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Abstract—Network monitoring services are performed by sev-
eral companies and Internet Providers (ISP), which provide
results of regular performance tests, such as throughput, loss, and
delay, among others. These measurements help to understand the
network’s behavior and obtain information for strategic planning.
However, when carrying out the measurements planned during
network monitoring, failures may occur, which makes it difficult
to carry out more complex activities, such as forecasting network
performance. Within this context, this article presents a resilient
and adaptive model for forecasting network performance, which
includes the identification of measurement failures and applying
data imputation techniques to adapt the data for the forecasting
process (based on Neural Networks and Time Series Analysis).
The experiments, using real data from the National Education
and Research Network (RNP), show that the proposal can achieve
high accuracy in forecasting with imputed data and outperform
other existing forecasting approaches.

Index Terms—Forecasting, Network Monitoring, Artificial In-
telligence, Resilience.

I. INTRODUCTION

Nowadays, almost all Internet Service Providers (ISPs) have
network monitoring tools capable of providing relevant infor-
mation for their administration. These tools perform regular
performance tests, and the successful analysis of such tests
constitutes useful metrics for better strategic planning. Corpo-
rations and institutions that operate on network infrastructures
must have a solid analysis of this data, as it is essential for the
maintenance and evolution of the network. This information
covers key aspects of the network such as Bit Rate Control,
Packet Loss, and Delay, among other important variables [1]–
[3]. The analysis of network traffic through performance met-
rics primarily influences administrative decisions, including
link capacity expansion, Quality of Service (QoS) and Quality
of Experience (QoE) expectations, maintenance scheduling,
Service Level Agreement (SLA) evaluations, and analysis of
network resource requirements [4], [5].

Suitable throughput performance is critical for QoS and
Internet service availability, as a low transfer rate can result
in delays, bottlenecks, and network congestion, leading to an
unsatisfactory user experience and reduced network efficiency
[6]. On the other hand, a high bit rate ensures better data
transmission, improving user experience, and increasing sys-
tem productivity [7], [8]. Therefore, ensuring good network
performance is crucial to providing high-quality services to
users, requiring constant monitoring and optimization of key

network metrics, fulfilling the SLA, and avoiding connection
problems and high delays [9], [10].

Despite the evident importance of high network perfor-
mance, it is crucial to recognize that the monitoring tools
employed may encounter problems during testing (due to
various aspects and limitations) resulting in lost measurement
values and consequently low-quality data for analysis [11].
This can compromise data mining techniques that analyze the
temporal and information, as well as hinder a good understand-
ing and implementation of network management actions, in
addition to planning and prospecting strategies [12]. Therefore,
preprocessing techniques and synthetic data imputation help
better understand network performance, bypassing potential
limitations during measurements and allowing problems to be
proactively anticipated [13]. Moreover, they prevent imminent
failures and alterations, as they involve real data and impu-
tation modeling techniques to estimate values and provide a
better analysis of network performance under varied conditions
[14].

Within this context, this paper presents a resilient network
performance forecasting model. The proposal is considered
resilient as it applies selected data imputation techniques to
adjust the information for the forecast process when measure-
ment failures occur (and consequently, gaps in the time series
to be analyzed). Additionally, the proposed forecast model
is considered adaptive as it adjusts the time series of the
measurements performed through statistical analyses (such as
decomposition, trend definition, and removal of cycle errors),
creating a standardized time series that enables better training
of forecast models. The processed time series is used as input
for the Artificial Intelligence (AI) models that will perform
the forecast process of a new series with the expected network
performance, even when measurement failures occur.

To validate the solution and analyze its performance in terms
of forecasting capability, experiments were conducted using
real data from the Ipê Network Monitoring Service (Monipê)1

of the National Research and Education Network (RNP). The
results obtained show that the proposed model can achieve
high levels of forecasting accuracy and outperforms the use
of existing forecasting models about evaluation metrics within
the context of network metrics management. Additionally, the

1monipe-central.rnp.br
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synthetic data imputation techniques improve the forecasting
process compared to the original data, according to the RMSE
evaluation.

The remainder of this paper is organized as follows: Section
II presents existing solutions related to network monitoring
and forecasting approaches. Section III describes the proposed
forecasting model, while Section IV details the results of
the experiments performed. Finally, Section VI concludes the
paper and presents several future works.

