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Abstract—With the migration of traditional computer net-
works to the Software-defined Networking paradigm, flexibility
is a core feature that novel technologies must provide. In
this context, virtualization is gaining traction in Programmable
Data Planes (PDPs) as a means of achieving greater flexibility,
with several solutions in the literature for instantiating virtual
programmable switches on the same host device. Virtualization
brings numerous advantages, enabling multi-tenancy in pro-
grammable data/research center networks and greater device
resource utilization. Nevertheless, enabling a complete multi-
tenant solution, in which the tenants have disjoint sets of virtual
devices, requires management and security considerations not
yet approached in previous investigations. Previous works focus
mainly on the core underlying technology necessary to deploy
multiple devices in the same physical host. This paper presents
a PDP virtualization architecture based on program composition
and access control for securely managing virtual switches from
different tenants. Additionally, we define extensions to PDP
programmability, allowing tenants to specify shared elements,
such as tables, between their virtual devices. Our experiments
highlight the ability to transparently manage multiple virtual
switches hosted in the same physical device in networking
scenarios with multiple tenants.

I. INTRODUCTION

Software-Defined Networking (SDN) and Programmable
Data Planes (PDPs) paradigms are the computer networks
innovations that provide the most flexibility to researchers and
operators. With PDPs, one is able to define how a data plane
switch interprets and processes each individual packet flowing
through it [1]. Due to this flexibility, many functionalities and
services that were delegated to commodity servers following
a Network Function Virtualization (NFV) paradigm can now
be implemented directly in the data plane in this In-Network
Computing paradigm. Examples include DNS caching, flow
monitoring, storage, and distributed consensus [2]–[4]. This
strategy reduces the workload on commodity servers and end
hosts, leveraging PDP line-rate hardware processing power.
More importantly, the delays in communication between the
data and control planes are removed.

Recently, PDP virtualization has emerged as a tool to
enable, among other solutions, these kinds of development en-
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vironments [5]. It allows for hardware slicing of the data plane
devices similar to traditional virtual machines on commodity
servers [6]. That way, a single physical programmable switch,
which can cost tens of thousands of dollars depending on its
specifications, could be used to implement multiple virtual
switches simultaneously.

However, the technological advances in PDP virtualization
lack an established architecture with clear interface definitions
covering the compilation, deployment, and runtime opera-
tion steps necessary to transform raw device source code
into a deployable network switch [7]. Moreover, existing
virtualization solutions do not provide an architecture that
fully enables multi-tenancy without heavy interference on the
defined behaviors of the deployed devices, while maintaining
isolation between virtual switches that belong to different
tenants. Additionally, a desirable property of a virtualization
solution is for it to not require changes in the data and control
plane source codes from the tenants. Existing solutions either
acknowledge those limitations and leave them for future work
[5], [8] or assume that all the virtual switches belong to one
tenant, therefore not requiring additional management abstrac-
tions [9]. Multi-tenant solutions focus on implicit resource
sharing between virtual switches but are either limited to a
few fixed and pre-determined functionalities (such as IPv4
firewall), defeating the purpose of a fully programmable device
introduced by PDPs [10], or require a complete change of the
tenant’s source codes [11].

This paper proposes a complete multi-tenant and target-
independent virtualization architecture based on switch code
composition and an abstraction layer for runtime access
control. The proposed architecture allows (i) the transparent
deployment of multiple programs (virtual switches) from
different tenants through compostion in the same host, (ii)
the mapping of the elements of the composed program, such
as match-action tables and registers to the elements of the
virtual switches, and (iii) an access control scheme for the
tenants to securely and transparently access the elements of
their virtual switches. With our architecture, no source code
rewriting is required by the tenants. Existing code for both
the data and control planes of the network can be deployed as
virtual switches without any modifications. The source code
and artifacts required for the reproducibility of our proof-of-
concept implementation of the architecture and experiments
are publicly available on GitHub [12]. In summary, we:
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• Propose a comprehensive architecture to deploy and man-
age virtual programmable switches belonging to different
tenants on any hardware target that supports standard
interfaces such as P4Runtime.

