
Reinforcement Learning-Driven Service Placement
in 6G Networks across the Compute Continuum

Andres F. Ocampo∗‡, José Santos†‡,
∗ SimulaMet – Simula Metropolitan Center for Digital Engineering, Pilestredet 52, N-0167 Oslo, Norway

Email: {andres}@simula.no
† IDlab, Department of Information Technology at Ghent University - imec, 9000 Ghent, Belgium

Email: {josepedro.pereiradossantos}@UGent.be

Abstract—The advent of 6G networks promises unprecedented
advancements in communication technologies, demanding in-
novative solutions for service placement across the Compute
Continuum (CC), where computing resources are distributed
across the network area, from edge to cloud. This paper explores
a novel approach for service placement in 6G networks using
Reinforcement Learning (RL) techniques. By leveraging the
dynamic decision-making capabilities of RL, this work addresses
the complexities of distributing services across heterogeneous
computing resources to enhance network performance, reduce
latency, and improve resource utilization. An extensive evalua-
tion, based on a real dataset collected from commercial 4G/5G
networks, was conducted under various network conditions and
workloads to evaluate the effectiveness of the proposed approach.
Results highlight the adaptability of our RL-driven model to
dynamic network environments, demonstrated by its capacity to
optimize for multiple objectives simultaneously. Our analysis also
reveals that while single-objective heuristics can outperform RL
in specific, limited scenarios, these struggle to handle increasing
complexity. These findings highlight the viability of RL as
a powerful tool for intelligent service management in next-
generation communication systems, paving the way for more
resilient and efficient 6G network architectures.

Index Terms—Compute Continuum, Reinforcement Learning,
Orchestration, Service Placement, 6G, Cloud Computing

I. INTRODUCTION

The emergence of the Compute Continuum (CC), fueled
by the demands of 6G and real-time applications, presents a
paradigm shift in cloud computing [1], [2]. The CC envisions
a seamless integration of diverse computing resources, from
powerful cloud Data Centers (DCs) to resource-constrained
edge devices, to execute applications closer to users and min-
imize latency. However, this heterogeneity and the dynamic
nature of resource availability in the CC pose significant
challenges for service placement and resource orchestration
in 6G networks [3], [4].

Traditional approaches, including rule-based policies and
heuristic algorithms, struggle to keep pace with the dynamic
conditions of the CC [4], [5]. Rules quickly become out-
dated as network conditions change, and heuristics, while
computationally efficient, often fail to capture the complexities
of real-world deployments. This leads to suboptimal service

‡ Andres F. Ocampo and José Santos contributed equally to this work.

placement and inefficient resource utilization, hindering the
CC’s full potential.

Reinforcement Learning (RL) represents a promising ap-
proach to overcome these limitations in dynamic service
placement within the CC as demonstrated by recent works
[6], [7]. RL agents can learn adaptive orchestration strategies
by interacting with the environment and receiving feedback on
their decisions, potentially handling the CC’s dynamic nature
more effectively. However, a key challenge in applying RL
to the CC lies in the need for realistic and scalable training
environments. Existing RL-based approaches often rely on
simplified simulators or synthetic datasets, which may not
accurately capture the complexities and dynamics of real-
world CC environments [6], [8]. This discrepancy between
training and real-world deployment can limit the effectiveness
and generalizability of the learned policies.

This paper proposes the gym-nne framework to bridge the
gap between the potential of RL and the need for realis-
tic training environments in service placement for the CC.
The gym-nne framework is specifically designed to enable
scalable and cost-effective training of RL algorithms for
service placement in the CC using real-world network data.
Unlike traditional OpenAI Gym-based environments [9] that
prioritize training speed over environmental realism, gym-nne
incorporates a comprehensive dataset from commercial mobile
operators (the NortNetEdge (NNE) dataset [10]). This dataset
provides RL agents with realistic network dynamics, including
latency variations and bandwidth fluctuations. This data-driven
approach allows training in a setting that closely replicates
real-world CC deployments. Consequently, gym-nne fosters
the development of more robust and generalizable service
orchestration strategies.

Our key contributions are two-fold:
• gym-nne framework: We investigate the application

of gym-nne for service placement within the CC. We
demonstrate how this framework, specifically designed
for RL, can be adapted to model the interactions between
services and resources throughout the CC. The framework
has been open-sourced 1, enabling researchers to leverage
gym-nne to evaluate their placement strategies.

1https://github.com/jpedro1992/gym-nne

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

• Extensive Evalution: We evaluate the performance of
gym-nne using a variety of reward strategies that capture
different deployment objectives, such as minimizing cost,
latency, or resource inequality. We compare the perfor-
mance of gym-nne with traditional heuristic approaches
to service placement, highlighting the advantages of RL
in handling dynamic resource allocation and service or-
chestration challenges within the CC.

The remainder of this paper is structured as follows. Sec-
tion II reviews related work on service placement. Section III
introduces the system and data models used in our evaluation.
Section IV details our proposed RL-based service placement
algorithm. Section V presents our evaluation methodology
and results, comparing our approach to traditional methods.
Finally, Section VII concludes the paper and outlines future
research directions.

II. RELATED WORK

Efficient service orchestration in dynamic fog/edge envi-
ronments is crucial for emerging applications with stringent
latency and bandwidth demands. Traditional approaches [11]–
[13], often reliant on static rules or heuristics, struggle to adapt
to real-time changes in network conditions, resource availabil-
ity, and user demands. This has led to growing interest in
leveraging RL to develop more adaptive and dynamic service
placement strategies. RL agents learn through interaction with
the environment, making them well-suited for handling the
dynamic and unpredictable nature of fog/edge systems [8].

Various studies [6], [14], [15] have explored leveraging
value-based RL methods for optimal service placement. For
example, Dehuri et al. [14], employed Deep Q-Network
(DQN) to learn policies that map system states to actions, aim-
ing to minimize latency and resource consumption. Similarly,
Talpur et al. [15] investigated the use of Double DQN, a variant
of DQN, to improve the stability and performance of service
placement in fog environments. Researchers have also inves-
tigated policy-based methods, including Deep Deterministic
Policy Gradients [16] and Proximal Policy Optimization (PPO)
[17], for their ability to handle continuous action spaces and
complex system dynamics often encountered in fog environ-
ments. Furthermore, hybrid approaches combining value-based
and policy-based methods have been proposed in [18], aiming
to capitalize on the strengths of both methodologies. These
studies have demonstrated the potential of RL for optimizing
various performance factors of service placement, including
latency minimization [19], cost optimization [20], and resource
allocation [14].

