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Abstract—Machine learning (ML) has emerged as a compelling
approach to identify attacks in network traffic security. Existing
malware detection strategies often concentrate on specific facets,
such as efficient data collection, particular types of malware, or
handling data scarcity. While valid, these strategies typically over-
look the potential for minimizing sample size, focusing instead
on data augmentation. This work introduces a novel method
to determine the minimum sample size necessary to achieve
a specified accuracy level, measured by the F1 score derived
from the confusion matrix. We focus on TCP header traffic
data transformed into images through flow-splitting techniques
for multi-class traffic classification. In addition, we introduce
a diffusion model to generate new synthetic traffic images and
show that our method outperforms existing techniques in terms
of stability and predictability. This study also compares the
effectiveness of synthetic image augmentation using Generative
Adversarial Networks (GANs) and Denoising Diffusion Prob-
abilistic Models (DDPM) in improving image recognition and
classification accuracy.

Index Terms—malware detection, traffic classification, deep
learning

I. INTRODUCTION

Securing Internet of Things (IoT) applications is important

but challenging for several reasons. One of them is the inherent

limitations of low-power devices, which cannot adequately

address robust protection strategies. Furthermore, consider the

scenario in which an attack persists due to a lack of immediate

identification: in such instances, the system may be severely

compromised, potentially leading to significant financial losses

for the network owner, as highlighted by [1]. This is partic-

ularly problematic because it compromises sensitive data and

threatens physical and network security.

The application of machine learning (ML) has become

increasingly prevalent in the detection of malware and other

cyber threats [2], given its ability to process large data sets and

decipher complex relationships between system variables [3].

Several ML approaches have been proposed to effectively

detect previously seen and unseen malware, securing (IoT)

networks [4].

While these approaches have merit, an accurate model

often requires the availability of extensive and heterogeneous

datasets, that are not always available or accessible. In ad-

dition, factors such as data scarcity and quality of training

samples can affect the performance of classification models.

As highlighted in [5], [6], the spurious correlation due to a

lack of data and methodological rigor may lead to erroneous

conclusions. Even when the ML model is rigorous, having a

correct training dataset is the key.

To address a robust model and limit spurious correlation,

the literature investigates methods to determine the minimum

sample size [5], [6]. In addition, in network security literature,

a common solution in case of data scarcity is to implement a

data augmentation strategy that enhances the learning model’s

robustness. Data augmentation involves artificially expanding

a training dataset by generating modified versions of the

original data without requiring new data collection [7]. In-

troducing noise and data variability, these techniques enhance

the model’s generalization ability and reduce overfitting [8].

A strategy to apply this technique is to feed the model with

traffic transformed into images. In [9], for example, feature

extraction from traffic-based-images is shown to be not only

more efficient in terms of accuracy compared to the binary

representation of the same packet but also allows the method

scalability. As demonstrated e.g., in [10], a low-dimensional

representation of the image simplifies its categorization.

Our Contribution. Motivated by these results, we show how

new image generation techniques, such as diffusion model-

based [11], combined with dataset management, can achieve

higher accuracy and lower false positive rates in malware

classification, compared to existing approaches. We propose

a new approach to find a minimum sample size based only on

the confusion matrix to address the lack of sufficient training.

Moreover, we adopt Denoising Diffusion Probabilistic Models

(DDPM) for the data augmentation and dissect its link with the

false positive rate. We found that the DDPM-generated data
have a 7% higher F1 score and less variance (5%) than the
Generative Adversarial Networks (GAN) generated data and a

higher average AUROC index along the classes. Also, through

explainable AI techniques, we show how DDPM images are

more similar to real with respect to those generated with GAN,

hence validating our approach.

The rest of the paper is organized as follows. Section II

outlines the state of the art, while section III highlights

the problem definition and our contributions. In Section IV,

we describe the experimental setup, detailing our methodol-

ogy. Section V discusses the experimental results, providing

insightful comments and interpretations. Finally, the paper

concludes with a summary of the key findings and their

implications.