II. RELATED WORK

França et al. [15] present two neural network-based re-
gression models for imputing missing data in IoT gateways,
considering runtime and memory usage. Similarly, Park et al.
[16] propose an approach using a deep learning model to
estimate missing values of a variable in multivariate time series
data, focusing on filling long and continuous gaps (e.g., several
months of missing daily observations) rather than individual
random missing observations. In the same way, Ding et al.
[17] evaluate a series of imputation methods for filling missing
values in time series collected from IoT devices. In this
study, interpolation techniques such as Radial Basis Functions,
Moving Least Squares (MLS), and Adaptive Inverse Distance
Weighted were compared with each other and with KNN to
fill the gaps. It was found that in this case, the Lancaster MLS
interpolation technique yielded the best results. However, this
study does not assess the impact of these imputation methods
on time series forecasting within this context.

From the literature review, it is noted that no article has
focused on developing a network performance forecasting
model adaptable to the context of the measurement to be
performed, which is the focus of this article, while also
considering various data imputation techniques in the process.

III. PROPOSAL

This section describes the proposed adaptive resilient fore-
casting model, which aims to adjust the end-to-end flow mea-
surement data between two points in the network through time
series analysis techniques for situations with elastic demand,
as well as the identification and correction of measurement
failures, thus enabling greater efficiency in the performance
forecasting process. The solution is generally executed in
four stages: (i) Collection of data necessary for forecasting,
(ii) Correction of measurement failures through data imputa-
tion techniques, (iii) Time series analysis (applying statistics
techniques, such as decomposition and seasonality), and (iv)
Application of AI-based forecasting techniques. An overview
of the structure of the solution proposed in this project is
presented in Figure 1.

Initially, the solution retrieves measurement data from ex-
isting services (red element in Figure 1, where any tool can
be considered, such as Perfsonar, SolarWinds, Auvik, etc.
Subsequently, with the data in hand, the solution checks for
gaps in the measurements for the analyzed period (gray ele-
ment), applying imputation techniques to correct such failures
(blue element). Then, a proposed model (based on network

measurements) is applied in the time series processing stage
(orange elements in Figure 1) to ensure data adjustment, i.e.,
adapting the temporal analysis to the context of elastic demand
and the unique characteristics of each communication scenario.
Finally, the result of the time series processing and analysis
is deployed to generate the forecasting model. The actions
performed in each of the presented stages will be detailed
below.

A. Mitigation of Measurement Failures

The mitigation of measurement failures in network mon-
itoring tools is crucial for maintaining the integrity and re-
liability of network performance data since these failures in
network monitoring tools can occur due to various reasons like
hardware malfunctions, network congestion, or software bugs.
This fact can lead to gaps or inaccuracies in the collected data,
which compromises the usage of AI solutions.

Imputation techniques play a significant role in addressing
the issues arising from measurement failures, where two
approaches for missing data correction can be used [18], [19]:
Interpolation and AI. Interpolation techniques are based on
a mathematical method that fits a function to the data and
uses this function to generate missing data in the analyzed
series. Linear interpolation is the simplest, which calculates
the average of the previous and subsequent values of the
missing data. Additionally, several other interpolation methods
can be applied, such as Time-Weighted, Moving Average, and
Moving Median, among others found in the literature.

Regarding the use of AI, these can be applied to analyze the
dataset as a whole, define the gaps as targets, and propose a
model to address these gaps. Each AI technique has a distinct
approach, with applicable methods in the context of this
project including K-Nearest Neighbors (KNN), Deep Learning
Models, Neural Networks, etc. Next, we describe the tech-
niques applied in this work: Moving Average, Moving Median,
Linear Interpolation and K-Nearest Neighbors (KNN).

By applying these techniques, network solutions can ensure
that the imputed data aligns closely with the true values,
minimizing the impact of measurement failures on the overall
dataset. First, it helps maintain the historical data’s integrity,
which is crucial for long-term performance analysis and trend
identification. Second, imputation enhances real-time monitor-
ing capabilities by providing a more accurate and immediate
picture of network performance, enabling quicker and more
effective responses to emerging issues. Finally, reliable data
through imputation techniques supports advanced analytics
and machine learning applications that rely on high-quality
datasets to develop forecast models, which is the solution
proposed in this paper.

B. Time Series Adjustment

In general, traditional forecasting models do not adequately
address failures in datasets, which can impair the effectiveness
of the results. This approach hinders the organization of
regular time series and, consequently, precise analyses, directly
affecting the quality of the forecasts, as evidenced in this
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Fig. 1. Overview of the solution.

study. On the other hand, more robust models that include
a data preprocessing step increase tolerance and resilience
to measurement gaps. In this work, we combine this with
Neural Network models, which are characterized by advanced
computational capabilities and high tolerance to measurement
errors.

