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Abstract—Given the importance of robustness and resilience
in emerging cloud-native networks, effective monitoring for fault
detection is paramount and In-band network telemetry (INT) is
a key candidate that enables real-time and fine-grained network
monitoring with a programmable data plane. However, INT
increases bandwidth overhead because network information is
inserted directly into the packet header. In this paper, we propose
a quantized INT (QINT) to effectively reduce overhead by consid-
ering the distribution of raw data. In QINT, the programmable
switch encodes a raw telemetry item into a quantized bit stream
using the Huffman coding scheme. To do this, QINT monitors
the distribution of network telemetry items and encodes high-
frequency data that are generated most of the time in a few
bits. We implemented QINT on a programmable switch and
our experimental results demonstrate that QINT can reduce the
relative bandwidth usage by up to 60.6% compared to traditional
INT, respectively.

Index Terms—In-band Network Telemetry, Programmable
Data Plane, Network monitoring, P4.

I. INTRODUCTION

As technologies move toward emerging networks (e.g., 6G),
mobile network operators (MNO) are adapting new network
functions (NFs) and creating enhanced features based on
AI/cloud-native architecture (e.g., 6G mobile core network).
However, failure in such environments, especially in mission-
critical services such as autonomous driving and industrial
networks, may lead to serious accidents. In this context, it
is expected that emerging networks will be implemented as
robust and resilient to provide better quality of service (QoS)
and quality of experience (QoE) to customers [16], [17]. To
achieve this goal, real-time and fine-grained monitoring is
a crucial technology for fault prediction, detection, and root
cause analysis.

Programming protocol-independent packet processor (P4)
improves the flexibility of the PDP by enabling the desired
configuration of operations on networking devices such as
switches, routers, and network interface cards [1]. Due to this
flexibility of the programmable data plane (PDP), INT [2]
facilitates detailed and real-time monitoring of internal net-
work metrics such as link utilization, hop latency, and queue

occupancy within the data plane by embedding telemetry
information in packet headers. This telemetry item is then
transmitted to a collector, enabling more precise network
management.

To effectively monitor telemetry items, INT must ensure
both high accuracy and minimal bandwidth consumption [6].
Accuracy means that INT should provide detailed information
on each packet and accurate network telemetry details. This is
crucial as inaccuracies in INT can lead to significant errors in
network management, such as falsely identifying anomalous
traffic. On the other hand, minimal bandwidth overhead in-
dicates that INT should reduce its impact on standard data
traffic during monitoring. Otherwise, excessive monitoring
traffic could disrupt normal data flows, potentially leading to
congestion due to telemetry items included in packets.

Despite the high accuracy that traditional INT offers, it fails
to deliver low bandwidth overhead. This issue arises because
the conventional INT collection process necessitates each PDP
device along the route to include all telemetry items within the
packet header, which could result in considerable bandwidth
overhead and subsequent performance degradation [3], [6]. For
instance, when a packet passes through 5 hops in the fat-
tree topology and monitors three items (e.g., switch ID, hop
latency, and queue occupancy), it inserts 12 bytes of telemetry
items at each hop. Consequently, each packet carries 68 bytes
of telemetry items (e.g., 8 bytes for INT header and 60 bytes
for telemetry items of 5 hops), representing 4.53% of the
maximum transmission unit (MTU) size (e.g., Ethernet has a
1500 bytes MTU). This results in a 20% reduction in goodput
and a 25% increase in flow completion time [3].

To address this drawback, sampling-based INT [3], [4] and
encoding-based INT [5], [6] have been introduced. Sampling-
based INT schemes can reduce bandwidth overhead by insert-
ing telemetry items into only several packets in a selective or
probabilistic manner. For example, PINT [3] inserts telemetry
items in a probabilistic manner, and DeltaINT [4] inserts
telemetry items only when the difference between the current
value and the last stored value is greater than the threshold.
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These schemes are effective in reducing the bandwidth over-
head; however, they cannot provide high accuracy, since they
do not support per-packet and per-node telemetry. On the other
hand, encoding-based INT schemes can reduce bandwidth
overhead by collecting telemetry items with fewer bits that
can be decoded into the original monitoring information.
LightGuardian [5] inserts a skecthlet in the packet header
probabilistically with the flow-level telemetry item, and the
end host reconstructs the complete sketch from the inserted
sketchlets. However, it does not operate in a per-packet man-
ner. Although these non-per-packet approaches can efficiently
reduce bandwidth overhead, they cannot achieve full visibility
(e.g., path trace) [6] that is critical in network diagnosis with
INT. OffsetINT [6] provides a per-packet/node monitoring
system. It inserts offset bits which are fewer than the original
bits if the difference between reference value and current
monitoring value is smaller than the threshold. However, these
schemes collect telemetry items with static bit length without
considering the distribution of the telemetry item. To the
best of our knowledge, there is no existing work to reduce
bandwidth overhead with the flexible quantized bit length of
telemetry items while considering their data distribution.

