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Abstract—In this paper, we explore usage patterns for the
identification of IoT devices and their corresponding states.
Machine Learning (ML) methods are trained on IoT device traffic
patterns to recognize the state that the device is in. Three device
states are the focus of this study - Power-up, Idle and Active.
Devices are visible and open to cyber attacks from the moment
they are powered on. Previous studies have focused primarily on
identifying IoT devices which are in the active state. This study
advances the research domain by exploring all three states of an
IoT device. Eight different ML algorithms are evaluated using
three different feature sets extracted from device network traffic,
using flow analysis tools - Tranalyzer2, NFStream and Zeek. They
are rigorously assessed to accurately identify diverse IoT devices
under normal operational conditions over the aforementioned
three states. .

Index Terms—IoT Identification, State Detection, AI/ML, Ro-
bustness, Generalization

I. INTRODUCTION

By 2025, industry reports estimate that there will be a
staggering 27 billion connected IoT devices worldwide [1]. In
this new era of a hyper-connected world, the ability to identify
and model the behaviours of IoT devices is an important step
to guarantee smooth and secure network operations.

In this research, we continue from our previous work
[2] by exploring the intricacies of IoT device identification
across three states, namely Power-On, Idle and Active. Our
goal is to provide valuable insights that can guide strategies
for efficient network operations, robust security measures,
and streamlined governance of the IoT ecosystem. To this
end, we evaluated nine widely used IoT devices namely
- Amcrest Camera, Smarter Coffeemaker, Ring Doorbell,
Amazon Echodot, Google Nestcam, Google Nestmini, Kasa
Powerstrip, Samsung 32 inch Smart Television (TV), and
Amazon Smartplug, under three states. IoT network traffic
data was generated and captured on our testbed where all
communication occurred over IEEE 802.11 (WiFi) in 2.4GHz
channels. Eight Machine Learning (ML) algorithms were
studied and trained using statistical and metadata exported by
the Tranalyzer2 [3], NFStream [4] and Zeek [5] flow analysis
tools. IoT devices in the testbed were instrumented such that
both manual and automated methods were utilized for data
generation and collection.

The main objective of this research is to assess the ro-
bustness, generalization and efficacy of ML models utilized
to identify IoT devices and their state based on their net-
work traffic characteristics, i.e. without deep packet inspection
(DPI). We believe that this will enable the models to generalize
well from one network to another. The proposed approach
can also operate successfully in environments where DPI
faces challenges such as when IoT devices utilize encrypted
communication. During the study, the default settings of both
the ML models and flow analysis tools were utilized, allowing
evaluation of performance in real-world settings without any
manual tuning or adjustment. The following methodology was
utilized to address the following five challenges:

• Creating a realistic testbed to emulate real-world usage
of devices under their three states.

• Evaluating the best metadata and ML model combination
for IoT device and state usage pattern identification.

• Analyzing the most important features contributing to
the identification of IoT devices and states.

• Demonstrating the generalization and robustness of
device and state identification by (i) evaluating them on
unseen data from the same network, and (ii) on unseen
data captured from different networks.

• Providing the datasets publicly available to the research
community for the reproducibility and extensibility of the
research efforts in this field 1

To the best of authors’ knowledge, this is one of the first times
that the robustness and generalization of ML based models are
explored for IoT device and state identification based on usage
patterns without using deep packet inspection. The rest of this
paper is organized as follows. Section 2 summarizes the related
work. Section 3 introduces the methodology. Section 4 details
the evaluations and results. Finally, conclusions and the future
work are discussed in Section 5.