A time series is a succession of observations recorded in
chronological order at regular time intervals. The forecasting
challenge involves fitting a model to anticipate future values of
the series, considering past observations, i.e., its history. For
this purpose, there are statistical techniques, Autoregressive
or Smoothing models, as well as more robust techniques that
use Neural Networks and Artificial Intelligence. Therefore,
significant failures in time series datasets become a problem
in forecasting, which relies on existing data to produce new
observations. Moreover, the way this data is preprocessed
directly interferes with the forecasting results.

The primary patterns observed in time series include (1)
Trend (T ), which manifests as a tendency for the temporal
series to increase or decrease over time, though not necessarily
in a linear fashion; (2) Seasonality (S), characterized by
recurring patterns at fixed intervals within a period; and (3)
Cycle (C), which also repeats but lacks a consistent period-
icity, unlike seasonality. In time series analysis, the observed
information Zt at time t can be decomposed into its constituent
components: the trend component Tt, the seasonal component
St, and the error or residual component Et, representing the
part of the data not captured by the model.

Our solution employs a robust Seasonal Trend Decompo-
sition using LOESS (STL) to highlight the components of
seasonality, trend, and error. The robust variant of STL de-
composition is resistant to outliers, enhancing the reliability of
the decomposition results. Overall, STL decomposition offers
a more detailed understanding of a time series’ underlying
patterns and trends, which can improve forecasting accuracy
and help identify potential issues or anomalies in the data.

Initially, the STL method applies a low-pass filter to smooth
the time series values, allowing low-frequency cycles to pass
while attenuating cycles that are far from the cutoff measure-
ment and removing high-frequency noise. This process pro-
duces a smooth trend component. Next, the trend component
is subtracted from the original time series to obtain a detrended
series, which is then subjected to a seasonal filter to estimate
the seasonality. Subtracting this estimated seasonality yields
a residual series. To reconstruct the original time series, the

trend, seasonality, and residual components are added together.
This makes STL decomposition particularly effective for an-
alyzing and modeling data with seasonal patterns [20]. The
method is versatile, accommodating a wide range of seasonal
periods and applicable to both additive and multiplicative time
series formats.

Recognizing the importance of minimizing the impacts of
gaps during analysis and forecasting, a comprehensive pre-
processing of the training data was conducted. This approach
involved applying imputation techniques to correct and handle
previously observed failures. The imputation step is crucial
for enhancing the forecast’s performance in the subsequent
training phase. In environments where substantial gaps can
undermine the reliability of analyses, imputation techniques
emerge as a critical component of the process.

C. Forecasting Models

The LSTM model is a type of recurrent neural network
designed specifically to overcome the issues of gradient explo-
sion/vanishing, which typically arise when learning long-term
dependencies, even across very long time intervals [21]. In
general, this issue can be mitigated by using a Constant Error
Carousel (CEC), which keeps the error signal within each
unit’s cell. These cells are recurrent networks with an enhanced
architecture that extends the CEC with additional features,
specifically the input and output gates that form the memory
cell. The self-recurrent connections provide feedback with a
time lag. LSTM is well-suited for classifying, processing, and
forecasting time series with unknown durations. Its relative
insensitivity to the length of gaps between relevant events gives
LSTM an advantage over traditional RNN models and other
sequence learning methods.

Similarly, the GRU is the next generation of recurrent
neural networks and is quite similar to an LSTM. GRUs have
eliminated the cell state and used the hidden state to transfer
information. This architecture has only two gates, a reset gate,
and an update gate, which are used to address the gradient
vanishing problem of a standard RNN. Typically, these are two
vectors that determine which information should be passed
on to the output. What’s special about them is their ability
to be trained to retain information from a long time ago
without dissipating it or discarding irrelevant information for
forecasting. LSTMs have two distinct states passed between
cells: the cell state, which carries long-term memory, and the
hidden state, which carries short-term memory. In contrast,
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GRUs have only one hidden state transferred between time
steps. This hidden state can maintain both long-term and short-
term dependencies simultaneously due to the constraints and
calculations applied to it and the input data.

IV. EXPERIMENTS

Initially, it is worth mentioning that the developed code
and the data used in the experiments are available in the
solution repository2. This initiative aims to allow the scientific
community to reproduce the experiments and generate new
results with other network data.