II. RELATED WORK

Malware attacks pose an increasing threat to both IoT and

traditional systems [12]. To mitigate IoT device damage, [13]

aim to detect existing and new IoT malware by converting
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traffic data into RGB images. However, their feature pre-

processing combines behavioral data with malicious activity

frequency, which requires extensive data collection and may

limit applicability in other environments. Similarly, in [14],

Convolutional Neural Networks (CNNs) and Long Short-Term

Memory (LSTMs) based method is exploited to deal with

malware traffic classification in high-variance daily energy

consumption scenarios. Moreover, these work highlight the

correlation between good prediction performance and the

degree of diversity with datasets, in specific scenarios where

the data are often unavailable. To the best of our knowledge, a

method to achieve high accuracy with reduced data collection

for IoT malware detection problems is still missing.

Data scarcity remains a significant challenge in many research

domains, prompting the development of various mitigation

techniques. Among these, data augmentation has emerged as

a particularly effective and rapidly evolving method. Recent

literature highlights diverse approaches to this problem, espe-

cially in specialized fields such as IoT security. [15] proposes

a novel CNN architecture with dilated convolutions, chan-

nel squeezing, and boosting to identify IoT-specific malware

patterns. While the study includes basic data augmentation

methods like image rotation, these prove less effective due

to the lack of natural directional orientation in the images.

In contrast, [16] demonstrates a more sophisticated approach

by integrating Generative Adversarial Networks (GANs) and

Variational Autoencoders (VAEs) to improve malware traffic

classification after generating synthetic malware samples for

training. While their findings indicate that GANs could im-

prove detection performance, GAN-generated traffic images

still produce a high false negative rate. In fact, the synthetic

images closely resemble the distribution of the original sam-

ples, and fail to introduce sufficient noise into the training set

to achieve a better generalization.

To create realistic traffic-based images and identify traf-

fic profiles, the author of [17] introduce a stable diffusion

model for data augmentation. They demonstrated that profile

detection improves by switching to a text-to-image generative

model, requiring two datasets: one for RGB images and one

for stable diffusion prompts. While this reveals the potential

of denoising models in image generation, the process can be

costly. This inspired the use of the DDPM as an image-to-

image generative method, which offers high-fidelity images

and more precise results in terms of Fréchet Inception Distance

(FID) compared to GANs [18], [19].

III. PROBLEM DEFINITION: ADDRESSING DATA SCARCITY

IN IOT MALWARE DETECTION

In traditional approaches (for IoT attack classification with

or without complete or sufficient data), the accuracy of a

model is directly linked to the amount of data it is exposed to.

Researchers have shown that more data points allow the model

to recognize a wider range of patterns and establish a more

resilient understanding of the underlying relationships [20].

However, in the context of IoT malware detection, data are

frequently lacking and costly to obtain, making it difficult

to achieve accurate classification. Our aim is to address this

challenge by collecting data over a short period, determined

by the identified minimum sample size, and then classifying

it over a longer timeframe. The objective is to categorize

different types of malware when data collection is limited

or expensive. To identify the minimum amount of data to

collect, we propose a new method based on the confusion

matrix, without distribution assumption, employed to obtain

accurate results in terms of model accuracy and false/true

positive rates. Data augmentation is also performed using the

diffusion probabilistic model to create more stable and high-

fidelity images.

IV. METHODOLOGY AND SOLUTION DESIGN

Data scarcity is a common issue in malware classification. In

this work, we introduce a new method based on the confusion

matrix and F-score to determine the minimum sample size

for malware detection datasets. Our process does not need an

assumption on the data distribution and identifies the minimum

number of experiments for each class thanks to the McNemar-

Bowker statistics test [21]. Furthermore, according to the

data scarcity hypothesis, we explore the Denoising Diffusion

Probabilistic Model to increase the data variability and make

the classification model robust and precise [22].

A. Minimum Sample Size Definition

The literature explores the relationship between the number

of examples considered (sample size) and model performance

in ML. Studies such as [23] highlight that models with

fewer parameters often perform well on smaller datasets. For

instance, [24] demonstrates that simpler models can excel

with limited data. Additionally, [25] investigated how the

training set size impacts accuracy assessment, using a normal

distribution assumption to define confidence intervals and

calculate the sample size. However, this assumes linearity,

which is not always empirically supported; in practice, the

index curve often follows a more flexible distribution, like

Beta, rather than a linear trend [26].