II. RELATED WORK

This section highlights existing solutions in the literature
for device identification in IoT networks within the scope of

1The datasets can be access at: https://ieee-dataport.org/documents/nims-
benign-dataset-2024-2
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this work. Meidan et al [8] applied ML models on network
traffic data for accurate identification of IoT devices connected
to a network. Using captured network traffic data from nine
IoT devices, two PCs and two Smartphones, they trained and
evaluated a two-stage classification system. Kolcun et al [9]
compared the accuracy of previously proposed ML models for
identifying IoT devices. They used packet traces collected over
a period of six months from a large IoT test-bed. They used a
combination of classifiers with 19 flow features. Mainuddin et
al [10] developed a ML based IoT device identification scheme
based on 70 features of TCP flows. Ren et al. [12] reported
on a multidimensional analysis of information exposure from
IoT devices between IoT labs in the US and UK. They per-
formed both automated and manually controlled experiments,
characterizing information exposure based on Internet traffic
destinations, encryption of communication contents, inference
of IoT-device interactions from such content, and identification
of unexpected exposures of private or sensitive information.
Loginov et al. [11] employed an ML based approach on
four publicly available consumer IoT traffic traces to explore
the nature and extent of potential data exposure as well.
They proposed a feature set for use with the models and
evaluated it against other feature sets. Zain et al. [7] utilized
the NFStream flow analyzer to extract 85 features from PCAP
files. They selected 20 features using the information gain
method, and trained six classifiers on four publicly available
datasets. Erefani et al. [14] proposed a framework to enrich
IoT datasets in two directions: Vertical and Horizontal. The
former direction merged different public IoT datasets while the
latter proposed a new set of features to represent the behavior
of IoT devices across different environments. Sivanathan et
al. [15] developed a ML based classification approach and
provided insights for operators to monitor and secure IoT
assets in smart environments without the need for specialized
tools or devices. In summary, existing literature has conducted
research into methods to analyze network traffic in order
to differentiate IoT traffic from non-IoT traffic and identify
different IoT devices within the traffic. In contrast, in this
paper, we extend our previous work [2] for detecting the
state of an IoT device identified using machine learning
based approach. Furthermore, we evaluate the robustness and
generalization of the proposed identification model on new test
datasets (not seen during training) from the same and different
networks.

III. METHODOLOGY

This section introduces the proposed framework used in the
study, the capture of IoT device and state traffic, extraction
of metadata, utilization of data engineering techniques, and
evaluation of ML models.

A. Proposed Framework

The Figure 1 illustrates an overview of the proposed frame-
work. In the framework, the testbed we used for this study
is built upon our previous work [2]. The nine IoT devices
deployed in the testbed were connected via a Wi-Fi based IP

network. They collectively constitute to five categories, and
represent seven brands.

Fig. 1: Proposed Framework

Significant effort was expended to generate traffic and cap-
ture it for the training and testing of ML models. The capture
process utilized a Lenovo Legion desktop and a Lenovo
ThinkPad Laptop, both running Ubuntu 20.04, as servers.
Each system was equipped with two network interfaces, with
one specifically designated for communicating with the IoT
devices.

B. Capturing Device State
Traffic generation and capture was performed for all devices

individually without any interference from other devices or
networks. The captured traffic represented all three states of
interest. The parameters used for defining the states are as
follows:

• Power-up: Captured during the initial 50 seconds from
the moment the device is powered on, allowing for the
establishment of necessary connections. This process was
repeated 10 times for each device.

• Idle: Captures span 50 minutes of idle time in a quiet
environment. The captures were executed 10 times for
each device. This resulted in a cumulative total of 500
minutes of idle data for each device.

• Active: Similar to the Idle state, this involved capturing
50 minutes of real human activities and communication
with a device. These were repeated 10 times. Multiple
continuous realistic activities were executed to generate
traffic throughout the data capture. These activities in-
clude background noise, music, visible movement, in-
termittent commands for audio speakers such as setting
alarms or asking for directions, bell notifications, com-
munications with the devices as well as audio and visual
streaming.
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In short, traffic was captured for 50 seconds for Power-up
and 50 minutes for Idle and Active. This capture was repeated
10 consecutive times for each device. The background traffic
from non-IoT devices was also captured during this time.
Default configurations were utilized for all the devices. Tables
I, II, and III show the captured device statistics for all three
states.