A. Configuration of Experiments

To conduct experiments using real-world data, data from
RNP (Rede Nacional de Ensino e Pesquisa) were utilized
through the Ipê Network Monitoring Service (MonIPÊ).
MonIPÊ follows the international monitoring standard perf-
SONAR, measuring several network metrics, including
Throughput. The throughput is measured between two end-
points in the network and it is executed using two different
congestion control types for TCP (Cubic and BBR).

One important point is the difference between TCP BBR
and Cubic, as they exhibit distinct behaviors [22], [23]. TCP
Cubic uses a cubic function over time to increase the con-
gestion window time responding effectively to packet loss,
while TCP BBR, instead of directly responding to packet loss,
also considers bandwidth, RTT, and other metrics to determine
packet sending rates and congestion window sizes. Therefore,
these two versions of TCP have distinct behaviors, that affect
the forecasting process.

B. Communication Points

In the experiments, communication pairs covering Points of
Presence (PoPs) across the network in the Brazilian states of
Minas Gerais (MG), Rio Grande do Sul (RS), Pará (PA), Ama-
zonas (AM), Bahia (BA), and Paraná (PR) were examined.
These Ipê Network PoPs were selected due to their diverse
geographical locations, which impact link usage and network
load, varying infrastructure capacities (links ranging from 200
Gbps to 1 Gbps), leading to distinct communication behaviors.

It is worth noting that end-to-end communication between
various points of the network exhibits distinct behaviors
throughout the day and during the week, as the infrastructure
usage follows a social pattern among its users. Therefore, these
communication points were considered, covering a significant
portion of the network traffic, interconnecting the North,
Northeast, and South regions of Brazil. Specifically, these
points were chosen due to: (i) Geographical heterogeneity
affects the number of links used in the end-to-end path and the
total load generated on the network infrastructure; (ii) Link
Capacity since they exhibit high variability in load, causing
communication originating from one PoP to behave differently
compared to others with distinct end-to-end capacity varia-
tions.

2https://github.com/LarcesUece/Resilient-Performance-Forecasting

Before studying the impact of imputation methods on fore-
casting, a preliminary evaluation of the imputation techniques
used was conducted. For this purpose, datasets from the
same two communication pairs were selected. These pairs
were chosen not only for the reasons already specified but
also because they offer a greater contrast between the results
generated by different imputation techniques. Additionally, it’s
important to note that the percentages of missing data in the
datasets were taken into account during the selection process.

Such information was derived from an initial analysis that
quantified the extent of missing data in each dataset. Dur-
ing the observed six-month period, the dataset revealed the
following percentages of missing data: Pr-Am Bbr Flow had
39.43%, Pr-Am Cubic Flow had 39.37%, Mg-Rs Bbr Flow
had 19.37%, Mg-Rs Cubic Flow had 20.26%, Pa-Ba Bbr Flow
had 29.09%, and Pa-Ba Cubic Flow had 28.85%. To address
this, the procedure involved identifying the longest contiguous
sequence without measurement failures. From this sequence,
values were randomly extracted to represent approximately the
same percentage as the missing data. Subsequently, imputation
techniques were applied to each series, followed by the cal-
culation of RMSE for the generated values compared to the
original values. This approach aimed to assess the quality of
generating new observations using the imputation techniques
compared to the existing original values.

C. Training of AI Models

Regarding the training of the forecasting model, time series
representing end-to-end flow between the same two commu-
nication points were used. After the analysis and application
of imputation techniques for each generated series, 80% of
the series were set aside for training and 20% for testing and
model validation, approximately 560 and 140 cycles, respec-
tively. The series underwent four rounds of different training,
varying the parameters of LSTM and GRU models to evaluate
the performance of each forecasting model. Regarding the hy-
perparameters used in the models (available in the repository),
a model selection process (GRU and LSTM) employed the
grid search technique. This technique systematically explores
a series of predefined hyperparameters to identify the optimal
combination for each model.

Therefore, the four imputation techniques described in Sec-
tion III-A were applied to each of the following time series:
MG-RS Cubic Flow, MG-RS BBR Flow, PA-BA Cubic Flow,
PA-BA BBR Flow, PR-AM Cubic Flow, and PR-AM BBR
Flow, totaling 24 resulting time series with filled values. After
this, all resulting series underwent the adaptive forecasting
process focusing on LSTM and GRU models that showed bet-
ter performance in forecasting. Finally, RMSE was calculated
for each forecasting result compared to the actual values.

