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Abstract—Balancing mutually diverging performance metrics,
such as, processing latency, outcome accuracy, and end device en-
ergy consumption is a challenging undertaking for deep learning
model inference in ad-hoc edge environments. In this paper, we
propose EdgeRL framework that seeks to strike such balance by
using an Advantage Actor-Critic (A2C) Reinforcement Learning
(RL) approach that can choose optimal run-time DNN inference
parameters and aligns the performance metrics based on the
application requirements. Using real world deep learning model
and a hardware testbed, we evaluate the benefits of EdgeRL
framework in terms of end device energy savings, inference ac-
curacy improvement, and end-to-end inference latency reduction.

Index Terms—Edge computing, deep learning, model inference,
DNN partitioning, reinforcement learning.

I. INTRODUCTION

Deep learning models, particularly deep neural networks
(DNN), are becoming increasingly important for mission-
critical applications, such as public safety, tactical scenarios,
search and rescue, and emergency triage, most of which are
often edge-native. Unlike traditional edge that are typically
part of the network infrastructure, a new paradigm of ad-hoc
deployments of edge computing environments are currently
being adopted by public safety agencies and armed forces [1]–
[3] to support mission-critical use cases. Here, heterogeneous
components in the form of energy-constrained end devices
(e.g., drones, robots, IoT devices) and edge servers with varied
degrees of computational and energy capacities are loosely
coupled to primarily run pre-trained DNN model inference
with strict latency and accuracy requirements.

In such implementations, running the entire DNN inference
on end devices (e.g., drones, robots) is impractical due to
their resource constraints, which makes them incapable of
satisfying the inference latency and accuracy requirements. It
is also not prudent to run those entire DNN models on the
edge servers as they lack sufficient resource capacity (i.e., in
comparison to cloud servers) that can support heterogeneous
inference workloads generated from multiple end devices,
simultaneously. Thus, in recent times, an alternative approach
of partial offloading/DNN partitioning/DNN splitting/collab-
orative inference [1], [4] has gained traction that embraces
segmenting the DNN models and processing the segments on
end devices and edge servers collaboratively.

However, any attempt to make such partial offloading strat-
egy effective and practical, needs to consider the fundamen-
tal three-way trade-off between end-to-end inference latency,

model inference accuracy, and end device energy consumption
metrics (henceforth referred to as ‘latency-accuracy-energy’).
This is because, each of the metrics in ‘latency-accuracy-
energy’ trade-off problem is a function of the convolutional
layer of the DNN where such partition/split is carried out,
as well as the unique characteristics of the involved DNNs,
such as, the number of convolutional layers, the computational
complexity of each layer, and the output data size at each
convolutional layer of the DNN, among other things [5], [6].
For example, if a DNN is split at a layer whose output data
size is larger, then the overall inference latency may improve
due to lightweight computation at the device. However, this
may result in an increase in the device energy consumption
for transmitting the larger amount of output data to the edge
server [1], [7], [8]. While, a lightweight/compressed version of
a particular DNN model, when chosen to run collaboratively
to lower inference latency, on the flip-side, can compromise
inference accuracy due to the lower number of convolutional
layers and hyperparameters in the compressed DNN.

In this paper, we address this non-trivial and grossly under-
explored three-way trade-off problem by designing and de-
veloping a novel EdgeRL framework. The framework allows
the ad-hoc edge environments select a DNN execution profile,
which involves choosing an optimized version of a given DNN
model from multiple pre-cached versions, whether lightweight
or heavyweight, and selecting a partition cut point layer for
the chosen version to perform collaborative inference with
the edge server. This execution profile selection is framed
as a Markov Decision Process (MDP) and solved using an
Advantage Actor-Critic (A2C) based reinforcement learning
approach. The model integrates inputs such as the end device’s
battery status, activity profile, available bandwidth, and kinetic
activity to continuously adapt and learn system dynamics
through iterative actions and rewards. The reward function
aims to maximize a customizable performance metric that
balances ’latency-accuracy-energy’, addressing the specific
requirements of different ad-hoc edge implementations. We
validate the stability of the proposed A2C algorithm with
object classification DNNs and the testbed, and rigorously
examine how varying reward weights impact performance.

