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Abstract—Information and Communication Technology (ICT)
infrastructures are increasingly adopting software-based ap-
proaches, using paradigms such as Infrastructure as Code (IaC).
This is aligned with the design of modern systems, such as 5G
with the use of Virtual Network Functions (VNFs) and container-
ized services, combining the expertise and participation of various
stakeholders from diverse cultural and educational backgrounds,
potentially across different organizations. To create a common
understanding of containerized networking infrastructures, we
developed an ontology that allows a unified representation of
core networking concepts. By enriching pre-deployment tasks
with semantics, we universally represented and verified different
network policies based on formal logic. To validate our approach,
we constructed two knowledge graphs using open-source 5G Core
Network implementations and demonstrated the potential of our
approach by checking for compliance with automated reasoning.
Using our defined rules, we extracted knowledge about non-
compliant services and made inferences based on the well-defined
concepts in the ontology. Our findings suggest that different
network security policies can be integrated into each knowledge
base, contributing to autonomic and cognitive management of
future infrastructures. This can potentially provide more re-
liable IaC definitions, improve machine interpretation of IaC
deployments, and assist human actors in making better-informed
decisions.

Index Terms—Ontologies, Knowledge Management, Knowl-
edge Representation, Formalisms and Methods, Infrastructure
protection

I. INTRODUCTION

In recent years, Information and Communication Technol-
ogy (ICT) infrastructures have shifted from a legacy environ-
ment to a software-based approach, which improves flexibility
and scalability [1]. By utilizing software-based infrastructure
and automation, network engineers reduce the time needed
for provisioning and configuring network elements using the
Infrastructure as Code (IaC) principles [2]. Various actors can
create configuration files that capture desired requirements, en-
abling version control and different Application Programming
Interfaces (APIs) for infrastructure management. In addition,
this approach leverages virtualized and containerized resources
for simplified control, transparency and reusability.

Network programmability simplifies network management
by minimizing the number of tasks usually performed man-
ually. However, managing the knowledge of hybrid systems
can be challenging since newly deployed network infrastruc-
tures coexist with legacy architectures. For instance, the fifth

generation of cellular networks (5G) networks are currently
deployed in parallel with older systems while adopting mod-
ern networking concepts such as Virtual Network Functions
(VNFs) [3]. Moreover, network programmability integrated
with deployment as code brings new software development
practices, such as Continuous Integration and Deployment
(CI/CD), into the networking domain. This shift introduces
challenges in managing the dependencies between software-
based networking components.

As networking systems are growing in size and capabil-
ities, it is essential to comprehend abstract knowledge and
make conclusions from existing information and data sets. To
improve understanding and formalize the domain of complex
containerized networking infrastructures, we can use knowl-
edge management tools and specifications. An ontology-based
approach for conceptualization and formal representation of
domain knowledge allows the creation of knowledge graphs
to denote and visualize elements of IaC networking domain.
More precisely, we can express abstract knowledge uniquely
by enriching the data with logic and semantics, making it both
human and machine-understandable.

The objectives of this paper are to formally represent
knowledge about core network connectivity concepts of multi-
container applications and to integrate and validate networking
policies based on the Description Logics (DLs) on data from
real-world use cases, building on previous findings [4]. To
show the potential of the ontology-based approach in seman-
tically enriching the pre-deployment task of encoded infras-
tructure, we focus on the widely used platform for container
configuration and management, utilizing Docker Compose
orchestration files. Our proposed ontology, which formally
describes the connectivity between containerized services,
serves as the base for the knowledge graph generation. In
addition, with the help of software reasoners, we validate the
knowledge graphs’ compliance with expert-defined rules and
infer new information based on explicitly available knowledge.

The rest of this paper is organized as follows. Section II
presents an overview of ontologies, knowledge graphs and
their application in the networking domain. In Section III, we
explain the semantically-enriched approach to verifying logic-
based rules. Section IV evaluates this approach in 5G Core
Network scenarios. In Section V, we provide a discussion of
our findings, followed by the conclusion in Section VI.
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II. RELATED WORK

Ontologies capture general knowledge while providing in-
formation share and reuse. Within the Information Technology
(IT) field, an ontology is generally recognized as a “formal,
explicit specification of a shared conceptualization” [5]. It
includes formally defined concepts, their attributes, and re-
lationships, collectively describing a phenomenon within a
specific domain. An ontology can serve as the basis for
knowledge graph construction, ensuring interoperability and
containing real-world instances with well-defined properties.

We can logically formalize and model an ontology with the
support of Description Logics (DLs) that allow the definition
of concepts (classes), roles (binary relationships), and individ-
uals (instances of classes) [6]. To make ontologies machine-
interpretable, we can employ Semantic Web technologies
that offer standardized methods for managing, storing, and
querying data within knowledge graphs [7].