However, a significant limitation of existing research is the
reliance on simplified simulations that do not capture the
complexities of real-world fog environments within the CC.
Furthermore, existing evaluations often focus on a narrow set
of performance metrics, limiting the ability to comprehen-
sively assess the effectiveness of different RL algorithms. In
contrast to these limitations, gym-nne provides a more realistic
and comprehensive evaluation platform for service placement

Fig. 1: System model for 6G service placement, illustrating the
mobile system, CC, and NNE data collection.

strategies. Unlike existing works that rely on simplified sim-
ulation environments, gym-nne leverages real-world network
traces to capture the dynamic nature of the CC, including
fluctuations in latency, bandwidth availability, and user de-
mands. By focusing on real-world data, our work enables a
more accurate assessment of how different approaches would
perform in practical deployments.

III. SYSTEM OVERVIEW AND DATA MODELS

This section provides an overview of the CC architecture
and the data models used to evaluate our proposed RL-driven
service placement approach for 6G networks. The aim is to
realistically representing the complexities of the CC to enable
a robust and insightful evaluation.

A. Modeling a Realistic Compute Continuum (CC)

The envisioned CC for 6G presents significant challenges
for service placement due to its heterogeneous and dynamic
nature. Our system model, illustrated in Fig. 1, captures these
complexities by incorporating:

Multi-Operator, Multi-Technology Access Users can ac-
cess services hosted at various locations within the CC (i.e.,
edge, fog, and cloud) through different operators and access
technologies (4G and 5G). This introduces variations in terms
of latency, bandwidth, and deployment cost.

Dynamic Resource Availability Computing Resources
within the CC (e.g., the available CPU and memory at each
location) fluctuate over time due to factors such as user
demand and request arrival times. Our model accounts for
these dynamics, requiring placement decisions to adapt to
changing resource availability.

This realistic system model requires real-world data for
meaningful evaluation. By incorporating datasets such as the
NNE described in the next section, we can effectively capture
the complexities and variations of real deployments, thus pro-
viding more reliable insights for optimizing service placement
in 6G networks.

B. NortNetEdge (NNE) Dataset

To evaluate service placement strategies under realistic
network conditions, we leverage the NNE dataset, a large-
scale measurement platform deployed across Norway [10]
that continuously captures 4G/5G network performance. This
work uses data collected from November 2023 to February
2024, aggregating various Key Performance Indicators (KPIs)
between network probes and placement nodes in 5-minute

2024 20th International Conference on Network and Service Management (CNSM)

intervals. This approach balances the need to capture network
dynamics while maintaining computational feasibility during
RL training. The KPIs measured include:

Round-trip time (RTT) 90th Percentile: Calculated from
UDP ping measurements, representing the typical upper bound
of latency experienced within each 5-minute window.

Downlink and Uplink Data Rate, Jitter: These metrics
are derived from speed tests, aggregated, and mapped to align
with 5-minute evaluation intervals. These provide insights into
the bandwidth and stability of the connection.

Provider and network interface availability (4G/5G) varies
across nodes in the NNE dataset. Nodes may access up to
two of three providers, though some have access to only one.
This applies to both 4G and 5G connectivity. With diverse
measurement points, dynamic conditions, and multiple KPIs,
the NNE dataset provides a robust basis for evaluating our
RL-based service placement approach.

IV. REINFORCEMENT LEARNING METHODOLOGY

A. The gym-nne framework

The gym-nne framework has been developed to enable
scalable and cost-effective training of RL algorithms, as shown
in Fig. 2. Traditional OpenAI Gym-based environments are
typically designed to speed up the training process of RL. As
such, our gym-nne framework supports multiple RL algorithms
focused on generating an orchestration strategy using dynamic
information from the NNE dataset as input. For instance,
the framework continuously updates the RL environment with
real-time data, such as RTT, and uplink and downlink band-
width measurements for each provider, all sourced from the
NNE dataset. Additionally, it dynamically adjusts the allocated
CPU and memory resources for each node, reflecting the
number of requests deployed at each node after each action
selected by the RL algorithm. The gym-nne framework has
been developed to mimic the behavior of deployment requests
within the Compute Continuum, thereby providing the RL
agent with pertinent information about network conditions
collected by NNE nodes. Further details about our framework
are detailed in the next subsections.

B. Observation Space

Table I exhibits the observation space applied in the gym-
nne framework to characterize the environment at each step.
It contains two main sets of metrics: Request and Location.
The Request set corresponds to the application’s deployment
requirements, including the CPU and memory demands (ωcpu

and ωmem), the latency threshold (∆r) that must be met by
the hosting location, and the expected duration (Tr) of each
request r, measured in time units. Given that RL is invoked
with each new service request, the time interval between
consecutive steps varies. Thus, Tr is incorporated into the
observation space to enable the RL agent to learn the dynamics
of the environment. This explicit inclusion of inter-arrival time
between successive requests highlights changes in resource
consumption across locations from one state to the next.

TABLE I: The structure of the Observation Space in the gym-nne
framework for each location within the Cloud Continuum.

Set Metric Description

Request

ωcpu The CPU request (in millicpu).
ωmem The memory request (in mebibyte).
∆r The latency threshold (in ms).
Tr The execution time (in time units).

Location

Πcpu The location’s cpu capacity.
Πmem The location’s memory capacity.
Θcpu The CPU allocated in the location.
Θmem The memory allocated in the location.
Pp The location’s provider identifier.
Ii The location’s interface identifier.
Ul The uplink capacity (in Mbit/s).
Dl The downlink capacity (in Mbit/s).
RQ90l The RTT 90% quartile (in ms).
Jl The jitter (in ms).
δl The processing latency of location l.

TABLE II: The hardware configuration of each location based on
Amazon EC2 On-Demand Pricing [21].

