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Abstract—Machine learning (ML) represents an efficient and
popular approach for network traffic classification. However,
network traffic inspection is a challenging domain and trained
models may degrade soon after deployment. Besides biases
present during data captures and model creation, data drifts
contribute significantly to ML model degradation. This paper
proposes a novel method called Model-based Feature Weight
Drift Detection (MFWDD) for concept drift detection. It is a
part of a public software framework suited for dataset drift
analysis tailored to the domain of network traffic. This work
addresses TLS and QUIC service classification problems, ex-
amines a variety of experiments analyzing the evolution of the
respective distributions, and observes their degradation over time
on different ML features. The MFWDD framework guided TLS
and QUIC services classification models retraining throughout
an extensive period and not only prevented model degradation
but also improved its performance and consistency over time.

Index Terms—Dataset quality, Traffic classification, Computer
network, Concept drift

I. INTRODUCTION

Network traffic monitoring provides an essential insight for
maintaining services and security, and network traffic classi-
fication is its integral part. The security features, such as the
Encrypted Server Name Indication (ESNI) for domain names
encryption, forces the development of new means of network
monitoring and analysis. Researchers have thus been focusing
on indirect network inspection, identification of metadata,
investigation of packet series and their temporal statistical
properties, and analysis that does not rely on decryption.

For example, [1]–[6] targets on temporal network charac-
teristics in Sequence of Packet Lengths and Times (SPLT)
method, Koumar et al. [7] suggested extended IP flow NetTiSA
for network traffic classification and Plny et al. [8] present a
detection method based on multiple weak indicators.

Research of network traffic classification drives the need
to deploy ML classifiers and maintain them continually. In
real-world environments, the collected data often tends to
change over time, e.g. reflecting state of CDNs, subtle protocol
modifications through time etc. This phenomenon is reffered
as concept or data drift and ideally, network traffic inspection
would maintain its accuracy irrespective of such externalities.
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grant No. VJ02010024: Flow-Based Encrypted Traffic Analysis and also by
the Grant Agency of the CTU in Prague, grant No. SGS20/210/OHK3/3T/18
funded by the MEYS of the Czech Republic.

A possible solution is the concept of Active Learning (AL),
that updates underlying datasets. However, due to the dynam-
icity of investigated network services, precise tuning of AL
parameters is notoriously demanding.

To address these challenges, it is crucial to understand
the behavior and importance of selected features in time,
and the relationships between different features. This paper
presents a method for well-timed drift detection and AL con-
trol. ML-model retraining is a computationally expensive task
and our goal is to eliminate as many unnecessary retraining
steps as possible. Therefore, we propose novel drift detection
method MFWDD for ML-models based on feature weights.
The method can detect model obsoletion without class labels
for real-world deployment scenarios. Morover, in supervised
scenarios, the technique brings descriptive analysis of behav-
ioral changes in input features. Furthermore, we published
MFWDD as an analytical tool and also a more detailed
investigation of datasets available at Github repository1.

II. RELATED WORKS

There are several existing methods to detect a concept drift.
A common example is error rate-based drift detection. These
algorithms look at the error rate of a particular classifier. If the
change of error rates over time is statistically significant a drift
alarm is raised. Another common method is distribution-based
drift detection. In this case, algorithms use distance metrics to
detect changes between the original and new training data.
Korycki et al. [9] point out detection limits in network traffic
environment and introduced a drift detector called RBM-IM. It
is based on a Restricted Boltzmann Machine, and it is designed
for imbalanced and multi-class streams, which are a common
classification task in the field.

To address the sensitivity limits of dataset drift detection
methods, weighting or sampling is used to adjust for the dif-
ferences in the data distributions. Soukup et al. [10] introduced
the idea of dataset quality evaluation, which is affected by the
metadata used by the ML classifier. This work focuses on ML-
assisted network traffic classification problems and continuous
model maintenance compensating for concept drifts. We at-
tempted to leverage feature importance as weights to calculate
drift severities, which yielded promising results. Multiple

1https://github.com/FETA-Project/MFWDD
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existing statistical tests are available to calculate drift severity,
for example the Wasserstein test, Kolmogorov–Smirnov test,
or Maximum Mean Discrepancy (MMD) two-sample test [11],
[12]. Another statistical test that has proven to be instrumental
in several fields is the Page-Hinkley test (PHT) originally
introduced in [13] addressing production quality problems, and
inspection schemes optimization. While investigating network
intrusion detection systems, Andresini et al. [14] successfully
used PHT as a drift estimator in the Str-MINDFUL algorithm.
We follow up on the existing state of the art and evaluate
main metrics within the networking domain with the proposed
feature weights. The introduced software tool is configurable
and allows to change the statistical test if needed.