Data compression is a widely used method to mitigate
bandwidth overhead by minimizing data size. This technique
allows data to be transmitted using fewer bits via various
encoding schemes [14], [15]. An efficient way to shrink data
size is by compressing the data based on the frequency of
each value. Thus, understanding the data distribution is crucial
for successful data compression. Concerning network states,
data variations are typically minor, except during microburst
traffic [4]. This suggests that most data are densely packed,
with only a minor portion being dispersed. In such scenarios,
encoding the highly frequent data into fewer bits offers more
significant bandwidth reduction benefits than doing the same
for less frequent data. Consequently, focusing on the data
frequency to compress the bulk of the data into fewer bits
is an effective strategy to reduce bandwidth consumption.

In this paper, we propose a novel quantized INT scheme
(QINT) that significantly reduces bandwidth usage by taking
into account the data distribution of telemetry items. Initially,
we examine the frequency of the data for each item using
per-packet telemetry information with the QINT configuration.
Subsequently, we adjust the size of the encoding sections with
flexible quantized levels determined by Huffman coding [7].
QINT minimizes bandwidth overhead by encoding high-
frequency data sections with fewer quantized bits. To collect
telemetry items with flexible sizes, we define a customized
packet header and implement QINT with P4. Experimental
results indicate that QINT can reduce relative bandwidth
usage by up to 60.6% compared to traditional INT, while
maintaining adequate accuracy with both per-packet and per-
node monitoring. Our source code is accessible through the
GitHub repository at https://github.com/Chanbin-Bae/QINT.

The remainder of this paper is organized as follows. We
explain the design of QINT in Section II. Then, we present
the results of the performance evaluation in Section III. Finally,

Fig. 1: System model of QINT.

we conclude the paper in Section IV.

II. DESIGN OF QINT

Figure 1 illustrates the QINT system model, which consists
of the control plane (i.e., QINT collector and QINT controller)
and the data plane (i.e., QINT switches). The control plane
collects per-packet trace with the original bits from the QINT
switches for a certain time interval (see the rectangular items
in Figure 1) and determines the QINT configuration. With this
trace and configuration, the control plane analyzes the distri-
bution of each telemetry item and determines the quantization
rules by constructing the Huffman tree. Along with the quan-
tization rules, the QINT switches insert their telemetry items
with the quantized bit stream (see the parallelogram items in
Figure 1). After that, the control plane receives the quantized
bit streams from the QINT switches and decodes them into
the corresponding telemetry items. Detailed operations of the
QINT control and data planes are described in Sections II-A
and II-B, respectively.

A. QINT control plane

Within the QINT control plane, the QINT collector archives
and supplies both the raw telemetry items and the quantized
telemetry items from the QINT switches. The raw telemetry
items are employed to formulate quantization rules during the
preparation phase, while the quantized telemetry items are
utilized to decode back into the equivalent telemetry items
in the quantization phase.

In the preparation phase, the QINT control plane first
determines the data section size, which is the configuration of
QINT, to formulate quantization rules with the raw telemetry
items. This data section size is used to establish the range
unit for quantizing telemetry items. Based on the data section
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Fig. 2: QINT packet header format. Fig. 3: QINT switch architecture.

size, the QINT controller divides the raw telemetry items into
ranges and then runs the Huffman algorithm to decide the
quantization granularity for each range. To run the Huffman
algorithm to build a Huffman tree, the QINT controller defines
nodes that are configured with symbols and weights. The sym-
bol of a node is configured as the data section, and the weights
are the telemetry item counts within that section. Then, the
QINT controller extracts two nodes with the smallest weights
and creates a new node with these extracted nodes as its child
nodes (e.g., the left child node as a small weighted node and
the right child node as a larger weighted node). The weight of
the created node is configured as the sum of the weights of its
child nodes. This process of creating a new node is repeated
until only one parent node remains. Once a single parent node
is left, the QINT controller assigns 1 to the left child node and
0 to the right child node, as shown in Figure 1. Consequently,
the QINT controller determines the quantization rules (i.e.,
the quantized bit stream and the bit count of the quantized
bit stream) along with the assigned bits in the Huffman tree
to reduce bandwidth overhead. Through the Huffman coding
scheme, QINT takes advantage of two aspects: effective data
compression and decoding. Most telemetry item values tend to
be highly concentrated [4], and the Huffman coding scheme
allocates fewer bits to higher frequency occurrences, enabling
monitoring of information with minimal bit usage in most
cases. Additionally, the QINT controller, being knowledgeable
about Huffman coding rules, can easily decode serialized
bits through the characteristics of the Huffman coding. The
last role of the QINT controller is to decode the quantized
telemetry items received in the quantization phase. With the
quantization rules, the QINT controller decodes the quantized
bit stream into the middle value of each data section.