• Introduce a P4 code composition strategy that allows for
complete isolation of the virtual switches.

• Present a runtime module that transparently manages the
virtual switches in a multi-tenant environment.

The paper is organized as follows. Section II provides a brief
background on SDN, PDPs, and virtualization in the context
of PDPs. Section III describes our proposed architecture along
with details of our public reference implementation. Section IV
describes our experimental evaluation with the reference im-
plementation and discuss the results. The main related works
are briefly mentioned and described in Section V. Finally,
Section VI concludes and provides directions for future work.

II. BACKGROUND AND RELATED WORKS

A. Software Defined Networking (SDN)
The disruptive introduction of the concept of Software-

Defined Networking (SDN) brought more configuration op-
tions to devices in the core of the network (initially with fixed
protocols such as OpenFlow [13] and later with Programmable
Data Planes). Since then, innovations in computer networks,
whether in research or industry, have had the intrinsic objective
of providing network operators with greater flexibility in
managing and controlling their infrastructure’s hardware and
software objects.

Essentially, the SDN flexibility results from the separation
of the network’s functionalities into three planes:

• Application Plane: Composed of multiple applications
that interact with the underlying network through an
interface with the Control Plane. Each application has
a specific functionality, such as routing, monitoring, or
load balancing.

• Control Plane: Translates the requests from the applica-
tions to the data plane and provides other functionalities
such as authentication and security. The control plane is
also responsible for providing an abstract view of the
data plane (that is, the connections in the network and
the resources of each forwarding device) to the services
that execute on the application plane.

• Data Plane: Contains the implemented forwarding de-
vices of the network. Those devices receive the traffic
processing logic from the control plane. They can be
implemented using different technologies, such as ASICs,
FPGAs, and virtual switches, among others. The standard
interface with the control plane allows all those imple-
mentations to be compatible.

The virtualization solution proposed in this work focuses
on (i) the data plane, where the virtualized devices are imple-
mented, and (ii) the control plane, which must act together
with each virtualized switch to provide an abstraction that
allows secure isolation of virtual devices. The abstraction
layer ultimately must “see” the devices in the data plane in a
virtualization-agnostic way.

B. Programmable Data Planes (PDPs)

Continuing the trend of providing operators and researchers
with more flexibility in the configuration and management
of network devices introduced with OpenFlow, the idea of
PDPs was consolidated. PDP is a model where the processing
logic of the data plane packets is fully customizable (or
programmable) by the operator. At first, the motivation was
to eliminate the dependency on updating the set of supported
protocols in the OpenFlow specification for them to be used,
decoupling the definition of packet headers from future Open-
Flow specifications. With PDPs, operators can independently
develop, implement, and test new protocols and algorithms
without the need for a third-party specification.

Operators define the logic of the device through Domain
Specific Languages (DSLs) designed for that purpose. The
Protocol-Oblivious Forwarding (POF) [14] language was the
first consolidated work to introduce this concept of decoupling
the processing hardware (and management API such as Open-
Flow) from the processing logic of specific network protocols.
From then on, network devices migrated from a closed-box
paradigm, in which manufacturers’ roadmaps and subscription
plans determine their capabilities, to an open-box paradigm, in
which the inner workings are available to operators because
they define them.

After that, other works were carried out to evolve and gain
adherence to this new concept, in particular the introduction
of P4 (Programming Protocol-independent Packet Processors)
[15], which is another DSL for defining the behavior of a
generic programmable switch. This language provides full
programmability of the forwarding devices, allowing operators
to implement any traditional functionality of network devices
(e.g., firewalls, IP routers, load balancing, congestion control,
among others) in addition to innovative functionalities in a
portable way to different hardware. Contrary to POF and other
DSLs, P4 has had wide market adoption, with several commer-
cial products available, including Intel®Tofino™, NetFPGA-
SUME (Xilinx), and SmartNICs (Netronome and NVIDIA
BlueField-2).