The rest of the paper is organized as follows. Section II
introduces the system model and solution approach. Section III
discusses system evaluation. Section IV concludes the paper.
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Fig. 1. Ad-hoc edge deployment and potential implementation of the EdgeRL
framework

II. SYSTEM MODEL AND SOLUTION APPROACH

In this section, we describe the ad-hoc edge deployment
system model, along with its energy and latency considera-
tions, the details of the EdgeRL framework, and the RL-driven
solution approach.

A. System Model

As shown in Fig. 1, we assume an exemplary ad-hoc
edge environment where end devices (UAVs in this case), in
collaboration with one limited capacity edge server, perform
DNN model inference for real-time missions. The components
of the system are as follows:

DNN Model – We define a set of m DNN models, denoted as
M = {M1,M2, ...,Mm}, each tailored for specific objectives
and tasks towards the missions. We consider model Mi to
have Vi different versions {Mi,1,Mi,2, ...,Mi,Vi}, generated
as a result of model optimization, with each employing either
a compressed or extended architecture with diverse layers.
These versions exhibit unique characteristics in accuracy and
computational complexity. The accuracy and number of layers
of the i-th model in its j-th version are expressed as M acc

i,j

and M layers
i,j , respectively. In this context, M l

i,j denotes the
‘head’ of the model up to and including layer l when referring
to computations on the end device or local computation,
and the ‘tail’ of the model from layer l + 1 onwards when
referring to computations on the edge server. Though our
framework solutions are adaptable to all classes of DNNs, in
this work, we focus on video processing DNNs commonly
used in mission-critical applications. Consequently, we set
stringent performance requirements for DNN model accuracy
and latency. Specifically, each model Mi must have an end-to-
end inference latency not exceeding τ latencyi and must achieve
an accuracy of τacci for the application to be successful.

For the end devices, we assume realistic scenarios that
are popular for mission critical use cases adopting ad-hoc
edge environments. Specifically, we model end devices
that perform other (i.e., mostly kinetic) activities on top of
capturing video/image of a scene and partially performing
computation. The objective is to create a realistic yet
challenging device energy consumption scenario for the
EdgeRL framework to address.

End Device – We define a set of n heterogeneous Unmanned
Aerial Vehicles (UAVs) or drones (very common for mission
critical use cases), denoted as U = {U1, U2, ..., Un}, each
equipped with computational capabilities. The heterogeneity
comes from the UAV model that defines UAV weights and
architecture, battery level, and UAV kinetic activity profile,
explained later. Each UAV collaboratively executes a DNN
inference task in collaboration with an edge server, facilitated
through wireless connectivity between the two. Each UAV Uk

is defined by a quadruple (ID, build, battery level, trajectory),
where ‘ID’ represents the UAV’s unique identification, ‘build’
specifies the UAV model, ‘battery level’ reflects its current
power status, and ‘trajectory’ outlines the planned path. In our
model, there are three sources of device energy consumption:
1) kinetic activity, 2) computation, and 3) transmission.

Each UAV has four distinctive kinetic activities in their
flight path — forward movement, vertical ascent/descent,
rotation, and hovering. Each activity generates varying energy
consumption rates. For this work, we use the model in [9].
The energy expenditure for local computation of the head of
the model (e.g. M l

i,j) at UAV Uk is:

El
comp,i,j(Uk) = Pcomp,i,j(Uk) ∗ T l

local,i,j(Uk) (1)

where Pcomp,i,j and T l
local,i,j represent power consumption

rate during the computation and the latency of executing
M l

i,j at Uk, respectively. The energy consumed in wirelessly
transmitting intermediate data generated after executing the
cut point layer, along with the cut point information to the
server (e.g., via WiFi or LTE), is calculated by:

El
trans,i,j(Uk) = βk(B) ∗Dl

i,j (2)
where βk(B) is transmission energy consumption rate with
bandwidth B and Dl

i,j is the output data size at layer l.
For simplicity, we ignore the energy consumption for video
capture. Thus, the total UAV energy consumption is:

El
i,j(Uk) = El

comp,i,j(Uk) + El
trans,i,j(Uk) (3)

Edge Server – We consider an edge server E (see Fig. 1)
hosted on a utility vehicle . The server has limited capacity
and additional responsibilities, managing multiple end device
workloads. We assume the server is continuously connected
to a power source throughout the mission, so its energy
consumption is excluded from our analysis.