To address this issue, our method avoids assuming a specific

distribution for the performance index. Instead, we use the

confusion matrix (CF), from which performance metrics like

the F1-score are derived. The CF is treated as the empirical

joint probability distribution of the model’s performance, and

we perform statistical tests based on this matrix to quantify ac-

curacy. Each CF element, excluding the diagonal, indicates the

probability of misclassification—for example, a Distributed

Denial of Service (DDoS) attack misclassified as a port scan-

ning attack. The diagonal elements reflect the model’s correct

classifications. We apply the McNemar-Bowker test [21], a

nonparametric test suited for comparing two related groups

on a dichotomous variable. This test evaluates marginal ho-

mogeneity under the null hypothesis and follows a chi-square

distribution with one degree of freedom.

Given the imbalanced nature of the malware dataset, the

F1 score is an appropriate choice of performance index. We
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Fig. 1: The Denoising Diffusion Probabilistic Models’ mechanism involves
adding noise in the forward phase and learning noise removal techniques in
the backward phase, without assuming data distribution

can define the F1 score in terms of true positive (TP), false

negative (FN) and false positive (FP) values as follows:

F1 ≥ 2 · TP
2 · TP + 1 · FN + FP

. (1)

With this approach, we can consider the F1 score for each

class and determine their sample size by applying the above

definition to the test. Since a type I error (α) is a false

positive conclusion in a statistic test and a Type II (β) error

is a false negative conclusion, these terms are often used

interchangeably with the general notion of false positives and

false negatives mentioned in the formula.

B. Flow Image Generation

This subsection provides a concise overview of the gener-

ative models employed. In particular, the Deep Convolutional

Generative Adversarial Network (DcGAN) and the denoising

diffusion probabilistic model are considered.

A GAN architecture consists of a generator model that

creates fake new samples as input to a discriminator model that

determines if the input samples are fake or real. The generator

learns to create traffic images as close as possible to real ones,

while the discriminator checks their authenticity. The network

aims to maximize the discriminator’s loss (ensuring similarity

between real and fake images) and minimize the generator’s

loss (improving its ability to mimic traffic behavior).

In our analysis, both losses are defined using Binary Cross

Entropy. We apply the DcGAN model for its computational

efficiency and ability to capture semantic features [27]. Here,

the generator uses a one-dimensional convolutional network,

reflecting the simplicity of the black-and-white data and min-

imizing computational cost.

The DDPM network takes two inputs, Xt (the final traffic-

based image) and t (the steps that we want), and outputs a

vector μθ(Xt, t) and a fixed matrix Σθ(Xt, t), respectively

the mean of the pixel and their variance matrix. This allows

each step in the forward diffusion process to be approximately

reversed by Xt−1 ∼ N(μθ(Xt, t),Σθ(Xt, t)). The process

is simplified and illustrated in Fig. 1. This method offers

several advantages and addresses all the DcGAN issues listed

above, including the ability to easily tune the model and

generate more stable and performing outcomes in terms of

image fidelity. In addition, the learning model to implement

this kind of model can be chosen appropriately for the task.

In the literature, several neural networks are available, but

for our purposes, lightweight models that capture key aspects

of traffic images are most suitable. Therefore, we use a simple

U-Net [28] with a 1-dimensional convolution layer. U-Net’s

ability to retain spatial information aids in recovering fine de-

tails and precise object localization. Its U-shaped architecture

effectively combines local and global information, enhancing

semantic accuracy compared to Convolutional Networks and

common models like YOLO, which are slower and more

resource-intensive. Additionally, U-Net reduces parameters,

allowing faster training and lower computational demands. Its

ability to learn from limited data and handle varying image

sizes without preprocessing further adds to its practicality [28].

V. EVALUATION

The following sections explain how the application of a

new method to define the sample size combined with data

augmentation through the adoption of DDPM can achieve high

results in terms of F1 score, taking into account the False

positive rate. Also, a deep study of synthetic images using

explainable AI techniques demonstrates how DDPM helps the

classification model.