Type Latency (βl) Amazon ($/h) Cost (τc) CPU RAM
Cloud 10 2XL (0.2688) 16.0 8.0 32.0
Fog-T2 7.5 XL (0.1344) 8.0 4.0 16.0
Fog-T1 5.0 L (0.0672) 4.0 2.0 8.0
Edge-T2 2.5 M (0.0336) 2.0 2.0 4.0
Edge-T1 1.0 S (0.0168) 1.0 2.0 2.0

The Location set corresponds to the metrics related to the
current status of the infrastructure, detailing both available
resources and network conditions. These metrics include the
total capacities for CPU and memory (Πcpu and Πmem), the
amounts of CPU and memory currently allocated (Θcpu and
Θmem), provider and interface identifiers (Pp and Ii), uplink
and downlink capacities (Ul and Dl), jitter (Jl), the 90th
percentile of RTT (RQ90l), and the processing latency at each
location (δl). The allocation of CPU and memory resources for
each location is dynamically adjusted based on the number of
hosted requests. As the number of deployed requests grows,
the allocated CPU and memory increase proportionally to
the specified requirements for each request. Similarly, when
a request is terminated, the allocated resources are adjusted
to reflect the freed CPU and memory. The available free
CPU (Ωcpu) and memory (Ωmem) resources are defined by
equations (1) and (2), respectively. However, these metrics
are excluded from the observation space as our experiments
showed that including them did not enhance the performance
of the algorithms since the agents already have access to the
total capacity and the currently allocated amount of resources.
The processing latency (δl) is also influenced by the number of
hosted requests at each location, increasing by a specific factor
(i.e., 2 ms per hosted request). By incorporating these compre-
hensive metrics, the gym-nne framework provides a detailed
view of resource availability and network conditions across
various locations, thereby enabling more efficient orchestration
strategies by the RL agent.

Ωcpu︸︷︷︸
free CPU

= Πcpu︸︷︷︸
CPU Capacity

− Θcpu︸ ︷︷ ︸
CPU Allocated

(1)

2024 20th International Conference on Network and Service Management (CNSM)

gym-nne

Environment
RL Algorithm

Action Space
1) Deploy-Request-Locationi -Provideri -Interfacei
OR
2) Reject Deployment Request

Observation Space

Learn optimal policy
based on selected
reward strategy

Request Location

8 Cores, 32.0 Gi, 1.5 Cores, 0.5 Gi, Telia, 4G, 10 Mbit/s, 60 Mbit/s, 0.05 ms, 0.02 ms, 2 ms 0.3 cpu, 0.2Mi, 20ms, 2 time units

0.3 cpu, 0.2Mi, 20ms, 2 time units

0.3 cpu, 0.2Mi, 20ms, 2 time units

L1 - Provider Telia - Interface 4G

0.3 cpu, 0.2Mi, 20ms, 2 time units

Reward
within the range [0.0, 1.0]

Penalty = -1.0L1 - Provider Ice- Interface 5G

L2- Provider Telia - Interface 4G

L3 - Provider Ice- Interface 5G

L3 - Provider Telenor- Interface 4G

L4 - Provider Ice- Interface 5G

L4 - Provider Telenor- Interface 4G

0.3 cpu, 0.2Mi, 20ms, 2 time units

0.3 cpu, 0.2Mi, 20ms, 2 time units

0.3 cpu, 0.2Mi, 20ms, 2 time units

Location 1 (Cloud)

Location 2(Fog-T2)

Location 3 (Fog-T1)

Location 4 (Edge-T1)

8 Cores, 32.0 Gi, 1.5 Cores, 0.5 Gi, Ice, 5G, 50 Mbit/s, 100 Mbit/s, 0.04 ms, 0.01 ms, 6 ms

4 Cores, 16.0 Gi, 2.0 Cores, 2.5 Gi, Telia, 4G, 5 Mbit/s, 30 Mbit/s, 0.1 ms, 0.06 ms, 10 ms

2 Cores, 2.0 Gi, 1.0 Cores, 1.5 Gi, Telenor, 4G, 5 Mbit/s, 25 Mbit/s, 0.05 ms, 0.06 ms, 2ms

2 Cores, 8.0 Gi, 1.5 Cores, 2.5 Gi, Telenor, 4G, 15 Mbit/s, 60 Mbit/s, 0.02 ms, 0.6 ms, 8 ms

2 Cores, 8.0 Gi, 1.5 Cores, 2.5 Gi, Ice, 5G, 15 Mbit/s, 60 Mbit/s, 0.02 ms, 0.6 ms, 8 ms

2 Cores, 2.0 Gi, 1.0 Cores, 1.5 Gi, Ice, 5G, 20 Mbit/s, 75 Mbit/s, 0.05 ms, 0.06 ms, 4ms

Fig. 2: Overview of the gym-nne framework.

TABLE III: The structure of the Action Space.
Action Name Description
Deploy-l-p-i Deploy request in loc. l. Use prov. p with interf. i.

Reject The agent rejects the request. Nothing is deployed.

Ωmem︸ ︷︷ ︸
free Memory

= Πmem︸ ︷︷ ︸
Memory Capacity

− Θmem︸ ︷︷ ︸
Memory Allocated

(2)

Table II provides a comprehensive overview of the resource
capacities for each location type along with their corre-
sponding deployment costs. Resource capacities are quantified
within a range of [2.0, 32.0] units, and allocated resources are
initiated within [0.0, 0.2] units, to account for the reserved
resources allocated to background services such as monitoring.
Each location type is also associated with an access latency,
which varies between [0.0, 10.0] ms, contingent upon the
specific type of the location. This information aids the RL
agent to select adequate actions at a given moment from the
action space described next, ensuring an efficient orchestration
strategy.