Controller – The controller, depicted in Fig. 1, is a centralized
component responsible for deep learning model inference
optimization and decision-making. Physically, the controller
can be implemented within the edge server(s) or as a separate
entity. The controller plays a pivotal role by collecting critical
data such as task details, battery levels, and available transmis-
sion speeds from the UAVs, to determine optimal execution
profiles, including selecting model versions and cut-point
layers for each UAV. These execution profile decisions are then
promptly communicated to the server and the UAVs, enabling
them to initiate model execution based on the decision.
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B. Latency model

The latency T l
i,j for executing Mi,j collaboratively between

Uk and the edge server E , partitioned at cut point l, consists
of three main components. First, the local processing time
T l
local,i,j represents the latency involved in processing the

‘head’ of M l
i,j at Uk, constrained by the limited processing

capabilities available at Uk. Second, the transmission time
T l
trans,i,j(Uk, λ) refers to the latency associated with data

transfer between Uk and the edge server, determined by the
transmission rate λ. This bandwidth can be very limited
depending on the mission-critical use case, often making it
a limiting factor for full offloading of M l

i,j to the edge
server, thereby necessitating partial offloading as discussed
in [1]. Finally, the server or remote processing time T l

remote,i,j

includes both the computation time T l
comp,i,j for the tail of the

model on the server E and the server queue time Tqueue. The
total server processing time is given by:

T l
remote,i,j(E) = Tqueue(E) + T l

comp,i,j(E) (4)

The variability in Tqueue at server E , influenced by con-
current tasks managed for other jobs by the edge server, is
crucial for accurately modeling the operational dynamics of
limited resource ad-hoc edge servers. Thus, the total end-to-
end latency is:

T l
i,j(Uk, λ, E) = T l

local,i,j(Uk) + T l
trans,i,j(Uk, λ) + T l

remote,i,j(E) (5)

C. Deep Reinforcement Learning (DRL) Agent

The controller trains a DRL agent to handle the dynamic
nature of the system in ad-hoc edge environments. Specifi-
cally, we model the DNN optimization problem as a Markov
Decision Process (MDP) and use a time-slot-based decision-
making approach based on the Advantage Actor-Critic (A2C)
algorithm [10], [11]. The choice of A2C is driven by its
efficiency and effectiveness. In A2C, an agent serves both as
the actor and the critic, combining policy-based and gradient-
based methods. The actor makes decisions, while the critic
evaluates these decisions and provides feedback to refine
strategies. This collaborative approach accelerates training and
enhances learning with each experience. Moreover, A2C is a
stable algorithm capable of handling large observation spaces,
such as environments with potentially multiple UAVs and
corresponding DNN models and versions. The A2C agent
operates in an environment characterized by a finite set of
states denoted as S and a finite set of actions denoted as A,
under a time-slot based system, with intervals of δ time units.
S represents the state space of the environment. At time t,

the state s(t) ∈ S includes the battery level of the kth UAV
(bk(t)), task availability (αk(t)), available transmission power
(P t

k), the DNN model (mk), and the percentages of forward
flight (Fk(t)), vertical movement (Vk(t)), and rotational move-
ment (Rk(t)). The activity profile describes the distribution of
these movements over the next δ seconds.

S =
{
s(t) = [s1(t), s2(t), . . . , sn(t)] : ∀k ∈ |U|,

sk(t) = (bk(t), αk(t), P
t
k(t),mk(t), Fk(t), Vk(t), Rk(t)),

bk(t) ∈ [1, 10], αk(t) ∈ {0, 1}
}

(6)

A represents the action space and is a Multi-discrete space
encompassing decisions for each UAV device. At time t, the
action a(t) performed by the agent determines the execution
profile, i.e., the DNN version(j) and the cut point(l) for model
Mmk(t):

A =
{
a(t) = [a1(t), . . . , an(t)] : ∀k ∈ |U|,

ak(t) = (j, l), j ∈ Vmk(t) and l ∈ Lmk(t),j

}
(7)

The reward function R(t) denotes the immediate reward
acquired following the transition from state s(t) to state
s(t + 1) by executing action a(t). This reward is computed
as a weighted average of three key system performance
requirement metrics: end device energy expenditure, model
accuracy, and end-to-end inference latency. Such an approach
makes the solution flexible where different combinations of
the weights can be designated based on system objectives and
the relative priorities of performance metrics. To this end, we
define separate normalized performance scores for accuracy
(A), latency (L), and energy consumption (E). Given that UAV
Uk is running DNN model Mi, the average reward function for
an action ak = (j, l) over all the end devices can be defined
as:

R(t) = 1
|U|

∑
k∈U w1A(Mi,j) + w2L(M l

i,j , Uk) + w3E(M l
i,j , Uk) (8)

where
∑3

i=1 wi = 1 and the normalized performance scores
are defined as follows:

A(Mi,j) =
1

1 + e−p.(Macc
i,j −q)

(9)

L(M l
i,j , Uk) = 1−

T l
i,j(Uk, λ, E)

TLi

local,i,j(Uk)
(10)

E(M l
i,j , Uk) = 1−

El
i,j(Uk)

ELi
i,j (Uk)

(11)

A2C [11] model is a hybrid method comprises two neural
networks: i) The Actor network which is a Policy Gradient
algorithm that learns a policy π deciding on what action to
take, and ii) the Critic network which is a Q-learning algorithm
offering feedback for policy enhancement. We design an online
learning algorithm which runs on the centralized controller
working as the system manager. During initialization phase,
the agent creates actor and critic networks with randomly
assigned weights. The agent then continuously interacts with
the environment and makes execution profile decisions in each
time slot (δ). At the end of each episode, both the actor
and critic networks’ weights undergo weight updates with a
batch of experienced transitions. Our Critic network features
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two fully connected layers with feature sizes of 512 and
256, respectively. To adapt the Multi-Discrete action structure,
which determines the version and cut-point for each device,
the actor network incorporates an additional shared layer
for related action values. Specifically, every two values that
correspond to each UAV device share an extra layer with a
feature size of 128.

D. EdgeRL Framework Design

The proposed EdgeRL framework has a centralized con-
troller, serving as the system manager for decision-making
processes. The end devices, i.e., UAVs in our case play
a crucial role by transmitting essential information such as
task details, battery levels, and available transmission speeds
to the controller. This aggregated data forms the system’s
state, which is then processed by an actor network within
the controller. The actor network utilizes this information
to generate actions, taking into account various factors like
system performance and resource availability. Once actions
are generated, they are relayed back to the respective UAV
devices. Simultaneously, the system records rewards based on
performance metrics such as accuracy, latency, and energy
consumption within the edge environment. Following this, a
critic network estimates the advantage values and trains both
the actor and critic networks based on the actions taken and the
resulting rewards. Continuing through this iterative learning
process, the system refines and adapts until it reaches con-
vergence, ensuring optimal performance and responsiveness
to environmental variables. Each episode concludes when all
UAV devices’ batteries are depleted.

III. EVALUATION

Next, we evaluate the performance of our proposed frame-
work through hardware testbed experimental evaluation.

A. Testbed Setup and Experiment Design

For our ad-hoc edge deployment testbed, we utilize three
NVIDIA Jetson TX2 devices as computational units of the end
devices/UAVs. Additionally, a Dell PowerEdge desktop with
16 cores 3.2 GHz CPU serves as the edge server. The network
connectivity between the TX2 devices and the edge server is
established through an Ettus USRP B210 acting as the access
point, and can operate on both WiFi and LTE bands. Due
to the lack of UAV hardware availability, we simulate UAV
kinetic activity based on an average size drone UAV Systems
Aurelia X4 Standard and compute energy consumption of each
movement based on the model proposed in [9]. To account
for device heterogeneity, we consider three distinct activity
profiles for UAVs, each representing varying levels of kinetic
activity. For our experiment, we specifically use the High
activity profile, which features a dominant forward flight rate
of 80%, with minimal vertical and rotational movements (10%
each). This profile represents the most challenging scenario,
as it emphasizes extensive forward motion, which generally
requires greater coverage.