D. Evaluation Methods

Regarding evaluation methods, two metrics were analyzed
during the experiments:

• Accuracy in Performance Ranges: Internet Providers
typically establish performance ranges to categorize mea-
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surements, aiming to mitigate fluctuations in performance
during evaluations and to emphasize thresholds based
on service requirements that utilize the network [24].
We defined five throughput value ranges based on the
framework used in RNP’s MonIpe: Red for values less
than 0.2 Gbit/s; Orange for values in the range [0.2; 0.5]
Gbit/s; Yellow for values in the range [0.5; 0.8] Gbit/s;
Blue for values in the range [0.8; 1.0] Gbit/s; and Green
for values greater than or equal to 1.0 Gbit/s. These
ranges establish an accuracy criterion: If the forecasted
value falls within the same range as the actual value,
it is considered correct forecasting; otherwise, it is a
deviation.

• Root Mean Square Error (RMSE): To more accurately
evaluate the imputation techniques and the performance
of forecasting models against real values, RMSE was
used. This allowed validation of the values generated
by the techniques and assessment of the forecasting
model using the same imputation methods. RMSE for
a given period T is defined by Equation 1, where ŷt
represents the forecast value and yt denotes the actual
performance value at time t. In the context of the RMSE
metric, higher values indicate less accurate imputation
performance from the approach.

RMSE(T ) =
1√
T

(
T∑

t=1

(ŷt − yt)
2

) 1
2

(1)

Accuracy and RMSE are essential evaluation metrics in
forecasting experiments due to their distinct ways of measuring
model performance, providing complementary insights into
model performance. While accuracy gives a broad sense of the
model’s reliability in predicting categorical outcomes, RMSE
offers a detailed measure of prediction quality for continuous
variables, highlighting larger errors that may need attention.
Together, these metrics enable a comprehensive evaluation
of forecasting models, helping researchers and practitioners
understand both the overall success rate and the magnitude of
errors, ultimately guiding the refinement and improvement of
forecasting methods.

V. RESULTS

This section presents the results obtained from the analysis
of experiments conducted with a real dataset, where Subsec-
tions V-A and V-B discuss the main points regarding data
imputation actions and performance forecasting, respectively.

A. Analysis of Data Imputation Methods

Regarding data imputation, Figure 2 illustrates the compari-
son of each technique with the original data using RMSE. For
example, Cubic traffic was used due to its high variability and
greater difficulty in forecasting exact values. Thirty percent
of values were randomly removed (representing the general
order of missing data in collected measurements) within a
narrow and regular interval of 18 and 35 values for MG-
RS, PR-AM, and PA-BA, respectively. It is worth noting that

data imperfections are common, resulting in irregularities that
especially affect temporal analysis aspects.

Fig. 2. Results of RMSE for Data Imputation.

It is observed that the dense data distribution in the cases
of PA-BA and PR-AM (for Cubic traffic) reduces the need for
imputation within narrow intervals, making accuracy calcula-
tions based on specific intervals less informative as a result.
Consequently, the RMSE metric tends to be higher in such
situations due to limited room for substantial improvements
through imputation techniques. Therefore, regarding data im-
putation efficiency, the Moving Average and KNN stand out
with lower RMSE values. However, it is important to note
that these methods still result in imputation errors, even if
reduced. Thus, it is necessary to understand the impact of
these imputations on the forecasting process.

B. Evaluation of Forecasting Process

This section presents the results obtained from the analysis
of experiments conducted with real datasets from the imputa-
tion techniques described earlier.

Analyzing Figure 3, it is possible to notice that, overall,
for the communication points PA-BA, the forecasting models
achieved satisfactory levels of error, with RMSE values rang-
ing between 50 and 250 Mbits/s. The TCP Cubic, due to its
”aggressive” congestion window behavior, which complicates
model adjustment for forecasting, leads to increased errors
in all cases, as this behavior causes significant variation in
the collected measurements. It is important to note that for
TCP BBR, the forecasting models achieved very satisfactory
RMSE results, outperforming TCP Cubic in all cases, as both
forecasting models reached the lowest error values, with the
GRU showing a slight advantage over LSTM in all cases.