In [15], statistical properties of the CESNET-TLS-Year22
dataset with respect to weekdays were analyzed. It was
confirmed that the network traffic statistical properties differ
significantly on working days and weekdays. This experience
underlines how important the appropriate choice of the time
range for network dataset collection.

Žliobaitė et al. [16] introduced the value of combination AL
and data drift detection. This direction is also confirmed by
[17] from a recent study. This research motivated us to base
a new drift detection method on drift severities corresponding
to a given feature collection.

III. DATASETS

Since we aim to find out how the distribution of var-
ious features evolves in time for network traffic classifi-
cation datasets, we chose the one-year-long CESNET-TLS-
Year22 [18] and four-weeks-long CESNET-QUIC22 [19]
datasets. Both datasets were captured on an Internet Service
Provider (ISP) backbone network and considered more than
a hundred network traffic classes. The size of the datasets
permits us to flexibly arrange diverse experimental settings,
perform an offline evaluation of drift behavior concerning
various research topics, and test developed algorithms in detail.

Both datasets are available using the CESNET-DataZoo [20]
library. The collection and detailed feature description are
available in the paper by Luxemburk et al. [2] for TLS
traffic and Luxemburk et al. [21] for QUIC traffic. Datazoo
uses natively Per Packet Information (PPI) or (SPLT), packet
histograms (PHISTS), and flow-based features, such as the
number of packets in a flow or the flow end reason.

IV. MFWDD: MODEL-BASED FEATURE WEIGHT DRIFT
DETECTION METHODOLOGY

In this section, we present details of the proposed method,
MFWDD, for feature weighted detection of concept drift. Data
drift and concept drift [22], [23]. Data drift occurs when the
statistical properties of the input data change, leading to a
potential degradation in model performance because the model
was trained on a different data distribution. Concept drift,
on the other hand, refers to changes in the target variable’s
definition or the relationship between input features and the
target variable. Both types of drift pose significant challenges
for predictive models in dynamic environments requiring

continuous monitoring and model maintenance ensuring their
effectiveness and relevance.

To detect a distribution drift presence at a given time,
the drift detector compares samples from the initial and
current distributions. The detector performs statistical tests and
evaluates whether pairs of samples originate from different
distributions. Upon detecting drift and its measure, a trigger
prompting to retrain the classification model is raised. The
measure should quantify dissimilarity between the two distri-
butions and reflect the performance impact of network traffic
classification. It is often referred to as drift severity s.

There are multiple methods to integrate various feature
distributions into the final decision regarding the presence
of a drift. A popular library in this field is Evidently [12],
which utilizes the two-sample Kolmogorov-Smirnov (KS) test
or the Wasserstein distance. Based on the results in [12], the
Wasserstein distance is recommended for datasets with more
than a thousand data instances. Otherwise, the KS test gives
better results. Our experiments confirm the same best practice.
Although the KS test was more sensitive and often identified
more features as drifted for datasets with more than ≈ a
thousand samples, it provided more precise results for smaller
data collections. For class (supervised) level detection, we used
the KS test with a threshold of α = 5%, since the number
of samples per class per day was below one thousand. In
unsupervised scenarios, the normlaized Wasserstein distance
with a threshold of α = 5% was used. Both the KS test and
normalized Wasserstein distance use a single variable vector
and, when applied on the i-th feature they yield severity si.

During our investigation, we also considered the MMD
test, which operates with multiple variables and theoretically
can detect more complex dependencies. Despite experimenting
with various kernel settings and sensitivity levels, MMD did
not prooved beneficial for our classification tasks. Moreover,
analyzing drifts for specific features would be more complex
with MMD. Thus we decided to build our method on the
Wasserstein distance and KS test.