TABLE I
CANDIDATE CUT POINTS FOR THE EACH MODEL

Model Version Candidate Cut Points

VGG 11 3, 6, 11, 27
19 5, 10, 19, 43

ResNet 18 4, 15, 20, 49
50 4, 13, 20, 115

DenseNet 121 4, 6, 8, 14
161 4, 6, 8, 14

(a) (b) (c) (d) (e)

Fig. 2. System performance over varying accuracy weight

For the experiments, we mostly focus on object classifica-
tion tasks as exemplar video processing applications. The UAV
devices, execute three popular classification DNNs, viz., VGG,
ResNet, and DenseNet. As for different versions, we assume
that each DNN has two variants: a lightweight, less accurate
model (e.g., VGG11, ResNet18, and DenseNet121), and a
heavyweight, more accurate model (e.g., VGG19, ResNet50,
and DenseNet161). Furthermore, drawing from insights our
analysis, we identify four potential cut points for each such
DNN version (Table I), to enable collaborative DNN inference.
Apart from the object classification jobs arriving from the
UAVs, we simulate the edge server to support other mission
related jobs with exponential arrival rate which impact the
size of the queue to follow a Poisson point process. We use
a time slot duration of δ = 30s to meet reconnaissance
demands in ad-hoc edge environments, with the controller
making decisions at each interval.

B. Reward Sensitivity Analysis

We explore the sensitivity of the reward function for each
performance metric across different DNN models.

1) Sensitivity of accuracy weight:: Fig. 2 showcases the
system performance for varying weight of accuracy reward
in Eqn. (8). A notable observation (as seen in Fig. 2(a)) is
that the higher accuracy versions demonstrate better latency
and energy efficiency. This is evident by the sustained high
accuracy even when the accuracy reward weight is set to zero.
There is minimal improvement in accuracy with the increase
in accuracy weight in the reward function. Moreover, as we
increase the weight, there is a noticeable decline in latency
and energy performance. This trend can be attributed to the
selection of cut points.

2) Sensitivity of latency weight:: Fig. 3 presents the find-
ings from similar experiments with latency reward weight
manipulation. As we increase the emphasis on latency, there’s
a noticeable decrease in the average latency of the mod-
els. However, this reduction comes at the cost of increased
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(a) (b) (c) (d) (e)

Fig. 3. System performance over varying latency weight

inference energy consumption. Consequently, such a pattern
inevitably leads to a diminished battery life for the devices.
This observation is further corroborated when we compare
Figs. 3(b) and 4(b) where a clear tradeoff between latency
and energy consumption emerges. The selection of versions
and cut points for the w2 = 0 and w2 = 1 models is detailed
in Tab. II. Notably, with a latency weight of 0, the energy score
predominance results in a greater proportion of layers being
processed remotely. However, due to latency in transmission
for w2 = 1, offloading is postponed until later layers.

3) Sensitivity of energy weight:: Next, Fig. 4 illustrates the
findings from similar experiments with energy consumption
reward weight manipulation. For obvious reasons with increas-
ing the weight, the inference energy consumption drops as
energy is given the higher priority. However, end device/UAV
energy consumption (from Fig. 4(e)) shows a different trend,
specifically, the device running DenseNet - the most energy-
consuming among the models. For accuracy performance, it
can be observed that only ResNet experiences a drop, as the
energy savings in other models come from the choice of
the optimal cut-point rather than the architecture (as seen in
Tab. II). It is also observed that when the energy reward is
higher, the battery drains slower. E.g., the UAV running VGG
stays alive 6 more seconds when the model is energy efficient.
The choice of versions and cut points for these two models is
also shown in Tab. II. The interplay of energy and latency in
cut point selection is evident.
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IV. CONCLUSIONS

In this paper, we analyzed the end-to-end latency vs. in-
ference accuracy vs. device energy consumption trade-off for
ad-hoc edge deployments and proposed EdgeRL framework
that employs a novel A2C based RL model. The EdgeRL

TABLE II
CUT POINT SELECTION FOR REWARD WEIGHT MANIPULATION

Model Version Cut Point for
w2 : 0 w2 : 1 w3 : 0 w3:1

VGG 19 5 10 10 5
ResNet 50 3 13 13 3

DenseNet 161 4 4 4 4

(a) (b) (c) (d) (e)

Fig. 4. System performance over varying energy weight

framework performs DNN version selection and cut point se-
lection based on resource availability and system performance
requirements. We demonstrated how the underlying A2C based
RL agent learnt about the environment through actions and re-
wards which eventually converged at an optimal trade-off point
for involved performance metrics. Using real world DNNs and
a hardware testbed, we evaluated the benefits of EdgeRL in
terms of device energy saving, accuracy improvement, and
end-to-end latency reduction.
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