C. Action Space

Table III outlines the action space designed for gym-nne as a
discrete set of possible actions, with a single action executed
at each timestep. For any given request, the RL agent has
the option to either deploy or reject the request. Rejection is
allowed when computational resources are insufficient, and no
location can fulfill the request’s requirements. In such cases,
the agent is not penalized, acknowledging the constraint of
limited resources. The total size of the action space depends on
the total number of locations and corresponding providers (i.e.,
Telia, Telenor, Ice) and interfaces (i.e., 4G and 5G) available
in the NNE dataset. Assuming a CC scenario with l locations,
the action space is computed as l × 3 × 2 = l × 6, where
3 represents the number of providers and 2 represents the

number of interfaces. However, it is important to note that not
all providers and interfaces are available for every location in
the NNE dataset, as previously discussed in Section III.

Regarding penalties (i.e., negative rewards), a straightfor-
ward approach, often adopted in the literature [20], is to
penalize the agent for selecting invalid actions. These invalid
actions are typically pre-determined based on the available
computing resources, and if the specific provider and interface
are supported. An alternative and more advanced approach is
known as action masking [22], which familiarizes the agent
that, depending on the current state s, certain actions are
invalid. Recent studies have demonstrated that action mask-
ing significantly enhances performance and sample efficiency
compared to the penalty method. The action masks for each
location l in state s can be defined as follows:

mask(s)[l] =

True,
If location l has enough resources,
and supports prov. p and interf. i

False, Otherwise.
(3)

For rejection actions, the action mask is always set to true,
ensuring the agent is not locked out in scenarios where all
other actions are invalid.

D. Reward Function

The reward function is critical for steering the RL agent to-
wards maximizing accumulative rewards by selecting optimal
actions based on the current observation state. In this study,
a multi-objective reward function (4) has been designed to
incorporate four distinct objectives: cost-aware (5), latency-
aware (6), bandwidth-aware (7), and inequality-aware (8).
When the agent chooses to accept a deployment request,
it is rewarded positively according to these objectives, with
respective weights (ωc, ωl, ωb and ωi), and the rewards are
normalized within the range [0.0, 1.0]. In contrast, if the agent

2024 20th International Conference on Network and Service Management (CNSM)

rejects the request despite sufficient computing resources being
available, it incurs a penalty of -1.

r =

ωc × rcost + ωl × rl+

ωb × rband + ωi × rineq
If the request is accepted.

−1 If the request is rejected.
(4)

rcost = 1.0− Γd where: Γd = Expected Deployment Cost
(5)

rlatency = 1.0− λd where: λd = Expected Total Latency.
(6)

rbandwidth = 1.0−B where: B = Ul +Dl (7)

rinequality = 1.0−G where: G = Gini Coefficient (8)

The cost-aware function guides the agent to deploy requests
in locations within the CC in a manner that minimizes al-
location costs (denoted as τc). Locations classified as cloud
generally incur higher deployment costs compared to fog
and edge types, and also often offer higher latency. Thus,
the RL agent will prefer to deploy requests on edge or fog
locations to maximize the accumulated reward. However, fog
and edge locations typically have fewer computing resources
compared to cloud locations, which may limit their ability to
accommodate multiple requests. The deployment cost for a
request, denoted as Γd, is determined based on the allocation
cost τc of the selected location.

The latency-aware function aims to minimize the expected
latency of a deployment request. The expected latency (λd)
is computed based on multiple latency factors, considering
the specific location hosting the request. The latency-aware
function seeks to find placement schemes that minimize the
overall latency (9) by favoring locations that focus not only on
meeting the latency threshold of the request but also providing
low RTT, low processing latency, and a low access latency.

λd︸︷︷︸
Total Latency (in ms)

= RQ90l︸ ︷︷ ︸
RTT 90% percentile

+ δl︸︷︷︸
Processing Latency

+ βl︸︷︷︸
Access Latency

(9)

The bandwidth-aware function aims to select a location
with the highest available downlink and uplink bandwidth.
The reward is computed based on the combined bandwidth
capacity, taking into account both uplink (Ul) and downlink
(Dl). This function influences the RL agent to prioritize
locations offering the maximum bandwidth at a given time.

Lastly, the inequality-aware function directs the RL agent
to choose deployment strategies that evenly distribute requests
across the available locations. The reward is calculated based
on the Gini Coefficient (G) that ranges from [0.0, 1.0], where 0
indicates perfect equality (each location hosts an equal number

TABLE IV: The evaluated reward strategies.
Name ωc ωl ωb ωi

Cost 1.0 0.0 0.0 0.0
Latency 0.0 1.0 0.0 0.0

Bandwidth 0.0 0.0 1.0 0.0
Inequality 0.0 0.0 0.0 1.0
LatCost 0.5 0.5 0.0 0.0
LatIneq 0.0 0.5 0.0 0.5

CostIneq 0.5 0.0 0.0 0.5
BandLat 0.0 0.5 0.5 0.0
BandCost 0.5 0.0 0.5 0.0

TABLE V: Deployment properties applied in the evaluation based on
different deployment type requests.

Deployment Type CPU RAM Latency Threshold
type-1 0.20 0.30 50 ms
type-2 0.20 0.64 150 ms
type-3 0.20 0.50 20 ms
type-4 0.20 0.50 40 ms
type-5 0.20 0.75 200 ms
type-6 0.015 0.25 50 ms
type-7 0.05 0.016 45 ms
type-8 0.20 0.20 60 ms
type-9 0.015 0.25 100 ms
type-10 0.20 0.60 35 ms

of requests), and 1 indicates perfect inequality (all requests
deployed in one location). A lower Gini Coefficient indicates
then a more equitable distribution. The Gini Coefficient is an
accurate measure of inequality in a distribution, calculated
using the formula:

G =

∑l
i=1

∑l
j=1 |Li − Lj |
2l2L̄

(10)

where:

G is the Gini coefficient.
l is the number of locations.
Li is the number of requests deployed by location i.

L̄ is the average number of requests across all locations.

V. EVALUATION SETUP

This section presents an overview of the several reward
strategies used to validate the gym-nne framework, followed
by specific deployment requirements used in the evaluation,
and explanations about the dynamics of the applied RL envi-
ronment.

Reward Strategies Table IV details eight distinct reward
strategies considered in the evaluation of the gym-nne frame-
work. By evaluating numerous reward strategies, the gym-nne
framework aims to provide insights into the effectiveness of
different allocation strategies in the deployment of requests
across distributed computing environments.

