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Abstract—In the context of NextG Wireless Networks,
addressing the challenges of wireless communication link
reliability is paramount to ensure efficient Distributed
Learning systems. However, many recent solutions have
overlooked key challenges, such as packet-level losses and
the impact of TCP retransmissions, which are crucial for
the robustness of these systems. In this paper, we propose
the integration of fountain codes into the distributed
learning process to offer a robust mechanism to counteract
packet loss. Specifically, we propose a cumulative strategy
logic based on fountain codes specifically tailored for
packet exchanges in Distributed Learning applications.
Our evaluation shows that fountain codes significantly
enhance the efficiency and reliability of distributed learning
model updates under severe packet loss conditions, e.g., a
packet reduction of ≈ 84% (≈ 60%) at the UE (gNB)
side compared to traditional TCP methods when packet
loss probability reaches 0.9 in Federated Learning context.
However, under low packet loss scenarios, fountain codes
computational overhead becomes non-negligible. These
results highlight the potential of fountain codes to serve as a
robust alternative to conventional communication protocols
in distributed learning systems, particularly in environ-
ments characterized by unstable network conditions.

Index Terms—fountain codes, federated learning, wire-
less networks, distributed learning

I. INTRODUCTION

NextG wireless communications promise enhanced
services, including better coverage and higher data
rates [1]. These wireless networks will heavily rely on
distributed Artificial Intelligence (AI) applications to
continuously learn from massive datasets [2]. Distributed
AI approaches provide lower privacy risks, bandwidth
demands, and latency compared to systems that require
transferring raw data to the cloud for centralized process-
ing [3], [4]. Among the available Distributed Learning
(DL) approaches, Federated Learning (FL) [5] allows de-
vices to collaboratively learn a shared Machine Learning
(ML) task while keeping the data local by exchanging
only model updates, offering the potential to design,
extensively scale, and fully automate context-aware AI
solutions across a broad spectrum of 6G applications.
Efforts are focused on the integration of a various range

of applications and scenarios, necessitating robust and
reliable data exchange channels [6].

However, wireless networks surrounding User Equip-
ments (UEs) can face abrupt and sequential losses
due to fluctuations in wireless channels. As discussed
in [6], a possible solution may be the exploitation of
heterogeneous wireless channels to provide a stable and
reliable transmission channel. Although interesting, this
approach may be unfeasible due to burst consecutive
losses [7].

A commonly adopted strategy to counteract the unre-
liability of wireless channels involves the deployment
of robust transport layer protocol, i.e., Transmission
Control Protocol (TCP). However, this method of en-
suring transmission reliability typically results in sig-
nificant communication overhead, as it often requires
messages to be sent multiple times [8]. Compared to
TCP, User Datagram Protocol (UDP) does not ensure
the reliable delivery of every packet. Nonetheless, in
situations where packet loss significantly influences net-
work performance, UDP can surpass TCP in efficiency,
particularly for transmitting model updates in FL [8].
However, the lack of reliability of UDP can be problem-
atic for DL systems, where model updates are critical to
speed up model convergence.

Considering these limitations, a possible solution
would be to exploit model compression techniques to
reduce the number of packets to be sent over a TCP
connection. However, such approaches can be resource-
intensive and impractical for devices with limited pro-
cessing capabilities, e.g., Internet of Things (IoT) de-
vices [9].

Hence, given the previously mentioned challenges, it
becomes critical to rethink the communication protocol
for the efficient transmission of model updates in the
context of NextG wireless environments. Originally de-
signed for the purpose of multimedia streaming, Foun-
tain Codes (FC) offer a robust method for ensuring
the reliable transfer of information across devices in
networks characterized by unstable connectivity [10].
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Network coding, particularly FC, has already proven
effective in enhancing reliable packet transmission in
dynamic 6G networks [11], [12]. Unlike traditional TCP-
like solutions, which are optimal for point-to-point com-
munications and rely on complex error correction and
congestion control mechanisms, FC can reduce the com-
putational burden in the communication process by re-
ducing the number of packets transmitted. By leveraging
the collective acknowledgment strategy inherent to FC,
network coding offers a way to significantly improve the
reliability and efficiency of model update transmissions
in DL systems, thereby enabling this technology to reach
its full potential in wireless environments. Thus, in this
work, we have conducted a comprehensive evaluation of
the application of FC in an FL wireless distributed AI
application. A convergence analysis is also discussed,
showing how FC helps FL algorithms converge under
packet loss scenarios. Additionally, a cumulative ACK
strategy logic based on FC specifically tailored for FL
scenarios, is proposed. The performance of this strategy
has been extensively evaluated in a digit classification
problem considering a static channel loss scenario.