A well-known ontology, the TOUCAN ontology (ToCo) [8],
captures physical components, users, services and metrics
for channel quality assessment, focusing on hybrid telecom-
munication network systems. Compared to the ToCo ontol-
ogy, the Infrastructure and Network Description Language
(INDL) ontology [9], DevOps Infrastructure Ontology [10]
and Container Description Ontology (CDO) [11] encompass
the domain of virtualized computing infrastructures. However,
while the focus of INDL is to describe storage and computing
concepts, the DevOps Infrastructure Ontology is composed of
10 ontologies, each representing different aspects of an ICT
system, from network infrastructure to organizational entities
and business products and services. Furthermore, the CDO
provides high-level definitions of core container orchestration
concepts. However, it does not fully represent low-level net-
working concepts, allowing the description of the connectivity
between services.

Within the domain of IaC, different methods for analyz-
ing static configurations have been identified for detecting
potential security weaknesses [12]. Kumara et al. [13] utilize
Semantic Web technologies, creating the ontology representing
the key application deployment concepts. Another approach
employs dependency graphs created based on Ansible syntax
using queries to detect inconsistencies [14]. Other proposed
tools, such as the Docker Compose Validator [15] and Docker
Composer [16], can assist developers in pre-deployment tasks,
but they do not provide formal verification nor consider the
semantics of networking in IaC, which can include important
facts about the infrastructure.

The study of literature suggests that the application of
ontologies have been explored to represent different concepts
of virtualizing computing infrastructures and networking sys-
tems. Among them, the DevOps Infrastructure Ontology [10]
covers core entities and their relationships, commonly de-
scribed in configuration and IT service management databases.
However, while the subsets of the DevOps Infrastructure
Ontology address fundamental networking and virtualization
concepts as well as the software-based nature of contain-

ers, they do not provide detailed descriptions of networking
between containerized services. On the other hand, related
work focused on IaC often disregards networking aspects and
complexity. Inspired by these findings, we utilize the reusabil-
ity principles to integrate the domains of networking and
containerization and develop a formal model that represents
network connectivity among containerized services.

III. SEMANTICALLY-ENRICHED CONTAINERIZATION

In this section, we present an ontology that focuses on the
core networking concepts of containerized services based on
the previous findings [4]. Utilizing Docker Compose syntax,
we populate the ontology, create a knowledge graph for
querying existing information and automatically derive new
insights using formal logic1.

A. Container Networking Ontology

Adapting the simple knowledge-engineering methodol-
ogy [17], we define the scope of our ontology through four
main competency questions. With the first two questions, (1)
how can two services (and their respective containers) be
connected and (2) how can we ensure that two services are
connected through the specific Internet Protocol (IP) network,
we look into the network connectivity between containers.
With the latter two questions, we investigate the representation
of services and their networking attributes, (3) what type of
IP address allocation a service can have, and (4) what type of
port mapping is possible in the service definition.

The concepts of the IP Address and IP Network
with a set of properties that can be useful to address our
competency questions are defined in the DevOps Infrastruc-
ture Ontology [10], more precisely in an ontology covering
network-related parts of the ICT infrastructure. In addition,
the DevOps Infrastructure Ontology contains classes, such as
Virtual Server, which could be extended to represent the
concept of a container in a Docker Compose file. However,
the IP Network, IP Address and Virtual Server
classes are defined in different ontologies without a direct
connection. Consequently, we create a Container Networking
Ontology that builds upon the DevOps Infrastructure Ontology
to represent networking among containerized services.

The resulting class hierarchy of our ontology is illustrated
in Fig. 1. The classes Configuration Item, Resource,
IP Address and IP Network are imported from the
DevOps Infrastructure Ontology [10], while we define a new
class Service which is an abstract definition of a Docker
container.

The object and datatype properties of the Container
Networking Ontology are illustrated in Fig. 2. The
properties belongs To IP Network and ip Address
Version are imported from the networking part of the De-
vOps Infrastructure Ontology. Each property has rdfs:domain
and rdfs:range restrictions and rdfs:label and rdfs:comment for
improved human readability.

1The knowledge graphs, ontology, parsing code, all the relevant data, and
additional use cases are available at https://palmaitem.github.io/kgcompliance.
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Fig. 1. The class hierarchy in the Container Networking Ontology.

Fig. 2. Object and datatype properties in the Container Networking Ontology.

B. Knowledge Graph Creation

To create knowledge graphs with instances from real-world
applications, we develop a parser that populates the Container
Networking Ontology based on the Docker Compose syntax.
This parsing module automatically creates a knowledge base
having Container Networking Ontology in Extensible Markup
Language (XML) format and a compose.yaml file as the input.
With the help of reasoners integrated in Protégé [18], we also
perform a consistency check to verify that each knowledge
graph complies with the definition of concepts and their
relationships in our ontology.