RL Algorithm One notable RL algorithm, known as
Maskable (Mask) PPO [22], which supports discrete action
spaces has been evaluated based on its reliable implementation
in Python within the stable baselines 3 framework [23].
MaskPPO incorporates invalid action masking into the PPO
algorithm, maintaining a similar behavior to the core PPO
algorithm while adding support for action masking. In this
study, additional RL algorithms have been evaluated, but our

2024 20th International Conference on Network and Service Management (CNSM)

findings revealed that MaskPPO consistently outperformed the
other RL methods. Thus, in this paper, we decided to focus our
evaluation on assessing the performance of MaskPPO under
various reward strategies. The objective is to analyze the effec-
tiveness and robustness of these strategies, thereby providing
a nuanced understanding of their applicability in real-world
deployment scenarios. Through this extensive evaluation, we
aim to offer valuable insights for researchers and practitioners
seeking to leverage RL techniques for efficient deployment
strategies within the CC.

Application Requests Table V shows the deployment
requirements for various application requests used in the
evaluation of the gym-nne framework. These diverse types
represent a broad range of use cases, ensuring that the RL
agents encounter diverse patterns in computing resource de-
mands and latency thresholds. It allows for a comprehensive
assessment of the RL agent’s ability to handle varying levels of
computational intensity and time sensitivity, thereby validating
its effectiveness in dynamic environments.

gym-nne Framework has been implemented in Python to
facilitate seamless interaction with both the OpenAI Gym and
Stable Baselines 3 libraries. In our evaluation, an episode con-
sists of 100 steps during which the RL agent aims to maximize
the reward based on the current deployment request. When
the agent selects an available location to host the request, the
CPU and memory usage of that location increase. In contrast,
if a request is terminated based on a mean service duration
(default is one unit), the CPU and memory usage decrease
accordingly. The expected duration of the request (Tr) is then
randomized around the mean service duration, ensuring that
RL agents encounter varied request patterns across consecutive
episodes. During training, four locations have been considered,
with the type of each location (Table II) being randomized. The
same randomization process was applied during testing. The
RL algorithms have been trained over 2000 episodes, utilizing
a 14-core Intel i7-12700H CPU @ 4.7 GHz processor with 16
GB of memory. The performance of the RL agents has been
evaluated based on the following metrics:

• Accumulated reward during each episode. It refers
to the total sum of rewards obtained by an RL agent
throughout each episode as it interacts with the gym-nne
environment.

• Percentage of rejected requests expressed in the range
[0, 100].

• Average deployment cost (in units) incurred for deploy-
ing each request.

• Average processing latency (in ms) for each accepted
request based on the number of hosted requests.

• Average access latency (in ms) for each accepted request
based on the location type.

• Average RTT for each accepted request.
• Average total latency (in ms) for each accepted request

based on the previously presented formula.
• Average uplink and donwlink bandwidth (in Mbit/s)

for each accepted request.
• Percentage of requests in each provider expressed in

TABLE VI: The execution time per episode during training for the
gym-nne framework indicates that RL algorithms are significantly
slower than common heuristics, due to the need for policy learning
and adaptation.

Algorithm Execution Time
per episode (in s)

Execution Time for
2000 episodes

MaskPPO (Cost) 0.82 ± 0.11 27.3 minutes
MaskPPO (Latency) 0.63 ± 0.08 21.0 minutes

MaskPPO (Bandwidth) 0.94 ± 0.13 31.3 minutes
MaskPPO (Inequality) 1.07 ± 0.15 35.7 minutes

Cost-Greedy 0.076 ± 0.004 2.53 minutes
Bandwidth-Greedy 0.066 ± 0.001 2.20 minutes

Latency-Greedy 0.073 ± 0.002 2.43 minutes

the range [0, 100].
• Gini Coefficient highlighting the inequality of the de-

ployment scheme, with values ranging from 0 (perfect
equality) to 1 (maximum inequality), helping to assess
the fairness in request distribution.

Three heuristic-based baselines have also been evaluated
to compare against the RL-based methods:

• Cost-Greedy: assigns the request to the location with the
lowest deployment cost based on the type of location.
It prioritizes minimizing cost without considering other
factors such as latency or bandwidth.

• Bandwidth-Greedy: assigns the request to the location
with the highest downlink bandwidth, aiming to optimize
for network throughput.

• Latency-Greedy: assigns the request to the location with
the lowest RTT. However, this heuristic does not consider
other latency sources.

VI. RESULTS

RL versus Heuristic Execution Time The time complexity
for the RL agents and heuristics has been assessed based on
their execution times during the training phase, as detailed in
Table VI. The results highlight that training RL agents in envi-
ronments similar to the gym-nne framework can significantly
accelerate the training process compared to online learning
in live operational settings [24]. However, RL methods are
considerably slower than all heuristic baselines. Specifically,
RL algorithms require on average 21 to 35 minutes to complete
the training phase over 2000 episodes. The high execution
time is required for policy training and adaptation, as well as
for making necessary adjustments to the environment based
on the NNE dataset. In contrast, heuristic methods complete
2000 episodes in about 2 to 3 minutes, as these do not require
policy training.

RL Training Fig. 3 illustrates the performance of various
reward strategies during the training phase over 2000 episodes.
To mitigate spikes, a smoothing window of 100 episodes has
been applied to all curves in these figures. Despite fluctuations,
all strategies converge between the 300th and 600th episodes,
with some showing slight improvements in rewards beyond
this point. Most strategies achieve high accumulated rewards
with MaskPPO (Latency) converging at a slightly higher state,
resulting in higher rewards on average. Notably, MaskPPO
effectively learns to minimize rejections for all strategies, as

2024 20th International Conference on Network and Service Management (CNSM)

250 500 750 1000 1250 1500 1750 2000
Episode

0

20

40

60

80

100

120

140

Re
wa

rd

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)

MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatCost)
MaskPPO (LatIneq)
max reward= 100

(a) Accumulated Reward.

250 500 750 1000 1250 1500 1750 2000
Episode

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pe
rc

en
ta

ge
 o

f R
ej

ec
te

d
Re

qu
es

ts

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)

MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatCost)
MaskPPO (LatIneq)

(b) Number of Rejected Requests.