II. STATE OF THE ART

A. Related Work

Recently, research efforts have been focused on many
aspects related to the integration of FL techniques in
the context of wireless network infrastructures, yet often
overlooking key challenges such as packet-level losses
and the impact of TCP retransmission. The work in [13]
proposes an FL algorithm in the context of traffic
estimation to maximize users data rates. In [14], the
authors consider the challenges of straggling devices and
imperfect Channel State Information (CSI) in wireless
federated computation, developing a new approach to
minimize the computing and transmission delay. While
these works suggested the seamless integration of FL
algorithms within wireless network infrastructures, prac-
tical challenges, such as the unreliability of wireless
channels, including symbol errors, and resource con-
straints, e.g., bandwidth and power, significantly hinder
their efficacy [15], degrading the quality and accuracy
of FL updates.

A recent work [16] addresses the challenge of train-
ing FL algorithms over real-world wireless networks
that experience packet losses. The authors introduce
a novel algorithm that adapts the FedAvg method to
work effectively over asymmetric and lossy communi-
cation channels, updating the global model by a pseudo-
gradient step. The study focuses on scenarios where a
client either successfully sends its update or fails to do
so, not addressing packet-level losses or examining the
implications of TCP retransmissions.

Hence, considering the limitations of previous works,
we have carried out a comprehensive evaluation of

packet-level losses for FL in unreliable wireless com-
munication networks and proposed a FC-based approach
that can solve existing mechanism issues.

A preliminary version of this research was presented
in [17]. The focus was on demonstrating the feasibility
of using FC in a simplified testbed environment. This
work significantly extends the original demonstration
by providing a comprehensive evaluation and scalability
analysis, including extensive simulations that quantify
the improvements brought by FC in the FL process and
a detailed demonstration of model convergence.

B. Federated Learning

Federated Learning (FL) is an approach to training
machine learning models across multiple devices, e.g.,
User Equipments (UEs), while keeping the data local-
ized. This addresses privacy, security, and data owner-
ship concerns that arise in centralized training methods.
The fundamental idea behind FL is to enable devices
to collaboratively learn a shared prediction model while
keeping all the training data on the device, thus avoiding
the need to send sensitive data to a central server.

An FL system can be described as a set of N devices,
each with its own local dataset. Let Dk denote the local
dataset of the kth device, where k = 1, 2, ..., N . The
goal is to train a global model w on the union of the
datasets

⋃N
i=1 Dk without exchanging data samples. The

objective can be formulated as the following optimiza-
tion problem:

min
w

F (w) =

N∑
k=1

nk

n
Fk(w) (1)

where F (w) is the global objective function, Fk(w) is
the local objective function of the jth device computed
using its local dataset Dk, nk is the number of samples
in Dk, and n =

∑N
i=1 nk is the total number of samples

across all devices.
Each local objective function Fk(w) typically takes

the form of an empirical risk minimization (ERM)
problem:

Fk(w) =
1

nk

∑
j∈Dk

L(yj , f(xj ;w)) (2)

where L is a loss function measuring the discrepancy
between the true label yj and the prediction f(xj ;w)
made by the model with parameters w for the jth

sample in Dk.

C. Fountain Codes

FC are a class of erasure codes that have revolution-
ized the way data is transmitted over unreliable channels.
These codes are characterized by their unique “rate-
less” property, allowing an infinite number of encoded
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symbols to be generated from a finite set of original
data symbols [18]. The mathematical foundation and the
practical applications of FCs have made them a subject
of extensive research and implementation in various
fields.

At the core of FC is the concept of generating encoded
symbols that can be produced on-the-fly and in an
unlimited manner. Let d = {d1, d2, . . . , dk} represent
the original data symbols, where k is the number of
symbols. The FC encoder transforms these symbols into
encoded symbols e = {e1, e2, . . . , en}, with n ≥ k.
The key mathematical principle here is that any subset
of the encoded symbols of size k or slightly more is
highly likely to be sufficient for decoding back to the
original k symbols.