It can be observed in Figure 3 that the factor that most
influences the forecasting outcome is exactly the imputation
technique applied to the data. The variation in some techniques
produces similar results, especially Linear Interpolation and
KNN, which proved efficient for both cases.
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TABLE I
ACCURACY OF FORECASTING PROCESS FOR PERFORMANCE RANGE DEFINITION

AI Model
Comm. Points PA-BA BBR PA-BA Cubic PR-AM BBR PR-AM Cubic MG-RS BBR MG-RS Cubic

GRU - Linear Interpolation 94.9% 62.7% 93.9% 86.2% 99.8% 54.1%
GRU - KNN 94.2% 64.9% 97.7% 90.0% 99.4% 54.3%
GRU - Moving Average 19.4% 24.4% 18.9% 18.9% 99.2% 52.6%
GRU - Moving Median 92.0% 39.4% 98.4% 91.6% 99.2% 52.6%
LTSM - Linear Interpolation 94.9% 59.8% 93.1% 83.9% 99.2% 54.1%
LTSM - KNN 94.2% 69.3% 96.2% 90.1% 99.2% 54.1%
LTSM - Moving Average 25.8% 25.1% 19.6% 19.6% 99.4% 52.3%
LTSM - Moving Median 92.0% 44.5% 95.4% 90.0% 99.8% 53.2%

Fig. 3. RSME of Forecasting Process.

It can be observed that there is a similarity in the perfor-
mance of the model using Linear Interpolation, KNN, and
Moving Median for the PR-AM communication points. Al-
though KNN is a recognized Artificial Intelligence technique,
it performs similarly when compared to Linear Interpolation,
for example, which is a less sophisticated technique. In both
cases, the Moving Average shows the worst performance when
considering the forecasting process in all scenarios. This is a
relevant observation, considering that it was noted in Section
V-A that, in general, the same technique was the closest to
the actual measurement values. This reinforces that a narrow
range of occurrences cannot effectively represent the efficacy
of techniques.

It is possible to note that for all communication points,
according to Table I, the accuracy was suitable for most AI
techniques with data imputation. The exception of this scenario

was the moving average method. From a strategic perspective,
accurate forecasts support long-term planning and strategic
decision-making by providing reliable data on performance
trends and future demands. It also aids in identifying net-
work weak points, managing risks, and ensuring compliance
with service level agreements. Moreover, accurate forecasting
supports deploying new technologies and services, ensuring
the network can scale efficiently in response to increasing
demands and fostering business growth and innovation.

To provide visual feedback, Figure 4 illustrates one pre-
diction case compared to the measurements, illustrating the
model’s fit to the original data for the PA-BA throughput, using
one of the forecasting cases as an example. It can be observed
that the LSTM and GRU forecasting models achieve good
results against the selected test values, accurately capturing
fluctuations and long-term dependencies. The robustness of
using Neural Networks shows that the forecasting models
still recognize patterns with high precision even though they
occur over imputed data and adapted time series. They can
extrapolate future values with quality, indicating an adequate
generalization capability for this context.

Fig. 4. Example of Forecasting Model.

From the experimental analysis conducted in this paper, it
is possible to conclude that the forecasting models provide a
significant advantage for ISPs since it is possible to understand
future network performance (that affects issues like SLA, QoS,
and QoE). It is also noted that despite its efficiency, the step
of removing cycle errors could be revisited to maximize its
effectiveness on datasets with numerous outliers.
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VI. CONCLUSION

The evaluation of network performance is an action aimed at
acquiring relevant data for the strategic planning of companies
and Internet service providers. The ability to forecast this
performance becomes an essential functionality to ensure the
effectiveness of services operating on the network, directly
contributing to the user experience in this context. However,
the process of forecasting performance is complex, especially
given the current reality of measurement failures, which lead
to gaps in data and consequently hinder the execution of more
complex tasks.

To address this situation, this article presented an adaptive
and resilient model for network performance forecasting.
This model identifies measurement failures and utilizes data
imputation techniques to prepare the data for the forecasting
process, based on Neural Networks and Time Series Analysis.
The experiments conducted using real data from the National
Research and Education Network (RNP) demonstrate that
the proposed solution achieves high levels of accuracy in
forecasting with imputed data. Thus, the proposed solution
enables network administrators and ISPs to plan network
infrastructure and to perform actions to improve QoS delivered
from the network communication.

As future work, the aim is to evolve the solution to consider
multivariate time series, including other types of network
measurements such as latency and packet loss. Additionally,
there is interest in exploring the behavior of the solution using
combined machine-learning models.
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