prominent upwards trend.

Discussion: Generally, the self-training aspect is not nec-

essarily needed the better the admin is. The confidently

pseudolabeled instances dilute the expertise of the admin

due to low information gain and the risk of being wrongly

autolabeled. Without self-training the best admin was even

able to surpass the model trained on the full ground truth, since

only the interesting instances were added to the retraining,

acting like a sort of implicit weighting of the instances. For

less competent admins, the self-training can be of guidance,

as seen with the bad admin that reaches the initial model

quicker. For all admins, self-training keeps the workload lower.

In summary, self-training makes the model more confident in

its own decisions and should be used when it is assumed an

admin is not able to consistently chose correct labels.

Uncertainty Measures. After investigating the various

strategies in a more coarse-grained fashion earlier with Fig-

ure 3, Table IV actually counts the number of times each

uncertainty measure has been part of the Pareto (anti-)front

without self-training for the best admin. This allows us to

analyze whether there is a measure that is more likely to out-

perform the others. Analogously, with the anti-front, we may

also analyze if there is a measure that generally underperforms.

Most measures are contained more than once in both fronts,

with exception of KS and DIFF , where the former is only

once Pareto optimal, and the latter only once a suboptimal

option. Additionally, most of the elements in the Pareto front

are stream-based approaches. Looking at the same analysis

with self-training (not shown), these trends are more diluted.

Discussion: Pool-based approaches are less represented here

since the strategies naturally all lie on a vertical line in the

figure as they all rely on the same fixed amount of decisions to

the admin. Hence, one measure will most likely dominate the

(a) with self-training

(b) without self-training

Fig. 5: Influence of different thresholds.

others, if not already dominated by a stream-based measure,

which are more convoluted regarding the number of relayed

decisions. The fronts with self-training enabled are generally

bigger, since the self-training has a “smoothening” effect, as

seen in the Pareto plots earlier. This even causes elements

sometimes being contained in front and anti-front, because

elements are more or less on a continuous line now, i. e., while

there is no better option for a strategy (e.g., not dominated),

there is also no worse option (e.g., nothing to dominate).

Though, KS stands out by being contained rarely contained in

both fronts. KS often has 0 relayed elements and thus does not

perform well. Looking at the definition of the actual metric,

it is the supremum of differences between the two cumulative

distribution functions (CDFs), in this case of two probability

vectors. Especially for smaller amounts of labels, this measure

is less meaningful. In addition, the table depicts a trend

towards simpler metrics. In summary, while most measures

have appropriate configurations, it is preferred to stick to

simpler ones, which are more intuitive/easier to explain.

Thresholds/Query Sizes. We now turn our attention to

uncertainty thresholds in Figure 5. Each subfigure depicts the

number of iterations on the x-axis, and either the F1-score

or workload on the y-axis for stream-based DIFF and the

expert admin. The colored lines depict different thresholds.

Figure 5a illustrates the changing F1-score and workload when

self-training is enabled. The stricter the threshold, the more

elements are relayed and the higher the F1-score. Figure 5b

shows the results when self-training is disabled. Here, the F1-

score is higher, while also increasing the workload.

Discussion: As mentioned, self-training dampens the influ-

ence of a good admin and there are diminishing returns with

stricter thresholds. Looking at thresholds of 0.9 to 0.7, there

is visibly more workload, but no major influence on the F1-

score. With a stricter threshold, more uninteresting instances

are relayed, which have the described dampening effect. For

pool-based methods, the effect of bigger query sizes is similar

to stricter thresholds. However, here the diminishing returns

may actually become counterproductive, as the pool-based

approach relays significantly more elements, which we have
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TABLE IV: Pareto front (cyan) and anti-front countera (red).

Stream-based Pool-based

TOR VPN IOT IDS TOR VPN IOT IDS
∑

DIFF 5 - 5 - 1 - 2 - 1 - 2 - - - - 1 16 1
MAX 4 3 2 - 5 1 2 - - - - - - - - 2 13 6
EUC 2 2 3 2 5 1 2 1 1 - - - - - - - 13 6
CHE 4 2 1 1 1 - 2 - - - - - - - - 2 8 5
ENT 3 3 2 3 1 - 2 - 1 - - 1 - - - 1 9 8
KL 3 3 2 3 1 - 2 - 1 1 - - - - - 2 9 9
WS 1 3 2 5 3 - 2 1 - 2 - - - - 1 1 9 12
JS 2 2 4 5 1 1 - 1 1 2 - 1 - - - 1 8 13
KS - 2 - - - - - 2 - 2 1 - - 1 - - 1 7

MAN 1 3 2 5 3 - 1 1 - 1 - - - 2 - 2 7 14

aonly elements with rel. decisions of > 0 counted here.

also seen in the Pareto plots earlier. Lastly, while the expert

admin generally has a bigger positive effect the more elements

are forwarded, this effect is decreased the noisier the labeling

is. For the worst admins, it actually has a negative impact

with stricter thresholds. In summary, more manually labeled

samples do not always equate to higher accuracies in addition

to increased workloads. Thus, we suggest starting off with

looser thresholds and tighten them when needed.

V. CONCLUSION

We performed a rigorous parameter study for integrating

ML uncertainty into network monitoring tasks via AL. Our

study covered four datasets involving application, device, and

intrusion detection. We compared stream- and pool-based AL,

evaluated ten uncertainty measures, and examined the impact

of admin competence levels and self-training.

Our key takeaways are that stream-based AL has a slight

edge over pool-based AL, especially when self-training is

enabled, although stream-based AL might not be feasible in

practice. Self-training slightly dilutes expert knowledge but

helps manage workload and guides less experienced admins.

Even admins with imperfect knowledge can improve the

model, making AL valuable for practical adoption. While

most uncertainty measures provide appropriate configurations,

choosing the simpler ones yielded better results here and

is advisable anyway, especially w.r.t. explainability, which

ultimately has to be given when including a human in the

AI/ML loop. Thresholds should not be too strict or query sizes

should not be too large, to not only avoid overloading the

admin, but to ensure only interesting instances are selected.

Future work will focus on simulating more realistic admins,

considering factors such as time budgets, as well as adaptive

or dual thresholds. Exploring other ML models, especially

Deep Learning (DL) models, which are often overly confident,

can introduce another parameter. Conducting user studies with

real-world admins can help evaluating the system in a practical

context, e. g., via Mockup-UIs and explainable AI (XAI).
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