One of the enhancements in this domain is the in-
troduction of Raptor codes, which build on the FC0
framework by incorporating an initial pre-coding stage.
This process mathematically transforms the original data
symbols d into intermediate symbols i, which are then
encoded to produce the symbol set e based on a cer-
tain probability distribution. The encoding and decoding
operations are governed by linear algebraic procedures,
facilitating a linear time complexity in terms of the
number of symbols, denoted as O(n).

Fountain Codes have found applications in a wide
range of domains due to their robustness and efficiency.
They are particularly beneficial in scenarios where the
channel conditions are unpredictable and where it is
unfeasible to determine the exact number of transmission
errors in advance. Some of the notable applications
include reliable data storage and retrieval systems, en-
suring data integrity and availability [19].

III. SYSTEM DESIGN

In this section, we describe the proposed system
model, highlighting how FC can be implemented in the
DL process. The proposed systems for FL is shown in
Fig. 1.

Following the converged Radio Access Network
(RAN) and Core Network (CN) architecture [20], we
place the FL Parameter Server (PS) at the next genera-
tion eNB (gNB). Both the gNB and the UEs exploit a
FC-based scheme built on top of UDP connections to
transmit the parameters of the FL process. Specifically,
each device involved in the FL will exploit a FC-
based encoder to produce repair symbols that will be
transmitted over the unreliable wireless communication
channel.

A key strength of FC used in this work is their
resilience to packet loss and bandwidth variability, en-
suring that all devices in a wireless network receive
the necessary model updates, even under fluctuating
network conditions, common in NextG wireless settings.
This scenario is depicted in Fig. 2, where even if some
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Fig. 1: The Wireless Federated Learning architecture
features a Parameter Server (PS) at the gNB and clients
at the User Equipment (UE), which use the proposed
Fountain Codes to enhance communication with the base
station.
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Fig. 2: Example of how the receiver can reconstruct the
model updates under packet loss.

packets, i.e., source symbols or repair symbols, are lost
during transmission, the receiver can still reconstruct the
original model updates K as long as it receives enough
encoded packets.

Another aspect to consider is the size of individual
packets that can be sent across the network. Indeed, this
is limited by the Maximum Transmission Unit (MTU)
size, and this reflects on the number of packets sent
in the DL process. Given the size constraints imposed
by the MTU in wireless networks, it is impractical
to encapsulate an entire model update within a single
packet.

Furthermore, in the context of unreliable commu-
nication channels, the transmitted packets can grow
exponentially due to retransmissions, resulting in fewer
available resources for the transmission of new data.

Hence, to counteract the effects of unreliable packet
delivery, we propose a cumulative ACK strategy based
on FC. The receiver handles incoming data packets over
a network by using a socket to receive and decode the
data. The logic includes a mechanism for sending a
’STOP’ signal to halt further transmissions once the data
is successfully decoded. It also accounts for the possi-
bility that the ’STOP’ command may be lost through
a timeout-based check for retransmissions to ensure
reliable communication. The sender transmits packets
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sequentially through a socket to the receiver’s address
and pauses to wait for a ’STOP’ acknowledgment (ACK)
signal, indicating that the receiver has successfully de-
coded the data. If the ’STOP’ ACK is not received within
a brief timeout, the sender retransmits the remaining
packets, ensuring data reliability and completeness at the
receiver’s end.

IV. EVALUATION

A. Parameter Server

We consider a static channel loss scenario for the
experiments. The experiments are based on rateless
codes, i.e., RaptorQ, since they are particularly suited
for packet loss recovery for the erasure channel [21].
We systematically varied the probability of packet loss
across a broad spectrum, ranging from 10% to 90%, in
increments of 10%. This approach allowed us to simulate
a wide array of network conditions, from relatively stable
to highly unreliable, thereby enabling a comprehensive
evaluation of the algorithm’s robustness and adaptability
to adverse transmission environments.

The experiments consider a Convolutional Neural
Network (CNN) with 3 convolutional layers, consisting
of 10, 20, and 40 filters, respectively, each followed by a
max pooling layer. Additionally, 2 fully-connected layers
with 50 and 10 neurons are utilized. The objective of the
ML algorithm is to perform digit classification on the
benchmark MNIST dataset [22]. Results are reported in
Sec. IV-A2.