B. QINT data plane

The QINT switch allows collecting INT data in quantized
bit streams with installed quantization rules. Due to the Huff-
man coding scheme, quantized bit streams have variable sizes
(e.g., 1 bit∼22 bits) depending on the value and frequency of
telemetry items. However, the P4 parser allows header parsing
at the byte level so that quantized bit streams cannot be parsed
flexibly. To address this issue, we define two additional headers

QintInfo and QintData, as illustrated in Figure 2, to insert
various sizes of quantized bit streams. The QintData header
is a pre-allocated space (i.e., 32 bits) used for stacking the
telemetry item by concatenating with the data from previous
hops. If the pre-allocated space is exceeded with the insertion
of the telemetry item of the current node, an additional
QintData header is added. To insert telemetry items properly,
the QINT switch need to know additional information, such
as how many bits are stacked in QintData and the number of
the QintData headers. To provide this information, we define
BitNum and SpaceNum fields in QintInfo. BitNum indicates
that how many bits are stacked in the current QintData, and
SpaceNum represents the number of stacked QintData headers.

Figure 3 shows the architecture of the QINT switch. Based
on this architecture, the QINT switch collects quantized
telemetry items with QintInfo and QintData. The operation
of the QINT switch is as follows. When a packet enters the
switch, the QINT switch classifies whether the current node is
a source node or a transit node. If the current node is the source
node, it sets QintInfo and QintData to be valid. Otherwise, the
QINT switch utilizes QintInfo to parse the QintData headers.
Specifically, the QINT switch leverages the SpaceNum filed
in the QintInfo header to parse the stacked QintData headers.
Next, the QINT switch then employs the decision table to en-
force the quantization rules. Through a range match operation,
the decision table evaluates the telemetry item of the current
node. Following this, it assigns an index to the register that
corresponds to the appropriate range.

The QINT switch then reads QuantizedBits and Quan-
tizedLevel from the register with the provided index. Quan-
tizedBits indicates the quantized bit stream and QuantizedLevel
indicates the bit length of QuantizedBits. The QINT switch
uses QuantizedLevel to update BitNum to check if QintData
exceeds the pre-allocated 32-bit space when QuantizedBits
is inserted. If the updated BitNum is greater than the pre-
allocated 32-bit space, SpaceNum is incremented by 1, and
BitNum is set to QuantizedLevel. If SpaceNum is updated,
the QINT switch adds the QintData header. After that, the
QINT switch applies the insert table to insert QuantizedBits
in the QintData header. It uses the updated SpaceNum as
the matching key in the insert table to insert QuantizedBits
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Fig. 4: Fat-tree topology.
Fig. 5: Internet2 topology.

Fig. 6: Performance distribution.

into the appropriate QintData space. To insert QuantizedBits
into QintData, the QINT switch applies a bit shift operation
to QintData by QuantizedBits, then inserts QuantizedBits.
Finally, the packet is forwarded to the next hop, and the same
operation is repeated.

III. PERFORMANCE EVALUATION

We implemented and evaluated QINT on BMv2 software
switches [12] and mininet [11]. As shown in Figure 4 and 5,
we consider two topologies: 1) fat-tree and 2) Internet2 [8].
The fat-tree topology consists of 8 hosts and 10 programmable
switches whereas the Internet2 topology has 8 hosts and 13
programmable switches. Each host generates its traffic based
on the Web search [10] and Hadoop workload [9].

Baseline. We compare QINT with traditional INT [2],
DeltaINT [4], and OffsetINT [6] with a representative teleme-
try item, hop latency. We configure the latency threshold as
10µ in DeltaINT, which allows us to collect hop latency with
32 bits if the difference is greater than the threshold. In the
case of OffsetINT, we set the threshold to 216µ as introduced
in [6], which allows us to collect hop latency with 16 bits.

Metric. We employ the following metrics: 1) relative band-
width usage (RBU), 2) root mean square error (RMSE), and
3) relative error (RE). RBU measures the total bandwidth
consumed by the INT scheme compared to traditional INT
and is calculated by dividing the total bits inserted with the
INT scheme by the total bits inserted using traditional INT.
These two metrics reflect the bandwidth overhead associated
with the INT scheme. As an accuracy metric, RMSE can be
expressed as

RMSE(%) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (1)

where n denotes the total number of data points. Also, ŷi and
yi are the measured and real values, respectively. Meanwhile,
RE is a relative error of the 50th and 99th percentile latencies.