TABLE I: Power: Device Statistics - 10 iterations combined

Devices Packets T2 Flows NFStream Zeek
Amcrest 2059 657 355 345
Coffeemaker 518 82 31 31
Doorbell 3085 324 168 171
Echodot 10872 1283 667 675
Nestcam 55585 679 334 325
Nestmini 15787 995 536 526
Powerstrip 1321 238 110 115
Samsung TV 61573 1987 1028 1018
Smartplug 265 48 15 15
Total 151065 6293 3244 3221

TABLE II: Idle: Device Statistics - 10 iterations combined

Devices Packets T2 Flows NFStream Zeek
Amcrest 11981 2965 1487 1465
Coffeemaker 3018 78 39 28
Doorbell 1154 359 119 30
Echodot 97336 2677 1506 1463
Nestcam 41871 538 302 280
Nestmini 37505 2657 1468 4406
Powerstrip 1784 604 231 366
Samsung TV 429615 19973 16839 16753
Smartplug 4159 133 59 49
Total 628423 29984 22050 24840

TABLE III: Active: Device Statistics - 10 iterations combined

Devices Packets T2 Flows NFStream Zeek
Amcrest 3375368 3211 1694 1656
Coffeemaker 4680 78 39 29
Doorbell 3521834 914 446 389
Echodot 683569 4145 2222 2147
Nestcam 5175502 10018 5121 5098
Nestmini 615622 4796 2614 5457
Powerstrip 1723 587 229 367
Samsung TV 7757693 25987 20399 20506
Smartplug 4091 124 54 44
Total 21140082 49860 32818 35693

C. Extracting Metadata

In this work, metadata is extracted using three open-source
flow analysis tools (NF-Stream, Tranalyzer2, and Zeek) were
deployed with their default configuration. Tables IV and V
provide a summary of the captured traffic with and without
the background traffic.

Exporting Flows with NF-Stream: Following the results
in [2], NFStream was installed using its default configuration,
which resulted in the tool extracting 38 features for each
5-tuple flow. During data engineering, 18 potentially biased
features were identified and excluded, resulting in 20 per-flow
features utilized for model building, validation and testing. .

Exporting Flows with Tranalyzer2 (T2): T2 was installed
using its default configuration of 10 plugins which resulted in
the tool extracting 110 features for each 5-tuple flow. During
data engineering, 36 potentially biased features were identified
and excluded, resulting in 74 per-flow features utilized for
model building, validation and testing.

Exporting Flows with Zeek: Zeek was deployed as the
third system in the proposed framework. By default Zeek
extracted 21 features for each 5-tuple flow. During data
engineering, 8 potentially biased features were identified and
excluded, resulting in 13 per-flow features utilized for model
building, validation and testing.

TABLE IV: Packets and Flows count with background traffic

Devices Packets T2 NFStream Zeek
Amcrest 4315562 47280 25114 25958
Coffeemaker 2968871 13134 7384 7591
Doorbell 2364955 44860 25129 27386
Echodot 1477270 10930 6367 6228
Nestcam 4198297 3907 2347 2829
Nestmini 1433127 12138 6982 9103
Powerstrip 910925 3990 2247 2294
Samsung TV 2249597 12960 8382 8255
Smartplug 2922809 23266 12945 13047

TABLE V: Packets and Flows count with no background traffic

Devices Packets T2 NFStream Zeek
Amcrest 1348168 1734 938 905
Coffeemaker 1917 26 22 13
Doorbell 366841 154 124 116
Echodot 706099 2508 1310 1283
Nestcam 1868505 198 129 275
Nestmini 466827 1943 1208 2924
Powerstrip 363 34 22 19
Samsung TV 1559366 7002 5144 5055
Smartplug 2431 70 44 35

D. Data Engineering

There is a lack of clear standards, and guidelines for data
preprocessing pipelines for IoT traffic in the literature [18].
This study seeks to contribute insights into useful elements to
be included in such pipelines which are utilized for AI-based
modeling endeavours. In this work, our goal is not Deep
Packet Inspection, rather identifying usage patterns on the
basis of 5-tuple flow metadata - primarily extracted in the
form of statistics which represent flow traffic characteristics.
We believe that this will not only enable our ML models
to generalize well from one network to another, but also
will potentially enable us to employ such an approach for
the identification of IoT device and state even when the
device utilizes encrypted traffic communication. As a result,
MAC addresses, IP addresses, port numbers, and similar
identifiers are removed from the metadata once the packets
are exported to flows. We also dropped duplicate flows to
eliminate redundancy.
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IV. EXPERIMENTS AND RESULTS