A. Experimental Setting

Figure 2 shows a summary of the experiment workflow. The

packet capture (PCAP) files collected in EDGE-IIOTSET [29]

and Malicious Network Traffic PCAPs and binary visualization
images Dataset (MNT) [14] are considered and analyzed as

images for this work. Specifically, the files are initially divided

into unidirectional flows based on the same 5-tuple: source

IP, source port, destination IP, destination port, and transport-

level protocol. Subsequently, the TCP headers of each flow are

concatenated. Additionally, they are truncated if they exceed

743 bytes; otherwise, zero padding is added, based on [30],

where it is shown that the most pertinent information is

concentrated in these initial bytes. The resulting files are con-

verted to hexadecimal and then into 28x28 grayscale images.

This choice is coherent with the data parsimony and offers a

quick transformation that only needs the header information.

The generative models, DcGAN and DDPM, are specific for

each class considered and are trained on the sub-dataset to

achieve superior prediction accuracy. Also, the final datasets

include different proportions of synthetic data to explore the

impact of synthetic data on resilience to data scarcity across

methods. Considering our study and utilizing the formula

1, we can calculate the β value for the sample size. Let’s

suppose F1 = 0.8 and α = 0.05, we can calculate a β value of

0.128 (β = 0.128). Performing the McNemar-Bowker test, the

sample size outcome is 735 examples for each class for EDGE-

IIOTSET and 580 for the MNT; these differences are due

to the different number of classes considered. After, a CNN

with fixed parameters and hyperparameters was employed to

investigate the influence of sample size and synthetic data on

model performance. Utilizing the identical CNN, the baseline

model was trained exclusively on the original data with a fixed

sample size. All models were trained for 200 epochs with a
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Fig. 2: The data flow starts with creating hexadecimal-based images for both
datasets using the unidirectional flows header. After training the Generative
model image-to-image for each class, the dataset is input to the CNN
classification model to collect classification outcomes for evaluation.

TABLE I: F1 scores of the test set with a training model fed with the real
dataset and the balanced dataset with a sample size less than the thresholds.
The performance in other cases is worse than our method.

num. ex. per classes EDGE-IIOTSET MNT
≤ threshold 0.6 0.7

real unbalanced train set 0.73 0.58
our train set 0.93 0.97

0.01 learning rate, employing stochastic gradient descent. Per-

formance was evaluated with the F1 score on real, unbalanced

test sets to evaluate the impact of dataset configuration on

results.

B. Evaluation of Classification Performance

Figure 3 displays the confusion matrix for both baseline

models using a Sankey diagram [31]. This diagram visualizes

each class with boxes on either side, with green arrows

indicating correct classifications and red arrows indicating

misclassifications. The graph highlights dataset imbalances

and critical classes. In the EDGE-IIOTSET, uploading at-
tacks is the least accurately classified, while the Java-RMI
backdoor is most frequently misclassified in the MNT set.

Also, Table I shows that F1 scores degrade compared to our

baseline when the number of examples per class falls below

the threshold or when using the real unbalanced training set.

EDGE-IIOTSET. Focusing on the EDGE-IIOTSET, there are

clear differences between the results obtained using GAN-

generated images and DDPM-generated images, particularly

regarding the classification of neutral traffic. It should be

noted that DDPM consistently accurately tracks neutral traffic,

regardless of the volume of synthetic data, thereby reducing

misclassification variability. Conversely, models trained with

GAN synthetic data exhibit increased misclassification, as

shown in Figure 4. The plots highlight the challenge of ac-

curately classifying minority classes, as shown by the curves.

For instance, with 30%, 50%, and 60% synthetic data, the

DDPM models struggle to classify uploading attacks correctly.

However, in other cases, the models perform better across

all critical classes. This may be due to increased noise from

synthetic data and the limited number of training epochs set

based on the baseline experiment. Moreover, Figure 5 displays

Fig. 3: The Sankey diagrams visualize the confusion matrix for EDGE-
IIOTSET (right) and MNT set (left). The critical class to classify for the
EDGE-IIOTSET is upload attacks, while for MNT, it’s Java RMI backdoor
attacks. These diagrams establish the baseline for classification and serve as
a reference point for improvement using artificial images.

the F1 score for each model along with the relative standard

deviation. The baseline model, trained without synthetic data,

exhibits high F1 scores and lower standard deviation values.