C. Inspecting User-defined Policies with Description Logics

Following the consistency check by reasoners applied to
each knowledge graph using ontology-defined rules, we extend
the graphs with our specified network policies. In this process,
we add further semantics and demonstrate the potential for
making conclusions on the encoded infrastructure based on
formal logic.

The ontology-based approach allows various policies to be
incorporated into the knowledge base as Semantic Web Rule
Language (SWRL) rules. The defined rules are then parsed by
the selected reasoner, automatically extending the knowledge
base. The inferred knowledge, displayed as highlighted prop-
erty assertions and queried with SPARQL Protocol and RDF
Query Language (SPARQL), can help us to identify the causes
of non-compliance.

Our defined rules are summarized in Table I. The first two
logic-based rules universally inspect the network connectivity
between containerized services. Rule 1 allows us to search
for instances of the class Service connected to the default

SELECT DISTINCT ?service ?hostPort ?internalPort
WHERE {
?service rdf:type :Service .
?service :nonCompliance true.
{?service :exposesPortToHost ?hostPort} UNION
{?service :exposesPortToServices ?internalPort} .
}

Listing 1. SPARQL query to identify non-compliant services with Rule 4
and their exposed ports.

network. It is based on Docker Compose’s default behaviour of
creating a network that connects all the containers belonging to
the same infrastructure when the connection between contain-
ers is not specified. Rule 2 explores different individuals of the
class Service within the knowledge base that have the same
IP Network defined, supposing that two containers within
the same custom network should be able to communicate.

Given the widespread use of Hypertext Transfer Protocol
(HTTP) traffic in modern applications and 5G networks, we
examine the exposure of its default ports. The following
two rules are based on the standard protocol-port mapping,
assuming that the security measure allows HTTP and HTTP
Secure (HTTPS) traffic over ports 80 and 443, respectively.
Therefore, Rule 3 inspects if default network port 80 is
exposed to the Docker Host. Rule 4 verifies port 443 exposure
to the Docker Host, which would be a typical compliance
control for ensuring that HTTP external traffic in the Docker
network is encrypted. This rule also checks if internal traffic
is limited to port 80, typically used by modern services’ APIs.
However, these protocol-related rules could include other ports
approved by a network security team.

The knowledge derived from evaluating the defined rules
is stored within the analyzed knowledge graph and queried
to assess the compliance of each knowledge base with the
specified network policies. For instance, the SPARQL query
presented in Listing 1 allows us to determine whether the
standard HTTP ports are exposed externally and, therefore,
potentially to public networks or internally only to other
Docker containers.

IV. AUTOMATED VALIDATION OF THE 5G CORE
NETWORK CONFIGURATION FILES

To demonstrate the potential of the ontology-based approach
to represent containerized network infrastructures and verify
user-defined network policies, we present the validation of two
knowledge graphs. These graphs are automatically generated
based on real-world data parsed from open-source 5G Core
Network deployment scenarios and checked for compliance
with our defined rules.

Table II summarizes the extracted knowledge for the two
use cases presented in more detail in sections IV-A and IV-B.
Each 5G Core architecture has a different number of instances
of the class Service defined by our Container Networking
Ontology, presented as Total Services, and distinct network
configurations, despite both infrastructures serving the same
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TABLE I
NETWORK POLICIES DEFINED AS SWRL RULES.

Rule Description

1. Default Compose Network Service(?x) ∧ hasIPNetwork(?x,?y) → hasDefaultIPNetwork(?x, false)

2. Connectivity between Services Service(?x) ∧ Service(?y) ∧ hasIPNetwork(?x,?s) ∧ hasIPNetwork(?y,?s)
∧ differentFrom(?x,?y) → hasConnectivityWith(?x,?y)

3. Exposed HTTP Port

Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:equal(?p,"80")
→ exposesHTTPPortExternally(?x,true)

Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:equal(?p,"80/tcp")
→ exposesHTTPPortExternally(?x,true)

4. Compliance Check

Service(?x) ∧ exposesPortToHost(?x,?p) ∧ swrlb:notequal(?p, "443")
∧ swrlb:notequal(?p,"443/tcp") → nonCompliance(?x,true)

Service(?x) ∧ exposesPortToServices(?x,?p) ∧ swrlb:notequal(?p, "80")
∧ swrlb:notequal(?p,"80/tcp") → nonCompliance(?x,true)

purpose. The row Custom IP Network represents the number
of services satisfying Rule 1, revealing that these deployments
do not rely on Docker’s default network, while the row
HTTP Host Ports presents the outcomes of validating Rule 3.
HTTP Internal Ports provides the number of standard HTTP
ports exposed internally between services, while the row
Non-compliant Services represents the automatically inferred
knowledge after the integration of Rule 4. The remaining
results include Host Ports and Internal Ports, which contain
the total number of exposed ports. In addition, the # IP
Networks and # IP Addresses show that while both 5G cores
define a single IP network, OAI5GC is more explicit in the
definition of addresses.