In this paper, evaluations are conducted using three flow
analysis tools and eight ML models. The ML models employed
are based on the following algorithms: Decision Tree (DT), K-
Nearest Neighbor (KNN), Naive Bayes (NB), Support Vector
Machine (SVM), Multi-layer Perceptron (MLP), Random For-
est (RF), Logistic Regression (LR) and Gradient Boost (GB).
All the tools and models are set up using default parameters.
ML models are trained on a randomly selected subset of the
data captured (70%) and tested on the remaining data which
was not used during training (30%). Additional datasets are
used for further testing purposes to evaluate the generalization
and robustness of the best features and ML model combina-
tion. The weighted average of the following metrics are used
to evaluate performance: Precision (1), Recall (2), and F1-
Score (3).

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1− Score = 2× precision× recall

precision+ recall
(3)

TP: Instances correctly classified as belonging to a specific
class.
FN: Instances incorrectly classified as not belonging to a
specific class.
FP: Instances incorrectly classified as belonging to a specific
class.

A. Analyzing ML models on Flow Exported Metadata

Tables VI, VII, and VIII show the weighted average of the
evaluations performed to identify IoT devices using eight ML
models and the T2 traffic flow metadata as the feature set under
Power-On, Idle and Active states respectively. Based on these
results, the RF model achieves best performance for all three
states across all devices. As an example, Figure 2 depicts the
confusion matrix for the RF model with the T2 features for the
IoT devices in active state on the test data. Additionally, eval-
uations were conducted using NFStream and Zeek traffic flow
metadata, where RF again achieved the highest performance-
results are presented in Table IX. Due to the maximum page
constraints, we present only the best performing model results
for NFStream and Zeek. Overall, these results demonstrate
that it is possible to identify an IoT device and its state with a
high Precision, Recall, and F1-score. Figure 3 presents a Venn
diagram presenting the top contributing T2 features used by
the RF model for identifying usage patterns of IoT devices and
their corresponding states. The top features are selected based
on Gini impurity. Table X presents the performance of the
best metadata and ML model combination per IoT device and
state. To this end, the RF model utilizing T2 based metadata
achieves the highest performance for identifying the device

TABLE VI: Device Usage Pattern Identification: Under Power
State using T2 Features

Classifier Split F1-Score Precision Recall Accuracy

DT Training 99.88% 99.88% 99.88% 99.88%
Testing 96.64% 96.64% 96.65% 96.65%

KNN Training 77.53% 78.37% 77.73% 77.73%
Testing 68.63% 69.15% 69.15% 69.15%

NB Training 6.57% 9.03% 9.68% 9.68%
Testing 6.18% 8.33% 9.45% 9.45%

SVM Training 21.25% 19.09% 33.46% 33.46%
Testing 20.61% 18.22% 32.63% 32.63%

MLP Training 34.86% 45.39% 36.47% 36.47%
Testing 35.36% 44.97% 36.52% 36.52%

RF Training 99.88% 99.88% 99.88% 99.88%
Testing 98.16% 98.16% 98.16% 98.16%

LR Training 19.20% 14.64% 27.90% 27.90%
Testing 19.98% 15.23% 29.01% 29.01%

GB Training 99.84% 99.84% 99.84% 99.84%
Testing 97.36% 97.36% 97.35% 97.35%

TABLE VII: Device Usage Pattern Identification: Under Idle
State using T2 Features