Focusing on the other models, we find that the DDPM models
generally achieve better F1 scores but tend to have higher
standard deviations, except in the case where 30% synthetic

data are used. This suggests that while DDPM models can

enhance performance, they tend to exhibit greater variability,

as said before. Another interesting aspect of these results is

the DDPM-based model’s capacity to classify better than the

GAN-based one’s class in the case of 10% synthetic data.

However, the overall performance in terms of the F1 score

suggests the opposite.

Malicious Network Traffic PCAPs Dataset. We further

analyze the Malicious Network Traffic PCAPs and binary

visualization images dataset. The main differences between

this dataset and the previous one are the lack of neutral traffic

and the smaller number of classes considered. However, the

ROC curves shown in Figure 6 combined with the results in

Figure 5 confirm the fact that DDPM-based models perform

better than the GAN-based models, likewise for the critical

class, both in terms of average F1-scores and their vari-

ance. The performance of both models declines significantly

when the synthetic data percentage reaches 70%, suggesting

that the models struggle with noise introduced by artificial

datasets. This is particularly interesting given the previous

ROC curve, where the same model struggled to discriminate

classes with 30% synthetic data. Additionally, the GAN-based

model trained with 90% artificial data failed. We extended

the training by 200 epochs to validate these findings but

observed no significant improvements, indicating that a more

complex model may be necessary for this task. In conclusion,

the DDPM-based synthetic images yield a more stable and

predictable dataset compared to those based on GAN images.

Additionally, the classification performance on the imbalanced

test set is superior, as evidenced by reduced misclassification

confusion, as shown in Figure 5.
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Fig. 4: ROC curve for EDGE-IIOTSET. These graphs plot the true positive
rate against the false positive rate at each threshold setting. DDPM performs
better than GAN, as the curve below the bisector line indicates. An increase
in misclassification highlights the influence of synthetic data percentage on
performance degradation.

C. Pixels vs. Packets: Analysis of Synthetic Traffic via XAI

Integrating synthetic traffic data into malware classifica-

tion models introduces complexities that require a deeper

understanding of model behavior. While performance metrics

offer a wide measure of accuracy, they do not elucidate how

synthetic data affects the classifier’s decision-making process.

In this context, explainable AI (XAI) is essential for validating

the fidelity of synthetic traffic by comparing its impact on

model decisions with that of real traffic data. This method

helps evaluate synthetic data quality and reveals potential

biases or artifacts introduced by various generation techniques.

We use Gradient-weighted Class Activation Mapping (Grad-

CAM) [32], a leading XAI technique, to analyze how synthetic

traffic generation influences classifier decisions. This approach

Fig. 5: Trend of class average F1 score for the test set with a 95% confidence
interval. The EDGE-IIOTSET plot shows that the DDPM-generated data have
a 7% higher average F1 score and less variability than the GAN-generated
data. The MNT F1 score trend curve highlights that DDPM-based models
are more stable with minimal performance variance with more synthetic data.
The performance of GAN deteriorates at 90% synthetic data.

enables us to visualize and quantify the key features driving

the CNN’s predictions for both real and synthetic traffic flows.

Grad-CAM Heatmaps. We analyze the generative capabili-

ties of both DDPM and GAN models by exploiting the Grad-

CAM heatmaps. Figure 7 shows an example of the heatmaps

generated by the Grad-CAM algorithm applied to a correctly

classified flow sample of the SQL injection attack. To compare

the generative capabilities of DDPM and GAN, we evaluated

three CNN-based classifiers trained on different formulations

of the EDGE-IIOT dataset: (i) real data only, (ii) DDPM-based

data combined with real data, (iii) GAN-based data combined

with real data. The heatmaps in Figures 7b, 7c, and 7d reveal

that the CNN model considers various parts of the traffic flow

header with differing levels of importance depending on the

input dataset, suggesting the need for a deeper evaluation.

Fidelity Analysis. In this analysis, we aim to deepen the

behavior of the classifier by observing how the synthetic traffic

data impacts the classification process. In Figure 8, we observe

notable differences between DDPM and DcGAN-generated

synthetic traffic. Specifically, the classifier shows dependencies

to different header fields for each traffic generation method.