250 500 750 1000 1250 1500 1750 2000
Episode

0

2

4

6

8

10

12

14

16

Av
g.

 C
os

t (
in

 u
ni

ts
)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)

MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatCost)
MaskPPO (LatIneq)

(c) Deployment Cost.

20 40 60 80 100
Latency (in ms)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)
MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatIneq)
MaskPPO (LatCost)

(d) Total Latency (in ms).

20 40 60 80 100 120 140
Avg. DL (in Mbits/s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)
MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatIneq)
MaskPPO (LatCost)

(e) Downlink bandwidth (in Mbit/s).

0 10 20 30 40
Avg. UL (in Mbits/s)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

Fu
nc

tio
n

(C
DF

)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)
MaskPPO (BandCost)
MaskPPO (BandLat)
MaskPPO (CostIneq)
MaskPPO (LatIneq)
MaskPPO (LatCost)

(f) Uplink bandwidth (in Mbit/s).

Fig. 3: The training results for the MaskPPO agent evaluated for the multiple reward strategies.

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

RT
T

(in
 m

s)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(a) RTT (in ms).

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0

20

40

60

80

100

120

140

Pr
oc

es
sin

g
La

te
nc

y
(in

 m
s)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(b) Processing Latency (in ms).

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0

20

40

60

80

100

120

140

160

To
ta

l L
at

en
cy

 (i
n

m
s)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(c) Total Latency (in ms.

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0

5

10

15

20

De
pl

oy
m

en
t C

os
t (

in
 u

ni
ts

)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(d) Deployment Cost.

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0

10

20

30

40

50

60

70

Av
g.

 U
L

(in
 M

bi
ts

/s
)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(e) Uplink bandwidth (in Mbit/s).

MaskPPO (Cost) MaskPPO (Latency) MaskPPO (Inequality) MaskPPO (Bandwidth) Cost-Greedy Bandwidth-Greedy Latency-Greedy

Evaluated Strategies
0

25

50

75

100

125

150

175

200

Av
g.

 D
L

(in
 M

bi
ts

/s
)

MaskPPO (Cost)
MaskPPO (Latency)
MaskPPO (Inequality)
MaskPPO (Bandwidth)

Cost-Greedy
Bandwidth-Greedy
Latency-Greedy

(f) Downlink bandwidth (in Mbit/s).

Fig. 4: The testing results for the MaskPPO agent evaluated for the multiple reward strategies.

evidenced by the pursuit of higher rewards. By the end of
the training, all strategies reach an almost 0% rejection rate.
In terms of deployment cost, cost-focused strategies typically
yield lower values compared to other strategies by the end
of the training phase. Additionally, latency-aware strategies
consistently result in lower total latency, as demonstrated

by the Cumulative Distribution Function (CDF) in Fig. 3d.
In contrast, cost and bandwidth-focused strategies tend to
incur higher latency. Lastly, Fig. 3e and Fig. 3f illustrate that
bandwidth-aware approaches provide the highest downlink and
uplink data rate, respectively.

RL Testing During the testing phase, each strategy has

2024 20th International Conference on Network and Service Management (CNSM)

TABLE VII: Results obtained during the testing phase for the multiple RL agents and heuristics - Part I.

Algorithm Strategy Acc.
Reward

Deployment
Cost

(in units)

Rejected
Requests
(in %)

Processing
Latency
(in ms)

Access
Latency
(in ms)

RTT
(in ms)

Total
Latency
(in ms)

MaskPPO Cost 78.2 ± 3.9 4.2 ± 0.6 0.02 ± 0.03 47.4 ± 3.3 4.0 ± 0.6 0.07 ± 0.004 51.6 ± 3.3
MaskPPO Latency 89.1 ± 0.3 6.3 ± 0.6 0.0 21.6 ± 0.7 5.3 ± 0.4 0.07 ± 0.003 26.9 ± 0.7
MaskPPO Bandwidth 15.6 ± 1.1 6.4 ± 0.8 0.04 ± 0.04 45.5 ± 3.2 5.3 ± 0.5 0.06 ± 0.003 50.8 ± 3.2
MaskPPO Inequality 67.9 ± 2.5 6.3 ± 0.6 0.02 ± 0.03 22.9 ± 0.7 5.3 ± 0.4 0.07 ± 0.003 28.3 ± 0.9
MaskPPO LatCost 76.8 ± 2.0 5.6 ± 0.6 0.02 ± 0.03 33.4 ± 1.8 4.9 ± 0.4 0.07 ± 0.003 38.5 ± 1.8
MaskPPO LatIneq 78.7 ± 1.4 6.5 ± 0.6 0.01 ± 0.02 22.6 ± 0.7 5.4 ± 0.4 0.08 ± 0.003 28.2 ± 0.7
MaskPPO CostIneq 68.4 ± 2.5 6.1 ± 0.6 0.07 ± 0.06 22.8 ± 0.8 5.2 ± 0.4 0.08 ± 0.003 28.1 ± 0.9
MaskPPO BandLat 50.4 ± 0.4 6.4 ± 0.6 0.01 ± 0.02 22.4 ± 0.7 5.4 ± 0.4 0.08 ± 0.003 27.9 ± 0.8
MaskPPO BandCost 44.2 ± 2.2 4.6 ± 0.6 0.01 ± 0.02 56.9 ± 4.1 4.3 ± 0.4 0.08 ± 0.005 61.3 ± 4.1

Cost-Greedy - - 1.7 ± 0.2 0.0 101.0 ± 0.01 2.0 ± 0.3 0.08 ± 0.006 103.1 ± 0.3
Bandwidth-Greedy - - 5.4 ± 0.9 0.0 84.2 ± 4.1 4.8 ± 0.6 0.07 ± 0.005 89.1 ± 4.1

Latency-Greedy - - 6.1 ± 0.8 0.0 78.7 ± 4.2 5.2 ± 0.5 0.05 ± 0.001 83.9 ± 4.3

TABLE VIII: Results obtained during the testing phase for the multiple RL agents and heuristics - Part II.