1) Convergence Analysis: For the convergence analy-
sis of the proposed algorithms, we assume the following.
Assumption 1. {Fk}k∈N are L-smooth:

∀v, w Fk(v) ≤ Fk(w)+⟨∇Fk(w), v−w⟩+L

2
∥v−w∥2

Assumption 2. {Fk}k∈N are µ-strongly convex:

∀v, w Fk(v) ≥ Fk(w)+⟨∇Fk(w), v−w⟩+ µ

2
∥v−w∥2

Assumption 3. Let ξk be a random batch sampled
from k-th device’s local data uniformly at random. The
variance of the stochastic gradients in each device is
bounded:

E[∥∇Fk(w, ξk)−∇Fk(w)∥2] ≤ σ2
k

Assumption 4. Each UE experiences packet loss charac-
terized by probability pk. Each client updates the model
based on its local data:

wt+1,k = w(t, k)− ηt∇Fk(wt,l)

The server aggregates the received updates using:

wt+1 = wt+

N∑
k=1

αk∆k = wt−ηt

N∑
k=1

αk(1−pk)∇Fk(wt)

Hence, the expected update from client k is:

E[∆k] = (1− pk)∇Fk(wt)

and the expected global update is:

E[wt+1] = wt − ηt

N∑
k=1

αk(1− pk)E[∇Fk(wt)]

Since each Fk is L-smooth, also F is L-smooth and
thus:

F (v) ≤ F (w) + ⟨∇F (w), v − w⟩+ L

2
∥v − w∥2

setting v = wt+1 and w = wt we have:

F (wt+1) ≤ F (wt)+⟨∇F (wt), wt+1−wt⟩+
L

2
∥wt+1−wt∥2

using the update rule:

F (wt+1) ≤ F (wt)− ηt⟨∇F (wt),

N∑
k=1

αk(1− pk)∇Fk(wt)⟩

+
L

2

∥∥∥∥∥ηt
N∑

k=1

αk(1− pk)∇Fk(wt)

∥∥∥∥∥
2

(3)

Since gradient contributions are independent across
clients, we can rewrite the last term as:

η2t

N∑
k=1

α2
k(1− pk)

2 ∥∇Fk(wt)∥2

Applying the expectation to all terms we get:

E[F (wt+1)] ≤ F (wt)− ηt(1− p)∥∇F (wt)∥2 +
Lη2t σ

2

2

To ensure convergence, we select nt so that it de-
creases over time and satisfies the typical conditions
for stochastic gradient descent: (i) sum∞

t=1ηt = ∞ and
(ii) sum∞

t=1η
2
t ≤ ∞. The application of FC reduces

packet loss probability by allowing the decoding of
complete updates from a subset of received packets.
This can be modeled as pFC < p. Additionally, they
add computational complexity and in some cases noise
due to approximation in decoding, e.g., interpolation
technique. This is modeled by σFC, whose value may
be slightly higher but with less variance.

2) Static Channel Loss: In the static channel exper-
iment, we first analyzed the number of packets sent by
both sides of the FL system, namely the gNB and UE.
We examined the packets sent per round, defining a
round as the process where packets are sent from one
side to the other, encompassing a single direction of
communication. Results are depicted in Fig. 3 and Fig. 4.

In both cases, the FC approach outperforms the tra-
ditional TCP connection. At both the gNB and UE, the
disparity in the number of packets sent between the two
methods widens as the packet loss probability increases.
The highest reduction in sent packets is achieved at the
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Fig. 3: Sent packets per round: gNB
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Fig. 4: Sent packets per round: UE
side.
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Fig. 5: Convergence time: gNB side.
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Fig. 6: Convergence time: UE side.

highest packet loss probability, p = 0.9, with the UE
seeing a reduction of approximately 84% and the gNB
seeing a reduction of approximately 60%. Conversely,
the lowest reduction in sent packets occurs at p = 0.1
for both sides, with the UE achieving a reduction of
about 12% and the gNB achieving a reduction of about
10%. These results highlight how FC can significantly
reduce the number of packets exchanged in a FL process,
especially under highly unreliable communication links.

The convergence time for the FL communication
round results are shown in Fig. 5 and Fig. 6 for the
gNB and the UE, respectively. An opposite behavior is
observed compared to the previous analysis. Indeed, here
the TCP-based solution outperforms the FC-based com-
munication. This is because, even by exploiting FC with
linear complexity, the overhead related to the decoding
of the received packets impacts the final computation
time. The highest differences in convergence time can be
observed for the lowest loss probabilities. Indeed, in both
UE and gNB, the increase in time due to FC in p = 0.1
is ≈ 157%. However, when the loss probability reaches
very high values, i.e., in very unreliable channels, the
overhead due to FC is smaller, reaching ≈ 19% and
≈ 16% for UE and gNB, respectively, when p = 0.9.