TABLE II
EXTRACTED KNOWLEDGE USING SPARQL QUERIES.

Free5GC OAI5GC

Total Services 15 9

Custom IP Network 15 9

HTTP Host Ports 0 0

HTTP Internal Ports 0 6

Non-compliant Services 11 7

Host Ports 3 0

Internal Ports 12 16

# IP Networks 1 1

# IP Addresses 1 9

A. Free 5G Core Solution

Based on the publicly available Docker Compose file2

created as part of the Free5GC project, we build a knowledge
graph named Free5GC. It contains 15 instances of the class
Service, while there is only one instance of IP Network
and IP Address classes, as presented in Table II. This
indicates that Rule 2 is consistently applied to all services
and that they share the same network definition. Furthermore,
no specific default HTTP ports are detected, implying that the

2docker-compose.yaml available at github.com/free5gc/free5gc-compose/
tree/master, with the commit hash f37df73.

11 Services that do not satisfy Rule 4 arise from exposure of
ports other than 80 and 443.

B. Open Air Interface 5G Core Network Solution

Another 5G Core Network deployment, used to populate
our ontology and validate network policies, is provided as part
of the OpenAirInterface Software Alliance (OAI) project. To
build the OAI5GC knowledge graph, we refer to the Basic
5GC deployment mode3.

There is a total of nine instances for each of the classes
Service and IP Address, with a single IP Network
defined, as presented in Table II. The result for the Custom IP
Network suggests that all the services connect to the same
custom network. Furthermore, there are 16 Internal Ports
defined, out of which six are HTTP Internal Ports, while
seven services do not satisfy Rule 4. Thus, we can conclude
that other ports than 80 are exposed internally. This inferred
knowledge can further be explored with various SPARQL
queries and assist network developers in gaining a deeper
understanding and potentially modifying our defined rules to
automate the verification of their configurations.

V. DISCUSSION

The Container Networking Ontology is constructed based
on the four main competency questions, and it does not in-
clude the definition of Docker-specific attributes. It represents
the knowledge of networking between containerized services
beyond Docker. Therefore, the proposed semantically-enriched
containerization approach has the potential for extension and
modification to include more networking options available in
different IaC specifications.

The parser responsible for knowledge graph creation can
be adapted to be agnostic to the underlying container-based
architecture. This allows further enhancement and validation
of more complex deployment scenarios utilizing various con-
tainer orchestration systems, such as Kubernetes. To extend
our prototype beyond the Docker Compose syntax, we could

3docker-compose-basic-nrf.yaml available at gitlab.eurecom.fr/oai/cn5g/
oai-cn5g-fed/-/tree/master/docker-compose, with the commit hash 8848fde.
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use annotations in the defined IaC files and enable more
explicit mapping of concepts and properties.

The proposed validation of configuration files currently
assists in adding semantic value only to static definitions
within the pre-deployment tasks. However, the scope of our
model can be broadened to cover the operation, management
and maintenance of a typical infrastructure. For example, by
keeping an up-to-date knowledge base through monitoring
agents, compliance checks against defined logic rules can
be performed in real time while the application is running.
By tracking changes, autonomic and cognitive management
could be achieved, where we could detect misconfigurations
— assisted by the reasoning features of our model — and gain
a deeper understanding of the sources for non-compliance.
Potentially, this approach could even be used to prevent
changes that would cause issues or network security risks,
requiring approval or validation from an expert.

The semantically-enriched containerization may help hu-
man actors by creating a common understanding of the
system, which could improve knowledge sharing and overall
interoperability. Therefore, it could be adopted within ICT
organizations to ease not only human-to-machine but also
human-to-human communication. Furthermore, our prototype
could be improved with human-centered evaluation, providing
the domain knowledge for Artificial Intelligence (AI) models
to achieve more comprehensible and intelligent network and
service configuration and management.

VI. CONCLUSION

This paper demonstrates an approach for analyzing IaC
deployments through a human-readable definition of concepts
and their relations, represented in a flexible ontology. By
enriching the available configurations with explicit semantics,
we can automatically employ user-defined networking policies
through formal logic. These policies can be represented uni-
versally (i.e., mapped to well-defined concepts) and be trans-
parently applied to IaC without requiring any modification,
allowing machine-based interpretation and reasoning of the
parsed IaC data. We validate our approach in two reference 5G
Core Network implementations and show how automatically
inferred insights can assist the diagnostic operations by detect-
ing non-compliant configurations. This approach can serve as
a basis for human actors to make more informed decisions,
which can become an integral part of the life cycle of a
cloud-native infrastructure. It also allows the development of
a common understanding between various human actors who
can evaluate their network and security policies by inspecting
different IaC deployments with our proposed ontology.
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