Considering a classification task with n features and given
a statistical measure, i.e. two-sample Kolmogorov-Smirnov
(KS) test or the Wasserstein distance, we may calculate
individual drift measures s1, ..., sn for each feature separately
and then investigate mappings: S : s1, ..., sn 7→ R+ called
severity or drift severity. A straightforward enhancement may
incorporate feature weights as an additional measure for the
drift severity evaluation. The mapping S may be written as:
S : s1, ..., sn, w1, ..., wn 7→ R+.

Current drift detection methods often neglect the signifi-
cance of individual features in affected models, and they are
sensitive to reporting false positives since they neglect the
target dataset context and externalities. This is particularly
challenging when feature vectors contain hundreds of features,
some of which provide minimal human-readable information.

To address this issue, statistical tests are conducted indepen-
dently for each feature distribution, and their drift severities are
stored for further analysis, for example: drift rates, extraction
of features exhibiting severe drift, features with recurring drifts
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etc. The total drift strength S is calculated as a weighted
arithmetic mean of individual severity measures si, where
the feature importances supplied by the classifier serve as
the weights wi. In our experiments, we used a normalization
convention:

∑n
i=1 wi = 1, where wi are model feature

weights. We propose to use this normalization convention
for benchmarking compatibility; other choices require a drift
detectionthreshold renormalization.

Thus, the overall drift severity is computed as by the equa-
tion S = 1

n

∑n
i=1 wisi where n is the number of features, si

i-th drift measire and wi i
th drift weight. As a result, we arrive

at drift strength representation incorporating intrinsic dataset
statistical properties. We may state that a drift is detected when
the total severity S ≥ st, where st is a threshold, e.g. st = 0.5.

This method can be applied in both supervised and unsuper-
vised scenarios. In unsupervised scenarios, it detects distribu-
tion changes that likely decrease model performance globally.
Consequently, we can initiate an annotation process, employ
strategies for updating the dataset and retrain the model. In
supervised scenarios, we identify performance decrease using
metrics such as accuracy or F1 score. However, the proposed
drift analysis provides other useful data: which features exhibit
drift, how severe the drifts are, are they gradual, recurring etc.
Such insight helps us to react accordingly, for instance, by
excluding features that frequently cause drifts.

V. EXPERIMENTS AND ANALYSIS

The MFWDD method was evaluated on the CESNET-
QUIC22 [19] and CESNET-TLS-Year22 [18] datasets and
guided network classification model retraining over an ex-
tended period. In our experimental setting, we initialised the
ML model M1 based on the first week’s data D1 = D(1, 7)
with N = ∥D1∥ records as a reference and evaluated the
rest of the dataset. Furthermore, we introduce the denote by
l = 7 on the last retraining day. Upon drift detection on day
n, the model’s dataset is updated to D2 = [D1 ∪D(l, n)]N =
[D(1, 7)∪D(7, n)]N , where D(i, j), denotes the initial dataset
truncated to begin with ith and ending with jth day for i ≤ j,
and [.]N : dataset 7→ dataset operation denotes truncation
to last N records based on time ordering2. The new model
M2 stems from retraining on the D2 dataset and so on:
Dn = [Dn−1∪D(l, n)]N and Mn is trained in the Dn dataset.

We use the XGBoost classifier with the default setting of
hyperparameters as the model, i.e., XGBoost representative.
The XGBoost was chosen due to its popularity in the field of
network traffic classification.

Two different feature vectors were used for the evaluation:
one supplied by the CESNET-DataZoo library based on PPI
metadata and one based on NetTiSA features calculated from
PPI metadata containing up to 30 packets. For both datasets,
we used all available class labels.

Our experiments aim at three goals:
I The first goal is to evaluate if the MFWDD detector can

work well on both feature vectors and both datasets.
2In our case ∥Dn∥ ≤ ∥Dn+1∥ ∀n considered; we may define [D]N =

D for D satisfying ∥D∥ ≤ N .

II The second goal is to confirm the superiority of the newly
trained model Mn+1 compared to the previous model Mn

after drift detection.
III The third goal is to investigate the behavior of different

feature vectors on selected network traffic.

Experimental results are thoroughly described in the following
subsections.