Classifier Split F1-Score Precision Recall Accuracy

DT Training 99.87% 99.88% 99.87% 99.87%
Testing 98.53% 98.55% 98.52% 98.52%

KNN Training 94.63% 94.68% 94.66% 94.66%
Testing 92.62% 92.67% 92.68% 92.68%

NB Training 5.91% 8.68% 12.84% 12.84%
Testing 6.03% 8.59% 12.96% 12.96%

SVM Training 59.64% 54.94% 70.23% 70.23%
Testing 59.79% 54.92% 70.32% 70.32%

MLP Training 67.82% 72.22% 73.87% 73.87%
Testing 68.34% 74.75% 74.30% 74.30%

RF Training 99.87% 99.87% 99.87% 99.87%
Testing 98.98% 98.99% 98.98% 98.98%

LR Training 53.79% 49.55% 59.87% 59.87%
Testing 53.74% 49.60% 59.75% 59.75%

GB Training 99.42% 99.43% 99.42% 99.42%
Testing 98.84% 98.86% 98.84% 98.84%

TABLE VIII: Device Usage Pattern Identification: Under
Active State using T2 Features

Classifier Split F1-Score Precision Recall Accuracy

DT Training 99.96% 99.97% 99.96% 99.96%
Testing 98.86% 98.86% 98.86% 98.86%

KNN Training 92.78% 93.23% 92.83% 92.83%
Testing 91.26% 91.68% 91.32% 91.32%

NB Training 7.76% 12.76% 11.26% 11.26%
Testing 7.82% 13.13% 11.27% 11.27%

SVM Training 44.07% 41.44% 56.07% 56.07%
Testing 44.10% 41.76% 56.12% 56.12%

MLP Training 66.40% 76.02% 65.36% 65.36%
Testing 66.46% 76.03% 65.36% 65.36%

RF Training 99.96% 99.96% 99.96% 99.96%
Testing 99.43% 99.45% 99.43% 99.43%

LR Training 41.49% 36.33% 48.57% 48.57%
Testing 41.49% 36.28% 48.63% 48.63%

GB Training 99.58% 99.59% 99.58% 99.58%
Testing 99.10% 99.10% 99.10% 99.10%
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and state usage patterns. These results show that RF with the
74 feature of T2 achieves an average F1-score of 93%.

Fig. 2: Confusion Matrix of the Test Data for
Device Usage Pattern Identification under the
Active State with RF using T2 Metadata

Fig. 3: Top T2 Features used for State Identification of Devices

B. Generalization and Robustness

While these results are very impressive, we sought to better
understand how well the models will perform, in terms of
generalization and robustness. Thus, we evaluated the best
performing ML models under two additional new test condi-
tions: (i) New Test Data from the same network, and (ii) New
Test Data from a different Network [12]. In the following, we
develop 3 different RF models, one each with T2 features,
NFStream features and Zeek features.

TABLE IX: Device Identification: RF with NFStream and
Zeek based Metadata Features under three States

RF-State Split F1-Score Precision Recall Accuracy
NFStream

RF-Power Training 100.00% 100.00% 100.00% 100.00%
Testing 100.00% 100.00% 100.00% 100.00%

RF-Idle Training 99.66% 99.66% 99.66% 99.66%
Testing 98.75% 98.76% 98.76% 98.76%

RF-Active Training 100.00% 100.00% 100.00% 100.00%
Testing 99.93% 99.94% 99.94% 99.94%

Zeek

RF-Power Training 97.76% 98.04% 97.91% 97.91%
Testing 93.55% 93.90% 93.69% 93.69%

RF-Idle Training 98.94% 98.98% 98.97% 98.97%
Testing 97.88% 97.88% 97.91% 97.91%

RF-Active Training 99.65 99.67% 99.65% 99.65%
Testing 98.61% 98.66% 98.64% 98.64%