In the P4 architecture, the device loads a target-specific con-
figuration binary created by a P4 compiler. Then, the device
exposes the custom resources to the control plane through
an interface. Those standard interfaces, such as P4Runtime
[16], provide methods for manipulating the state of the pro-
grammable device during its operation, such as inserting or
removing rules in the forwarding tables or reading device
counters/registers. P4Runtime and other interfaces, such as
Tofino’s BfRuntime, are implemented using a gRPC server, an
open-source Remote Procedure Calls (RPC) framework. The
manufacturers typically install this server and run it inside the
physical devices. The external control plane then connects as
a client to carry out the requests.

To a large extent, the architecture presented in this work
involves the runtime interface between the control and the data
planes since it is the way to access elements of switches during
operation. Still, our solution is independent of the specific
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target (physical hardware or software emulating a forwarding
device) as long as it implements a standard interface.

C. Virtualization in PDP

Virtualization is a technique to split a host’s resource (in
most cases, hardware) between multiple tenants (guests). An
entity called hypervisor is responsible for dividing the host’s
resources among the guests. A couple of years after the
introduction of the P4 language, researchers started to study
the possibility of applying virtualization in the context of PDPs
[5]. The main idea is that multiple virtual devices, described
by different P4 codes, could simultaneously run in the same
physical target. This would be equivalent to a conventional
server running multiple isolated VMs.

The first works in this line focused on emulating the be-
havior of P4 devices using a general-purpose program. These
programs contain carefully formulated actions and tables so
that it is possible to implement the operations of any other P4
program via the insertion of rules in these tables during the
operation of the host device. The two main works in this line
are Hyper4 [5] and HyperV [8]. The main limitations of these
works are the lack of support for the whole list of operations in
the P4 language (imposed by the virtualization scheme), the
limited size of the virtualized programs (due to the limited
number of stages of the physical devices) and the tremendous
impact on the performance of virtual switches.

P4Visor [9] introduced a new approach for implementing
the virtualization of PDPs with a composition-based strategy.
Composition-based virtualization involves merging multiple
programs into a single program that implements the logic of all
composed programs. P4Visor is focused on the composition of
two versions of the same program (a current version and a test
version) to facilitate prototyping. Since few instructions and
additional match & action tables are added in the composition
process, the performance of this technique is much better
than emulation-based ones. The tradeoff of this approach is
the loss of the ability to remove and deploy virtual switches
without interrupting the host operation, which is associated
with the possibility of implementing virtual switches through
rules added to tables in runtime [5].

There is yet work to be done towards a general architecture
that addresses the limitations mentioned so that a large-scale
virtualization solution can be made concrete, especially in
terms of manageability and security. These aspects have been
given poor attention as the previous works mainly focus on
implementing multiple virtual switches belonging to a single
user (tenant). Only in recent years have advancements in
virtualization begun to tackle multi-tenancy aspects. However,
those works rely on a fully controlled environment with
limitations such as programs described as a specific com-
position of functionalities [10] or that enforce the use of a
new programming language designed for virtualization [11].
Ideally, a virtualization solution should not impose limitations
or require any change in the code that describes the behaviors
intended by the programmers, both for the data plane and the
control plane.

III. VIRTUALIZATION ARCHITECTURE

Currently, no readily available virtualization solution can
be deployed with unmodified source code and control plane
software. That is mainly because previous works on virtual-
ization do not address the practical aspects of implementing
a complete multi-tenant solution. Instead, they focused on
scenarios where a single tenant would like to deploy multiple
virtual switches under its control on a single target.

The architecture presented in this work leverages
composition-based virtualization technologies presented
in Section II, taking a step further and expanding upon these
techniques to design a complete end-to-end multi-tenant
solution that is manageable, secure, modular, and low
overhead. The proposed solution considers that each virtual
switch (defined by a P4 program) may belong to a different
tenant, and its functionalities can be completely different
from the others.

Our solution leverages lightweight virtualization to increase
hardware usage efficiency further. To this end, common re-
sources among the virtualized programs (tables, registers,
etc.) are shared in the composed code whenever possible,
with a security module that allows for that sharing to be
transparent to each client, enforcing resource isolation. Other
researches show that hardware optimizations for TCAMs can
take advantage of aggregating tables, thus providing sub-linear
memory usage as the size of those tables increases [9].