Algorithm Strategy
Uplink

(in Mbit/s)
Downlink
(in Mbit/s)

Jitter
(in ms)

Gini
Coeff.

Telia
(in %)

Telenor
(in %)

Ice
(in %)

MaskPPO Cost 26.3 ± 2.2 60.3 ± 5.4 3.6 ± 0.5 0.43 ± 0.02 44.7 ± 5.7 31.4 ± 5.0 23.9 ± 6.0
MaskPPO Latency 25.6 ± 1.8 62.7 ± 4.5 3.3 ± 0.3 0.30 ± 0.03 45.9 ± 3.2 35.1 ± 3.5 19.0 ± 3.7
MaskPPO Bandwidth 30.4 ± 1.9 81.7 ± 6.4 3.1 ± 0.3 0.46 ± 0.03 58.2 ± 5.7 30.1 ± 5.2 11.7 ± 3.6
MaskPPO Inequality 25.0 ± 1.72 61.7 ± 4.3 3.6 ± 0.4 0.30 ± 0.03 35.9 ± 3.6 38.9 ± 3.9 25.2 ± 4.5
MaskPPO LatCost 27.2 ± 2.0 63.8 ± 5.0 3.6 ± 0.6 0.38 ± 0.03 42.4 ± 4.6 42.9 ± 4.8 14.7 ± 3.8
MaskPPO LatIneq 25.1 ± 1.6 58.4 ± 4.1 3.5 ± 0.5 0.28 ± 0.03 38.5 ± 3.5 34.8 ± 4.2 26.7 ± 4.0
MaskPPO CostIneq 25.1 ± 1.7 59.6 ± 4.3 3.8 ± 0.6 0.26 ± 0.03 39.1 ± 3.3 35.6 ± 3.3 25.3 ± 4.0
MaskPPO BandLat 25.7 ± 1.6 60.2 ± 3.9 3.7 ± 0.8 0.31 ± 0.03 47.2 ± 4.0 29.2 ± 3.3 23.6 ± 4.4
MaskPPO BandCost 25.7 ± 2.3 62.3 ± 5.7 3.9 ± 1.3 0.50 ± 0.03 42.7 ± 6.6 29.3 ± 5.7 28.0 ± 7.5

Cost-Greedy - 22.0 ± 3.0 56.8 ± 6.9 3.3 ± 0.4 0.67 ± 0.02 57.0 ± 9.7 14.0 ± 6.8 29.0 ± 8.9
Bandwidth-Greedy - 33.5 ± 2.1 96.7 ± 5.4 2.9 ± 0.5 0.61 ± 0.02 67.4 ± 8.0 8.2 ± 4.5 24.4 ± 7.6

Latency-Greedy - 27.6 ± 2.6 75.7 ± 6.9 3.0 ± 0.3 0.64 ± 0.01 72.2 ± 8.0 27.1 ± 8.0 0.7 ± 1.1

been executed over 100 episodes, using the saved configuration
from the training phase (over 2000 episodes). Fig. 4 shows the
performance of various reward strategies, with box plots show-
casing their variations. Additionally, Table VII and Table VIII
summarize the results based on the selected performance
metrics, providing a detailed comparison of each strategy’s
effectiveness. The highest accumulated reward was achieved
by the Latency strategy, with a value of 89.1. This strategy
demonstrated superior performance in minimizing overall la-
tency, obtaining an average of 26.9 ms, which is crucial for
latency-sensitive applications requiring low response times.
The BandLat strategy also performed well, recording a total
latency of 27.9 ms, closely following the Latency strategy.

Regarding deployment costs, the Cost-Greedy heuristic ex-
hibited exceptional cost efficiency, with an average deployment
cost of 1.7 units, the lowest among all tested strategies. This
greedy approach is particularly suitable for scenarios where
reducing operational costs is a primary concern. However, it
is worth noting that the Cost-Greedy heuristic incurred higher
processing and total latency, indicating a trade-off between
cost efficiency and latency minimization. All heuristics handle
all incoming requests without any rejections, achieving a 0%
rejection rate. In contrast, among the MaskPPO strategies,
only the Latency strategy achieved a 0% rejection rate, while
other strategies maintained a minimal rejection rate between
0.01% and 0.04%. The Bandwidth-Greedy heuristic achieved
the highest uplink and downlink rates, at 33.5 Mbit/s and
96.7 Mbit/s, respectively, significantly outperforming other
strategies in terms of bandwidth. Additionally, it recorded the

lowest average jitter at 2.9 ms, indicating the most stable and
predictable data transmission. This makes it an ideal choice for
applications requiring high data throughput. The Bandwidth
strategy also performed well, with uplink and downlink rates
of 30.4 Mbit/s and 81.7 Mbit/s, respectively.

Regarding request distribution, all MaskPPO strategies that
aim for equality demonstrated low Gini coefficients, rang-
ing from 0.26-0.30, indicating a commitment to a balanced
distribution. In contrast, the Cost-Greedy, Latency-Greedy,
and Bandwidth-Greedy heuristics exhibited the highest Gini
coefficients, 0.67, 0.64, and 0.61 respectively. This indicates
greater disparities in request distribution, potentially leading
to unequal network performance across users. The Latency-
Greedy heuristic showed a pronounced preference for de-
ploying requests to the Telia provider (72.2%), potentially
indicating a reliance on this operator, which could lead to
congestion and overuse. All MaskPPO strategies demonstrated
versatility, with specific configurations excelling in various
metrics such as low jitter, equitable resource distribution, and
balanced operator usage.

In conclusion, our extensive evaluation revealed distinct
advantages among the tested strategies and heuristics. The
Latency strategy excelled in reducing total latency, while
the Bandwidth-Greedy heuristic achieved the highest uplink
and downlink rates. The Cost-Greedy heuristic offered the
lowest deployment cost but also incurred the highest total
latency. Heuristics performed well for simple objectives, but
these may encounter limitations with increased complexity,
especially when multiple performance factors come into play.

2024 20th International Conference on Network and Service Management (CNSM)

In contrast, RL is particularly effective when optimizing for
multiple objectives simultaneously. Our findings highlight that
RL can find an efficient policy based on different performance
factors as demonstrated by our results.