Parameter setting. Let S be the data section size. As S
increases, QINT achieves reduced bandwidth overhead, but
this comes at the cost of lower accuracy. This is because a
larger S allows for more values to be encoded into smaller
bit streams. Conversely, when QINT decodes the quantized
bit stream, it returns an average value for the section, and a

larger S leads to decreased accuracy. Thus, there is a trade-
off between bandwidth efficiency and accuracy based on the
chosen QINT configuration.

Figure 6 illustrates how the QINT configuration balances
between RBU and RMSE, demonstrating that RBU stabilizes
as the size of the data section increases. Consequently, we
choose a data section size of 8, where we observe the sharpest
decline in relative bandwidth usage. It is important to note that
the selection of the data section size might vary depending on
the prioritization of RBU over RMSE, or vice versa.

A. Bandwidth overhead reduction

Figure 7(a) and (b) show the RBU in the internet2 topology
with Web search workload and the fat-tree topology with
Hadoop workload, respectively.

As illustrated in Figure 7(a), QINT employs the fewest
bandwidth usage for data collection compared to other
schemes. In particular, QINT, DeltaINT, and OffsetINT use
39.3%, 67.4%, and 56.2% of the bandwidth required in
traditional INT, respectively. This efficiency is due to QINT’s
ability to insert telemetry items using significantly fewer bits
most of the time (e.g., 2 bits per node). Furthermore, QINT
avoids exceeding the 32-bit space allocated, since it uses fewer
bits per node. For instance, in QINT, the most frequently oc-
curring data can be quantized into 2 bits, which is much lower
than the original 32 bits. Conversely, DeltaINT and OffsetINT
collect telemetry items with static bits without considering
the frequency of data values. Specifically, DeltaINT collects
latency data in the original 32 bits for each node when the
difference exceeds a predefined threshold, while OffsetINT
collects latency information using 16 bits per packet and per
node.

Furthermore, Figure 7(b) shows trends similar to Fig-
ure 7(a), demonstrating that QINT surpasses other schemes in
performance with a Hadoop workload in a fat-tree topology.
In particular, QINT consumes 52.93% of the RBU used by
traditional INT, whereas DeltaINT and OffsetINT consume
80.66% and 56.25% of traditional INT, respectively.

B. Accuracy

We evaluate the accuracy (in terms of RMSE and RE) of
OffsetINT, DeltaINT, and QINT. Figure 8(a) and (b) depict the
RMSE performance in the Internet2 and fat-tree topologies,
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(a) Web search workload (b) Hadoop workload

Fig. 7: Bandwidth usage in hop latency measurement.

(a) Web search workload (b) Hadoop workload

Fig. 8: RMSE in hop latency measurement.

respectively. It is observed that QINT has a lower RMSE
compared to DeltaINT in both the Internet2 and fat-tree
topologies. Specifically, QINT achieves an RMSE of 2.34%
and 2.35%, whereas DeltaINT has an RMSE of 2.79% and
2.60% in the Internet2 and fat-tree topologies, respectively.
This indicates that QINT provides up to 16.38% higher ac-
curacy than DeltaINT. Furthermore, 50% and 99% percentile
latencies are measured in Figure 9(a) and (b), respectively.
The results show that QINT achieves slightly lower accuracy
in 50% percentile latency but significantly higher accuracy in
99% percentile latency compared to DeltaINT. This suggests
that QINT can achieve more stable measurements with a
lower bandwidth overhead than DeltaINT. These findings are
due to DeltaINT collecting telemetry items only when the
difference exceeds a certain threshold, while QINT collects all
telemetry items. Even though OffsetINT provides the highest
accuracy among the compared schemes due to its full recovery
capability, QINT offers sufficiently high accuracy with per-
packet per-node monitoring and lower bandwidth overhead
than OffsetINT.

IV. CONCLUSION

In this paper, we proposed QINT, a quantized in-band
network telemetry scheme per packet and per node that can
provide low bandwidth overhead and accuracy simultaneously.
QINT can reduce bandwidth overhead by flexible quantizing
telemetry items into fewer bits than the original bits when
considering the data frequency. Evaluation results demonstrate
that QINT reduces the bandwidth overhead in terms of RBU
by up to 60.6% compared to the existing INT scheme while
maintaining sufficient accuracy. In our future work, we plan
to conduct extended evaluations with large-scale commercial

(a) Web search workload (b) Hadoop workload

Fig. 9: RE in hop latency measurement.

MNO/networks to verify the feasibility of QINT in practical
environments.
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