The complete architecture for our virtualization solution
is depicted in Fig. 1. It shows that multiple tenants can
implement a virtual switch on the target by uploading their
programs to the code composition module and connecting their
controllers to the runtime module. There is an interface for the
system operator to populate security policies and additional
data for each tenant registered in the system. The illustrated
modules have the following functions:

• Code Composition Module: This module is responsible
for composing multiple P4 programs. This module gen-
erates a new P4 program that implements the logic of all
programs supplied in parallel.

• P4Runtime Module: The P4Runtime module imple-
ments a P4Runtime server that behaves as if it were the
server running on the tenant’s target. In effect, the module
intercepts the RPCs and translates them to be compatible
with the composite code executing on the target.

• Security Module: Responsible for ensuring that the
tenant’s requests comply with the security policies de-
fined by the system administrator and for detecting other
possible attacks on virtual switches.

• Manager Interface: Interface for the system adminis-
trator to define the security policies and to populate the
database containing the tenant’s data.

• Dataplane Update Module: This module implements
the P4 program in the target devices, which involves
procedures dependent on the target architecture, such as
calls to specific compilers and drivers.
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Fig. 1. Virtualization architecture.

• Tenant Database: Database containing tenant’s infor-
mation, such as available physical resources (number
of ports, memory size, etc.) and access permissions to
entities of the composite program, among others.

The remainder of this section provides more details on the
program composition strategy of the code composition module
(III-A), the abstraction during device operation provided by
the runtime module (III-B), and the explicit resource-sharing
mechanism (III-C).

A. Program Composition

In our proposed architecture, we employ a strategy for
composing programs providing logical isolation between their
resources. This composition is performed directly in the source
codes (P4 language files) to achieve a target-independent
solution. Still, each specific target may have additional re-
quirements or restrictions on the set of operations of the
composed program. An example of such a restriction is only
allowing checksum computation on a specific control block in
the v1model architecture.

The code composition module of the proposed architecture
is the core of the virtualization solution. It enables multiple
P4 programs to execute simultaneously on a single target in
an isolated manner. The composition is inspired mainly by the
strategies proposed by Lyra [17] and P4Visor [9].

The Lyra framework can divide the programs into isolated
modules (such as an IPv4 processing module and another
module that processes ARP requests and replies, for example)
and merge them into a single P4 program. However, the whole

Lyra pipeline assumes a single tenant. By doing so, a single
person or organization controls all the modules, the resulting
P4 program, and whichever target they intend to deploy this P4
program. Similarly, but with the end goal of a multi-tenancy
solution, the architecture described in this work focuses on
how to take multiple complete P4 programs (generated by
Lyra or any other method) from different tenants and merge
them into a new P4 program before the deployment in the
target. P4Visor has a similar workflow but with an emphasis
on testing different versions of a program.

In our solution, each virtual switch has a disjoint set of ports
of the physical switch that belongs to them. This way, a packet
is processed by the virtual switch associated with its input
port. With this strategy, it is not necessary to have external
mechanisms in the network to tag packets to identify virtual
switches. The result is a complete in-target virtualization
scheme that is deployable without significant changes in the
network infrastructure.

Our virtualization architecture is also lightweight in the
sense that the target resources are shared by the virtual devices
(implicitly or explicitly). The elements of the P4 language
that are shared are (i) the states of the parsers and (ii) the
tables and actions in the control blocks. Tenants can choose if
those elements of virtual devices belonging to them are shared
(explicitly) or the composition module can share them in the
merging process (implicitly), and the runtime module provides
the logical isolation required.

1) Parser Composition: From a formal perspective, Finite
State Machines (FSMs) can model P4 parsers. Therefore, the
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(a) A parser for VLAN, IPv4, and TCP
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parse_ethernet
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(b) A parser for IPv4, IPv6, and UDP

start

parse_ethernet

parse_vlan

parse_ipv6parse_ipv4

rejectparse_udpparse_tcp

accept

(c) The merging result

Fig. 2. Example of the merging of the parsers in (a) and (b) into (c).

composition of P4 parsers reduces to aligning FSMs while
unifying equal states. This approach results in a smaller
amount of states than creating a new parser with the states of
each of the parsers when there is an overlap between parsers.
For instance, suppose more than one program implements a
state for parsing Ethernet headers. In this case, the composed
program needs only one state for these individual programs.
We consider two states equal if they have the same statements,
except for the last one, indicating the transition to the next
state. The transition of merged states to the next is modified
to suit the operating logic of the input parsers, using the
input port to disambiguate the next state. That way, additional
control mechanisms or a tag system are not required.