TABLE X: Device-State Results using T2 features

Label F1-Score Precision Recall Accuracy
amcrest active 0.90 0.91 0.89 0.89
amcrest idle 0.90 0.89 0.91 0.91
amcrest power 0.99 0.99 0.99 0.99
coffeemaker active 0.69 0.67 0.70 0.70
coffeemaker idle 0.74 0.80 0.70 0.70
coffeemaker power 0.85 0.94 0.77 0.77
doorbell active 0.89 0.90 0.88 0.88
doorbell idle 0.66 0.64 0.68 0.68
doorbell power 0.81 0.77 0.86 0.86
echodot active 0.90 0.89 0.90 0.90
echodot idle 0.83 0.84 0.82 0.82
echodot power 0.94 0.93 0.94 0.94
nestcam active 1.00 1.00 1.00 1.00
nestcam idle 0.88 0.88 0.89 0.89
nestcam power 0.89 0.89 0.89 0.89
nestmini active 0.90 0.90 0.91 0.91
nestmini idle 0.81 0.80 0.82 0.82
nestmini power 0.93 0.93 0.94 0.94
powerstrip active 0.45 0.42 0.49 0.49
powerstrip idle 0.41 0.43 0.39 0.39
powerstrip power 0.97 0.96 0.97 0.97
samsungtv active 0.95 0.95 0.95 0.95
samsungtv idle 0.94 0.94 0.93 0.93
samsungtv power 0.94 0.93 0.94 0.94
smartplug active 0.34 0.42 0.29 0.29
smartplug idle 0.27 0.30 0.24 0.24
smartplug power 0.90 0.90 0.90 0.90
Macro avg 0.81 0.81 0.81 0.81
Weighted avg 0.93 0.93 0.93 0.93

1) New Test Data - Same Network: In this case, we
evaluated the model on a new test traffic dataset captured in
our testbed (same network). However, this new test data is
captured at a different time period, collected under a different
setup, and configuration of the testbed. This time around, a
Raspberry Pi is added to the testbed in addition to the nine
IoT devices used. Then, the devices are assigned static IP
addresses, and traffic is generated for continuous five (5)
hours. Statistics of the data can be found in Tables IV and
V. The trained RF model used in the evaluations above is
then tested on this new test data for identification of IoT
devices and their states. Three RF models are developed -
one each for T2, NF-Stream and Zeek features. Table XI
shows the results on this new test data from the same network
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(testbed) which includes a different time period and under
a different setup as discussed above. While performances of
models using NFStream and Zeek based features decreases,
the model with T2 features generalize well for the Idle and
Active states. Figure 4 shows the confusion matrix of the
model for the IoT devices in Active state. This demonstrates
the high performance of the model on this new test data while
also showing where the model could be improved further in
terms of Echodot and Nestmini with Samsungtv. We do note,
however, for the Power-on state, performance of all three RF
models for different flow tool features all perform poorly.

Fig. 4: Confusion Matrix of the New Test Data
- Same Network: RF with T2 in Active State

TABLE XI: Performance of trained RF model on New Test
Data - Same Network

RF-State F1-Score Precision Recall Accuracy
Tranalyzer

RF-Power 36.44% 63.47% 35.27% 35.27%
RF-Idle 87.93% 88.97% 88.65% 88.65%

RF-Active 91.13% 92.20% 91.10% 91.10%
NFStream

RF-Power 2.05% 1.13% 10.64% 10.64%
RF-Idle 0.67% 0.35% 5.94% 5.94%

RF-Active 0.06% 0.03% 1.70% 1.70%
Zeek

RF-Power 30.76% 36.72% 35.30% 35.30%
RF-Idle 52.05% 58.91% 51.93% 51.93%

RF-Active 14.51% 19.84% 12.87% 12.87%

2) New Test Data - Different Network: To further test
the robustness of our models, we conducted an additional
evaluation using a public dataset [12]. In this case, the public
dataset was collected on a different network with different
configuration, at a different time. This new test data included
six devices that were similar to the devices employed on our
testbed network, namely Amcrest Camera, Echodot, Nestmini,
Ring Doorbell, Samsung TV, and Coffeemaker. Despite their
similar characteristics and functions, the devices exhibited
notable differences in their emitted data. For instance, in the