The increased computational overhead associated with
decoding under FC, which significantly impacts conver-
gence times, especially at low loss probabilities, suggests
a trade-off. This overhead becomes less pronounced at
very high loss probabilities, indicating that FC may be
more advantageous in severely unreliable networks.

Furthermore, we have evaluated the Cumulative Dis-
tribution Function (CDF) for the considered loss prob-

abilities. Results for the UE and gNB sides are re-
ported in Fig. 7. On the UE side, the results again
demonstrate the superior efficiency of FC in successfully
transmitting data with fewer packets, especially as packet
loss increases. Although both protocols require a higher
number of packets as packet loss increases, FC con-
sistently outperforms TCP-based communication, with
more pronounced benefits in highly unreliable network
conditions. Furthermore, the confidence intervals indi-
cate that FC behavior is also more predictable, affirming
its potential as a robust alternative to TCP, provided the
computational overhead is manageable.

In the results depicting gNB-side performance, the
FC-based protocol outperforms TCP at all observed
packet loss probabilities. FC requires fewer packets
to achieve a successful round of FL, even as packet
loss severity increases. This performance trend suggests
that FC are notably more efficient and reliable for FL
systems, particularly in unstable network conditions,
making it a preferred protocol in scenarios where robust
communication is crucial.

Finally, Fig. 8 illustrates the scalability of the pro-
posed approach by comparing the difference in packets
sent between TCP-based and FC-based methods as the
number of clients increases. The analysis considers
scenarios with N ∈ 1, 2, 4, 8, 16, where N represents
the number of clients participating in the FL process.

Regarding the scalability results for packets sent,
reported in Fig. 8a, we observe stable behavior as the
number of clients increases across all loss probability
configurations. As already discussed, higher loss prob-
abilities tend to have a higher reduction in packet sent.
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Fig. 7: CDF for the considered loss probabilities.
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Fig. 8: Scalability results for varying number of clients.

Indeed, the highest packet sent reduction is reached for
p = 0.9 with 8 clients, corresponding to ≈ 72%.

Scalability results for the time needed for FL round,
reported in Fig. 8b, confirm once again that FC can be
exploited in scenarios where the packet loss is high.
Hence, it is possible to observe that the time increase
is relatively small for all clients when p is very high.
Specifically, with 2 clients and p = 0.9 the lowest time
increase is obtained, reaching ≈ 1%. Both scalability

graphs confirm the previous observations made regarding
the trade-off of applying FC in the context of FL. Indeed,
all results point out that in high loss scenarios their ex-
ploitation can be beneficial to the FL process. However,
when the loss is very low the overhead added by FC
computations can become a bottleneck, evidencing that
classical TCP solutions perform better.
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V. CONCLUSION

In the context of NextG wireless networks, a critical
challenge is the unreliability and variability of com-
munication channels, which can severely hamper the
efficiency and effectiveness of learning tasks. In this
paper, we have focused on the problem of how packet
loss affects the DL process in FL scenario, posing
significant issues to achieving timely and accurate model
updates across distributed networks.

To address these challenges, we propose the integra-
tion of FC within the DL systems as a novel solution,
introducing a cumulative ACK logic. Results have shown
scenarios in which the utility of FC over traditional TCP
connections becomes evident. While FC demonstrate
superior performance in scenarios characterized by high
packet loss probabilities, e.g., sent packets reduction
≈ 84% at the UE and ≈ 60% at the gNB at a loss
probability of p = 0.9 for FL, they may not always offer
the best solution. Specifically, in environments where
packet loss is minimal, i.e., p = 0.1, the benefits of FC
diminish significantly and their overhead becomes non
negligible, indicating that in such scenarios TCP is still
the best option.

Therefore, while FC present a promising alternative
to TCP for DL in high-loss wireless networks, careful
consideration of their application is necessary, taking
into account both the potential for packet transmission
efficiency and the computational demands they impose,
even in very optimized implementations. In conclusion,
this paper paves the way for the application of FC in
DL under network losses, and it sets the stage for fur-
ther exploration into optimizing FC parameters through
federated reinforcement learning, enabling adaptive re-
sponses to dynamic channel conditions.
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