Fig. 2 shows an example of the composition of different
parsers. It illustrates the importance of identifying the virtual
switch the packet belongs to during the transition to the next
state. For example, suppose a packet belonging to program (a)
has a UDP header at the transport layer. In this case, it must
go to the reject state in the merged program (c), as opposed
to the parse udp state, since that state is not defined and that
protocol is unavailable in program (a).

2) Control Block Composition: The shared elements in our
virtualization architecture on the control blocks are the match
& action tables and the actions. Actions are the simplest
elements to merge since they are just code segments executed
when a match occurs, and two actions can merge if they are
the same. In our model, we consider that two tables can merge
if their match keys are the same and their default action (taken
in cases of table misses) is equal and constant. We can create

a new table in the composed program with an additional key
field identifying the virtual switch to differentiate entries. The
other elements described in the P4 language specification are
the list of actions and the number of entries, which merge
trivially through the union of sets of actions and the sum of
the sizes of the tables. The runtime module requires additional
measures to maintain the expected behavior from the tenant’s
controller’s perspective, such as guaranteeing that the amount
of entries that each tenant can insert on the tables is equal to
their original declared size.

Selecting all compatible tables to perform the merge is
impossible since the resulting control flow may contain cycles,
which neither the RMT design nor the P4 language specifi-
cation allows. A suitable merge must be chosen from the set
of possible table merges for each control block. Currently, as
a proof of concept for the architecture, our implementation
selects an arbitrary merge that satisfies the dependencies
instead of a more elaborate algorithm that tries to select
the best possible merge (in terms of total resource usage).
Selecting the best possible merge has been shown to be an NP-
complete problem [9]. Still, further investigation is required to
verify if common PDP code produces instances small enough
to be solved by modern algorithms in a suitable time.

When tables are selected to be merged, the resulting table
receives a new field to identify the program to which an
entry belongs since the logical isolation of the entries of each
program must be maintained. Fig. 3 shows an example of the
result of composing the control block tables of two different
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table ecmp_group {
    key = {
        hdr.ipv4.dstAddr: lpm;
    }
    actions = {
        drop;
        set_ecmp_select;
    }
    const default_action = drop();
    size = 1024;
}

table ecmp_nhop {
    key = {
        meta.ecmp_select: exact;
    }
    actions = {
        drop;
        set_nhop;
    }
    size = 2;
}

table ipv4_lpm {
    key = {
       hdr.ipv4.dstAddr: lpm;
    }
    actions = {
       ipv4_forward;
       drop;
       NoAction;
    }
    size = 1024;
    const default_action = drop();
}

table ipv4_lpm {
    key = {
        VirtMetadata.VirtProgramID: exact;
        VirtParam1.ipv4.dstAddr: lpm;
    }
    actions = {
        ipv4_forward;
        drop;
        NoAction;
        set_ecmp_select;
    }
    size = 2048;
    const default_action = drop();
}
table ecmp_nhop {
    key = {
        VirtMetadata.ecmp_select: exact;
    }
    actions = {
        drop;
        set_nhop;
    }
    size = 2;
}

(a) (b) (c)

Fig. 3. Example of the composition of tables.

programs1. Table ecmp group from program (a) is unified with
table ipv4 lpm from program (b) forming table ipv4 lpm in
the composed program (c). The names of the tables in the
composite program are for internal use only, being indifferent
to the tenants, who will use the original names and IDs to
refer to them in their runtime requests.