A. CESNET-TLS-Year22 Evaluation

This experiment confirmed that guided retraining controlled
by MFWDD vastly improved ML-trained classificator accu-
racy over time. The maintained model even outperformed the
initial model M1 used as a baseline. Possible explanations
are that the concept drift led to the simplification of some
problems over time, some distributions might have became
more stable or the newly gained datasets were more coherent.
In the Fig. 1a and Fig. 1b we may judge how the model reacted
to dataset updates for both versions of feature vectors. Vertical
lines mark when the drift detection occurred, and the F1 score
of the reference and the maintained models may be compared
to illustrate model accuracy over time.

As can be seen in Fig. 1a, in some cases, a single retraining
was sufficient to keep the model precise for several months.
In other cases, several retrainings were needed to improve
the model’s performance significantly. This may be due to
the incremental drift being present, where the change of
concepts may be gradual. Note that these results confirm
the importance of well-timidness for model retraining and its
impact on the AL efficiency. A single retraining can only lead
to the learning of the intermediate concept, and subsequent
retrainings might be needed while the new concept stabilizes.
The plot of reference drift severity in time helps us understand
drift severity if the model was not updated. The periodic
behavior [15] is also seen each weekend and sometimes the
drift detection threshold is almost attained. Nevertheless, the
weekends do not have a significant impact on the model
performance, whis is in accordance with Jančička et al. [24].

After the initial model and PPI dataset stabilization during
the first weeks, a significant drop in the F1 score and a
peak in the drift strength occurred in March. The MFWDD
method thus triggered two consecutive retrainings to adapt to
new network conditions. The drift is attributed to changes
in the network monitoring infrastructure and impacted the
majority of classes. Then, we can see recurring drifts every
few months, that are driven by SIZE 4 and DIR 4 features
representing 4th packet in the network flow. At the end of the
year, an incremental drift occurred and resulted in a series of
retrainings to improve and stabilize the model performance.

The behavior of the NetTiSA feature vector is depicted in
Fig. 1b. From a high-level perspective, the patterns observed
agree with that of the PPI feature vector. However, thanks to
more stable features, fewer retrainings resulted in a significant
F1 improvement upon drift detection. The lengths of PPI in
the CESNET-TLS-Year22 dataset, which contains at most 30
packets, probably cause this phenomenon. NetTiSA feature
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(a) Simulated model evolution over multiple retrainings on the TLS
dataset with PPI feature vector guided by the drift detection. In
the case of drift detection, visualised by a yellow vertical line, a
model is retrained. The model performance and drift severities may
be compared between the reference and the continuously retrained
model.

(b) Simulated classification model evolution over multiple retrain-
ings on parts of the TLS dataset with NetTiSA feature vector
guided by the MFWDD drift detection. Vertical lines show retraining
trigger. The model performance and drift severities between the
reference and the continuously updated model may be compared
.

vector is calculated based on statistical features, and longer
flows would be beneficial as described by Koumar et al. [7].

The average drift strength and amount of feature drift differ
for both strategies: the updated model has a variance ranging
from 4 % to 30 %, whereas with the no-retrain strategy, drifted
features variance ranges from 20 % to 45 %.

In summary, the PPI feature vector usually performs with a
higher F1 score but is more sensitive to drifts than NetTiSA.
On the other hand, NetTiSA achieved higher stability, though
the F1 score was lower. Drifted features showed variance ≈
20 % for updated model, whereas for no-retrain strategy, the
drift feature variance ratio was up to 36 %.

B. Outcomes and best practices

In this section, we briefly summarize leading outcomes
and recommendations for best practices that stem from the
experimental evaluation and analysis of data drifts and their
detection by the MFWDD detector. The major outcomes and
recommendations are described below.

It is always desirable to evaluate each feature drift severity
before using it in the final model. If a feature that exhibits
frequent drifts is present in the dataset, it will cause a
disfavored performance decrease over time, and in extreme
cases, its presence can lead to excessive model retraining. On
the other hand, it is important to note that it is often the case
that features exhibiting drifts encompass internal specifics for
certain network traffic classes and are thus significant for the
dataset. The offline setting of our experiments enabled us to
evaluate the stability of each feature using the MFWDD. Yet,
the MFWDD detector could be used online to guide supervised
learning with an overview of the stability of each class.