public dataset, the Samsung TV and Amcrest Camera utilized
Ethernet connections, whereas on our testbed they used wire-
less connections. Additionally, the Nestmini and Coffeemaker
were of different or previous generations compared to the
ones used on our network. In the robustness evaluations, our
goal is to explore whether these differences would affect the
performance of the previously trained ML models with T2
features on this new test data from a different network, and to
what extent. Table XII shows that among the ML models with
T2 based metadata features trained previously on our testbed
network data, RF with T2 is again the best performing model
on this new test data from a different network and time period.
However, the performance of RF with T2 model drops from
91% F1-Score test performance on ’new test data from the
same network’ to 65% F1-Score test performance on ’new
test data from a different network’ for identifying devices in
active state. This seems to indicate that differences in network
connections, and IoT device editions do affect the robustness
and generalization of the RF model. We believe that these
differences result in different IoT device usage patterns in the
metadata yielding into almost a 25% drop in the performance
of the trained model in identifying IoT devices and states on
new test data from a different network. Further research will
explore how to augment the training data to enhance the best
identified models.

TABLE XII: Performances of trained ML Models with T2 on
New Test Data - Different Network

Classifier F1-Score Precision Recall Accuracy
DT 47.74% 47.74% 40.36% 40.36%

KNN 19.08% 71.26% 12.73% 12.73%
NB 2.74% 1.55% 12.08% 12.08%

SVM 64.16% 58.14% 71.58% 71.58%
MLP 41.18% 58.26% 32.53% 32.53%
RF 64.65% 69.56% 61.16% 61.16%
LR 47.26% 52.29% 43.39% 43.39%
GB 44.10% 70.92% 33.50% 33.50%

V. CONCLUSION AND FUTURE WORK

The Internet of Things (IoT) stands at the forefront of the
hyper-connected world of networks, yet its growth outpaces
the security and defence mechanisms, which precipitates the
need for more comprehensive research across the field of
IoT networks. With IoT devices expanding in quantity and
type rapidly across homes, hospitals, offices, and various
industries, understanding the cybersecurity implications is very
important. Thus, the objective of this research was to evaluate
the robustness, generalization and efficacy of ML models for
identifying different IoT devices and their states based on
their network traffic usage patterns. This was explored without
employing deep packet inspection, enabling the approach to
be utilized for the identification IoT devices and states even
when they utilize encrypted communication. To achieve this,
we designed, developed and evaluated: (i) A testbed network
to emulate real-world usage of IoT devices under three states,
namely Power-up, Idle and Active; (ii) Explored the best flow
features and ML model combination for IoT device and state
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usage pattern identification; (iii) Analyzed the most important
features contributing to the identification of IoT devices and
their states; (iv) Analyzed the generalization and robustness
of device and state identification by evaluating the best model
on unseen data from the same network, and on unseen data
from a different network; and (v) Made the datasets generated
publicly available to the research community. To this end,
a testbed network was deployed with nine IoT devices and
traffic was captured during the three states recording over
1000 minutes per device. The evaluations included three flow
analysis tools with eight ML models trained and used to
identify the IoT devices and states. The results show that it
is possible to identify consumer IoT devices and states using
only traffic flow metadata without reliance on deep packet
inspection, source/destination MAC addresses, IP addresses or
Port numbers. The RF model with T2 based metadata features
achieved the best performance in terms of F1-Score across
all test datasets. In particular, this trained model achieved a
91% F1-Score for IoT device identification when in the Active
state- in scenarios where the new test data from the same
network as the one it was trained on. This shows that the
model generalized well for the same network even though the
new test data was captured at a different time period and
network setup. However, the same model achieved an F1-
Score of 65% when tested on new data from a totally different
network (time period and set up). This seems to indicate that
the model’s robustness decreases as the network connections
and IoT devices editions change. For future work, it is crucial
to continue to test the strength and feasibility of the models
on data captured or generated in different environments. To
this end, we aim to explore how to augment the training data
to enhance the generalization and robustness capabilities of
the model. Furthermore, we aim to study the complexity and
explanability of the ML models to improve the generalization
ability. Another avenue that will be explored is the drifts and
shifts in the usage patterns over time. We believe that these
will equip the security experts with a comprehensive view of
device and state identification under various configurations,
environments and attack scenarios.
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