3) Target-Specific Composition: The parser and control-
block composition previously discussed are target-independent
composition operations that can be performed to unify multiple
P4 programs for different architectures. Additional submod-
ules may be required to merge specific parts of a program
that only exist in a particular architecture (e.g., the checksum
verification control blocks of the v1model architecture). We
implemented and tested the Composition Module with two
target-specific submodules: (i) one for the v1model architec-
ture (used by the bmv2 software switch) and (ii) one for the
Tofino Native Architecture (used by Intel®Tofino™ switches).

Still, some targets may require adaptation of the target-
independent submodules if they do not support common P4
language features that those modules use (e.g, switch state-
ments, integer division...). However, it’s important to note that
these modules are still considered target-independent as they
are implemented using operators defined in the P4 language
specification and its core module (core.p4).

B. Control Plane Runtime Abstraction

The main objective of the runtime module is to provide
an interface to the underlying virtualization solution for the
controllers. It offers a logical view for each tenant that their
virtual device is deployed on the host device just as it would
be if no virtualization solution were in place. This is done by
providing the controllers of each tenant with an information

1The codes are excerpts from programs from P4’s tutorials on “basic
forwarding” and “load balancing” available at: https://github.com/p4lang/
tutorials/tree/master/exercises

file (named p4info) that lists the set of match & action
tables and actions that could be handled similarly to the file
that a traditional P4 compiler would generate. The composite
program that is actually implemented in the target has a set
of elements described in its runtime file (p4info), which can
come from a single program (non-shared resource) or the
result of the composition of elements from multiple programs
(shared resource). The program composition stage generates a
mapping file of the individual program elements to the shared
program elements containing information such as the declared
original size of each table and register and the available actions
for match units.

By providing this logical view, the tenant’s controllers that
manage virtual devices can be the same as those used to
manage “normal devices”. This transparency is critical to
allow tenants to use standard control plane software such as
ONOS [18]. It would be unreasonable for the tenants to rewrite
control plane software to comply with virtual switches.

One of the design principles of the proposed architecture
is target-independency. As such, this module can also be
referred to as the runtime management module to decouple
its purpose (provide runtime management) from a specific
CDPI implementation (P4Runtime). Still, as mentioned in
Section II, P4Runtime is an open interface implemented by
most commercial P4 hardware targets.

Fig. 4 shows the operation of the runtime module. In a
traditional PDP-based operation scenario, the tenant appli-
cation connects directly to the P4Runtime running in the
target switch. Instead, in our virtualization solution, the tenant
controller application connects to an instance of the runtime
module responsible for proxying the communication with the
target switch. Then, when the controller application sends a
request to its virtual switch, the runtime module translates
resource references to those of the merged switch program.
Besides that, since the runtime module is the only one con-
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Fig. 4. Runtime module operation scenario.

necting to the target switch, it enforces access control and
resource utilization restrictions. The figure also depicts that
multiple controllers can manage a single virtual switch, as seen
in vSwitch #3. The P4 standard anticipates such a scenario
to provide fault tolerance and high-availability capabilities to
the controller applications, and the runtime module supports
them to avoid breaking tenants’ expectations regarding these
essential features and to avoid changes in the application
controllers. In practice, the runtime module instances com-
prise a P4Runtime server that handles tenants’ connections
and a P4Runtime client that dispatches the requests to the
appropriate physical devices.

The authentication is provided by the security module and
the tenant database. As previously mentioned, P4Runtime
utilizes gRPC as its underlying client/server model imple-
mentation, an open RPC framework. This framework allows
for secure communication using Transport Layer Security
(TLS). Therefore, it is possible to utilize a TLS certificate
scheme to identify the tenants of each controller. This way, the
module only forwards requests to specific elements deployed
in the data plane if the virtual switch and the SDN controller
belong to the same tenant. All operations defined in the
P4Runtime specification are currently available in the public
implementation, except for the SetForwardingPipelineConfig,
which changes the configuration (i.e., the program) running
on the switch.

C. Resource Sharing

While our proposed architecture provides complete logical
isolation for the elements of different virtual devices by
default, it is possible for tenants to explicitly share some
resources between them. Usually, it is not possible to share
resources among devices belonging to different tenants, but the
architecture is flexible enough to enable this behavior should
the system administrator require it.