For DDPM-generated data, the TCP Acknowledge Number

is crucial for most attacks, while no clear pattern emerges

with DcGAN-generated data. Additionally, the classifier uses
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Fig. 6: ROC curve for the MNT Dataset. The DDPM’s performances are
better than the GAN’s, and their curves appear below the bisector line. The
DDPM can more effectively identify and classify different classes. When
considering 90% of artificial data, the GAN-based model cannot achieve good
classification, while the DDPM model can.

Fig. 7: Grad-CAM heatmaps of the SQL Injection attack. Red elements
indicate a strong influence on the prediction, whereas blue elements have
little effect on the prediction. (a) Original image of a SQL injection flow.
(b) Resulting Grad-CAM of a CNN model trained only using real data (i.e.,
no synthetic traffic). (c) Resulting Grad-CAM of a CNN model trained with
50% traffic generated by DDPM. (d) Resulting Grad-CAM of a CNN model
trained with 50% traffic generated by GAN.

distinct fields for each model: DDPM-generated traffic relies

on a combination of TCP flags, TCP window size, IP header

length, IP destination, and TCP sequence number to detect

port scanning attacks, whereas GAN-generated traffic depends

predominantly on TCP flags.

Packet Type Distribution.While header field analysis focuses

on specific packet header values, we provide a higher-level

view by examining the packet types associated with the most

(a) DDPM.

(b) DcGAN.

Fig. 8: (a) Distribution of top-5 header fields across attacks over DDPM-
generated synthetic malware traffic. (b) Distribution of top-5 header fields
across attacks over DcGAN-generated malware traffic.

(a) DDPM correct class. (b) DDPM misclassification.

(c) DcGAN correct class. (d) DcGAN misclassification.

Fig. 9: Distribution of TCP flags for packets determined as most influential
in the classifier’s predictions by the Grad-CAM algorithm. (a) TCP flag
distribution for correctly classified DDPM-generated traffic. (b) TCP flag dis-
tribution for misclassified DDPM-generated traffic. (c) TCP flag distribution
for correctly classified DcGAN-generated traffic. (d) TCP flag distribution for
misclassified DcGAN-generated traffic.

influential bytes using XAI techniques. We analyze TCP flags

for each attack to assess classifier behavior with synthetic data

from different generative models. Figures 9a, 9c show the

distribution of TCP flags for correct classifications (Figures 9b,

9d) and misclassifications (Figures 9b, 9d). SYN packets are

key for identifying attacks like backdoor and DDoS, appearing

nearly 100% of the time in correct predictions. Exceptions

include scanning attacks, where FIN+ACK and ACK packets

are more relevant, and port scanning attacks, which feature

high percentages of RST+ACK flags. SQL injection attacks

show varied packets depending on the generative model. This

analysis highlights that both generative models effectively

capture attack behaviors, with SYN packets often linked to

connection initiation attacks and other flags used for different
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types of attacks. Interestingly, Figures 9b and 9d reveal that the

classifier mistakenly emphasizes RST packets for backdoor,

port scanning, and SQL injection attacks. This suggests the

classifier might be overfitting to synthetic data patterns that do

not align with real-world attack behaviors. RST packets, often

linked to rare abrupt terminations, may be overrepresented in

synthetic data. To improve performance, future work should

incorporate domain-specific knowledge of network protocols

and attack patterns into both data generation and classifier

training.

VI. CONCLUSION

In the IoT domain, data scarcity remains a significant

challenge, often addressed by generating artificial data using

DL-based generative techniques like GANs and their variants.

This study investigates the efficacy of Denoising Diffusion

Probabilistic Models (DDPM) and Generative Adversarial

Networks (GAN) in augmenting limited training data for

large-scale malware traffic image classification. Our findings

indicate that DDPM consistently outperforms GAN as the

proportion of synthetic data increases. We propose a novel

method to determine the minimum sample size needed to

achieve the desired F1-score accuracy. Future research direc-

tions include validating our methodology across diverse data

sources and IoT contexts, as well as refining DDPM to enhance

its specificity for IoT-related data generation.
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