VII. CONCLUSIONS

This study investigates RL methods for service placement
within 6G networks, offering significant advancements in
managing the distribution of services across the CC. The
paper presents an extensive evaluation under varying net-
work conditions and workloads, confirming that RL can de-
velop efficient placement strategies by considering multiple
performance factors such as deployment costs, latency, and
bandwidth. The results highlight the adaptability of our RL-
driven model to dynamic network environments, showcasing
its effectiveness through a multi-objective reward function.
This adaptability is crucial for low latency applications in
6G networks, emphasizing the potential of RL as a trans-
formative tool for intelligent service management in next-
generation communication systems. Our findings also reveal
that while traditional heuristics remain effective for simple
objectives, they tend to falter as complexity increases. RL is
particularly effective when optimizing for multiple objectives
simultaneously as demonstrated by our results. Future work
will explore multi-agent RL and integrate energy consumption
models to evaluate efficiency in service placement strategies,
where multiple RL agents can either cooperate or compete,
collectively optimizing service placement decisions. This work
showcases the potential of intelligent RL systems in the
future of communication networks, providing valuable insights
for developing more robust and efficient 6G management
capabilities.

ACKNOWLEDGMENT

José Santos is funded by the Research Foundation Flanders
(FWO), grant number 1299323N.

REFERENCES

[1] M.-J. Montpetit and N. Crespi, “Computing in the network: The core-
edge continuum in 6g network,” Shaping Future 6G Networks: Needs,
Impacts, and Technologies, pp. 133–166, 2021.

[2] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[3] P. Soumplis, P. Kokkinos, A. Kretsis, P. Nicopolitidis, G. Papadimitriou,
and E. Varvarigos, “Resource allocation challenges in the cloud and edge
continuum,” in Advances in Computing, Informatics, Networking and
Cybersecurity: A Book Honoring Professor Mohammad S. Obaidat’s
Significant Scientific Contributions. Springer, 2022, pp. 443–464.

[4] J. Santos, M. Zaccarini, F. Poltronieri, M. Tortonesi, C. Sleianelli,
N. Di Cicco, and F. De Turck, “Efficient microservice deployment in
kubernetes multi-clusters through reinforcement learning,” in NOMS
2024-2024 IEEE Network Operations and Management Symposium,
2024, pp. 1–9.

[5] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive resource
efficient microservice deployment in cloud-edge continuum,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.
1825–1840, 2021.

[6] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Resource provi-
sioning in fog computing through deep reinforcement learning,” in 2021
IFIP/ieee international symposium on integrated network management
(IM). IEEE, 2021, pp. 431–437.

[7] A. M. Maia and Y. Ghamri-Doudane, “A deep reinforcement learning ap-
proach for the placement of scalable microservices in the edge-to-cloud
continuum,” in GLOBECOM 2023-2023 IEEE Global Communications
Conference. IEEE, 2023, pp. 479–485.

[8] M. Goudarzi, M. Palaniswami, and R. Buyya, “A distributed deep
reinforcement learning technique for application placement in edge and
fog computing environments,” IEEE Transactions on Mobile Computing,
vol. 22, no. 5, pp. 2491–2505, 2023.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016, accessed on 04 July
2024. [Online]. Available: https://github.com/openai/gym.

[10] A. Kvalbein, D. Baltrunas, K. Evensen, J. Xiang, A. Elmokashfi, and
S. Ferlin-Oliveira, “The nornet edge platform for mobile broadband
measurements,” Comput. Netw., vol. 61, no. C, p. 88–101, mar 2014.
[Online]. Available: https://doi.org/10.1016/j.bjp.2013.12.036

[11] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019, pp. 351–359.

[12] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “An
improved multi-objective genetic algorithm with heuristic initialization
for service placement and load distribution in edge computing,” Com-
puter networks, vol. 194, p. 108146, 2021.

[13] Z. N. Samani, N. Mehran, D. Kimovski, S. Benedict, N. Saurabh, and
R. Prodan, “Incremental multilayer resource partitioning for application
placement in dynamic fog,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 34, no. 6, pp. 1877–1896, 2023.

[14] C. K. Dehury, S. Poojara, and S. N. Srirama, “Def-drel: Towards
a sustainable serverless functions deployment strategy for fog-
cloud environments using deep reinforcement learning,” Applied
Soft Computing, vol. 152, p. 111179, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494623011973

[15] A. Talpur and M. Gurusamy, “Drld-sp: A deep-reinforcement-learning-
based dynamic service placement in edge-enabled internet of vehicles,”
IEEE Internet of Things Journal, vol. 9, no. 8, pp. 6239–6251, 2022.

[16] A. Qadeer and M. J. Lee, “Deep-deterministic policy gradient based
multi-resource allocation in edge-cloud system: A distributed approach,”
IEEE Access, vol. 11, pp. 20 381–20 398, 2023.

[17] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 1, pp. 242–253, 2021.

[18] Z. Cheng, M. Liwang, N. Chen, L. Huang, X. Du, and M. Guizani,
“Deep reinforcement learning-based joint task and energy offloading
in uav-aided 6g intelligent edge networks,” Computer Communications,
vol. 192, pp. 234–244, 2022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0140366422002195

[19] S. Wang, C. Yuen, W. Ni, Y. L. Guan, and T. Lv, “Multiagent deep rein-
forcement learning for cost- and delay-sensitive virtual network function
placement and routing,” IEEE Transactions on Communications, vol. 70,
no. 8, pp. 5208–5224, 2022.

[20] H. Sami, A. Mourad, H. Otrok, and J. Bentahar, “Demand-driven deep
reinforcement learning for scalable fog and service placement,” IEEE
Transactions on Services Computing, vol. 15, no. 5, pp. 2671–2684,
2021.

[21] Amazon AWS, “Amazon ec2 on-demand pricing.” accessed on
28 September 2023. [Online]. Available: https://aws.amazon.com/ec2/
pricing/on-demand/.

[22] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[23] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[24] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “gym-hpa: Efficient
auto-scaling via reinforcement learning for complex microservice-based
applications in kubernetes,” in NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2023, pp. 1–9.

2024 20th International Conference on Network and Service Management (CNSM)