Our experiments imply that for network traffic classification
problems, models based on the SPLT are affected by a large
number of detected data drifts throughout long time periods,
for example, a year. Therefore, the basic XGBoost represen-
tative with SPLT as input features is not so stable. Moreover,
from related works by Malekghaini et al. [3], [25], we knew
that even highly optimized Deep Learning models are not
stable in time. In the related works, this problem was handled

using periodic retraining, which cannot be easily done in all
classification problems. Therefore, we suggest concentrating
not only on the highest precision of trained models but also on
their long-term stability because today’s models significantly
lose precision in a week or two.

Even though periodic retraining is the most straightforward
solution in some domains, it brings technical and theoretical
questions, such as: How do we gather and manage training
datasets? How to detect data obsolescence and how to filter
undeserved records. What records should be added to a dataset,
on the other hand? Generally, even if it is possible to use
periodic retraining, we should avoid it for several reasons:

I Most of the retraining will be unnecessary because no
changes in data appear.

II Frequent or periodic, ML model retraining is highly
resource-intensive. Furthermore, for complex problems,
this approach might be unmanageable or unfeasible [26].

III Frequent retraining without significant changes in data
can cause fitting of the model on non-stable features
because the model becomes too tailored to specific subsets
of data, which often change to gain better performance by
an insignificant percentage, reducing its generality [27].

IV It neglects some real-world effects, such as the weekend
phenomenon described in [15] or other recurring events.

In real-world scenarios, a drift detector should be deployed
side by side with the ML-model as a means for continuous
monitoring, e.g., by a SOC team. The model based on the
NetTiSA flow features supports this statement: it is a stable
model with several drifts occuring throughout several months.

VI. CONCLUSIONS

We introduced a novel method called Model-based Feature
Weight Drift Detection (MFWDD) to detect and investigate
drifts in network datasets. The proposed method was evaluated
using the large public datasets containing services in TLS
and QUIC protocols, which are very common communication
protocols in network traffic. The used datasets contain long-
term traffic and allow for the identification of drifts. However,
the MFWDD can be used with other classification tasks even

2024 20th International Conference on Network and Service Management (CNSM)



outside our network security domain because the computation
of final drift severity does not depend on a particular dataset
or types of the features.

The introduced drift detection method is ideal for a more
detailed investigation of datasets, which we demonstrated in
the domain of network traffic classification. We identified
differences in the behavior of the PPI features and the NetTiSA
flow feature vectors with respect to the selected dataset. The
method was able to properly detect data drifts on both selected
datasets and both selected feature vectors.

Furthermore, the MFWDD also works well in an unsu-
pervised manner. Therefore, there is no need for labels to
compare distributions. That means we can perform detection
on problems for which it is very difficult/expensive to get
labels (for example, by using active scanning or performing
human annotation). Nevertheless, the detector can detect data
drifts in real-world scenarios. When the detector detects a drift,
the model should be retrained. First, the distribution changes
can be evaluated, and the data records that may be deleted
from the datasets and new records added to the dataset can be
automatically evaluated. Second, the model is retrained on the
created dataset. Lastly, the model is deployed instead of the
original model.

We made the MFWDD framework containing both super-
vised and unsupervised methods publicly available as an open-
source project in the GitHub repository. Therefore, the source
code and examples are published for possible replication of
the described results, for evaluation of additional datasets, or
for follow-up on this research.

A. Future work
The developed MFWDD framework provides promising

methods for network drift detection and, thanks to its extensi-
bility, enables an additional use of statistical methods. In future
work, we would like to focus on deeper analysis of datasets
using the MFWDD framework and, from generated logs,
classify dataset drifts in parallel with corresponding events in
the network environment in the long-term measure. In related
works, researchers observed several categories of drift patterns,
sudden, gradual, incremental, and recurrent, Gama et al. [22],
and Lu et al. [23], but more research on drift types and their
impact to a dataset of ML model quality is needed.

We would like to leverage the knowledge of the ML
model and classification performance score to get a more
detailed identification of events (average F1 score improve-
ment/degradation with drift, class changes, periodicity events,
drift strength statistics, etc.). These metrics will help to iden-
tify dataset quality and better understand selected dataset use
case [10]. Due to the complexity of collecting network traffic
datasets, there is a demand for proactive analysis to avoid
errors that can lead to fake results [28], [29].
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