By opting to share elements such as tables and registers,
devices that belong to the same tenant could have a unified

firewall table that blocks suspicious connections or a shared
local DNS cache [3], for instance. This further increases hard-
ware savings and allows for cooperation through information
sharing between the virtual devices.

For the P4 language, explicit resource sharing is imple-
mented through additional annotations on the shared elements.
The use of this kind of annotations in the language allows
for easy extensions, thus maintaining compatibility with other
programs and compilers.

IV. EXPERIMENTAL RESULTS

To validate the proposed architecture, we implemented a
prototype of the architecture composed of the Code Com-
position, Runtime, and Security modules. We performed two
experiments to ascertain the virtual switches’ isolation and
security, measure the solution’s additional runtime overhead
in terms of latency between the control and data planes (the
time it takes for the RPCs to complete), and evaluate the
virtualization scheme’s resource usage overhead (the ammount
of physical memory used in the host). The experiments aim
to answer the research questions: (i) What is the system’s
additional runtime latency for the controllers? (ii) Is it pos-
sible to save resource usage with the proposed lightweight
virtualization scheme?

Additionally, our second experiment highlights topology
emulation as a potential use case for a virtualization archi-
tecture. PDP innovations must undergo a prototyping phase
under controlled environments before deployment. Tradition-
ally, software emulators such as Mininet [19] are employed
for this phase. While not ideal due to performance limitations,
those software emulators must be employed when researchers
have limited resources, such as a limited number of physical
switches. With virtualization, multiple tenants can simultane-
ously emulate a whole topology of switches with guaranteed
hardware performance.

We employed a programmable Intel Tofino switch with an
aggregate throughput of 6.4 Tbps for the experiments. The
source code for the implementation in C++ with 14000 lines
of code and scripts to foster reproducibility are available on a
GitHub repository [12].

A. Experiment #1: Composition and Latency

This experiment consists of two P4 programs which contain
a table to forward packets based on the destination IP ad-
dress. The programs were designed to evaluate the solution’s
ability to merge programs that pose some challenges, such
as (i) different headers for packet-in and packet-out runtime
messages, (ii) a table that can be shared to reduce TCAM
hardware usage but such sharing must be transparent to the
tenants, (iii) different parser and control flow logic, and (iv)
runtime idle timeout messages that must be translated to the
controller’s expected formats.

The first program was extended to be able to receive
packets from the controller, which are processed by populating
metadata fields containing information about the switch’s
queue occupation. The controller is designed to operate as
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a simplified in-band telemetry application, which periodically
sends packets to the switch to get information. The experiment
measures the delay between the telemetry request (packet-out)
and the response (packet-in).

The second program was extended to send any packets that
resulted in a table miss to the controller for further inspection,
along with metadata that informs the packet’s ingress port.
This way, the controller can insert rules in the switch’s table as
needed, similar to a simplified reactive forwarding application.
The rules inserted by the controller also contain an idle timeout
of 5 seconds, which will cause the switch to generate a
message to warn the controller of inactive entries. The delay
we want to measure is the RTT of the first packet of a ping
between two connecting hosts.

TABLE I
DELAYS MEASURED ON THE LATENCY EXPERIMENT.

Virtualization (ms) No Virtualization (ms)
C1 (Telemety) 4.121 2.231
C2 (Forwarding) 19.09 11.06

Table I shows the delays for the telemetry packets for tenant
1 and the RTT of the first packet of a ping between two hosts
of tenant 2. For comparison, the table also shows the same
delays when only the code of one of the switches is running
(i.e., no virtualization). The results are an average of 30
repetitions. The controller applications used with and without
virtualization are identical because our solution provides a
transparent virtualization scheme. The resulting overhead of
the experiments shows that the virtualization scheme performs
well for the chosen applications. The telemetry application
only perceives a 2ms average additional delay every 3 seconds,
and the forwarding application only incurs an 8ms average
additional delay every time a new flow needs to be established.
The additional delays differ, since it is dependent on the
operations performed by each application.

In summary, our solution was able to compose programs
with different pipeline and packet metadata specifications and
manage them in parallel in a completely transparent way
to the controllers. The overhead delay, acceptable for the
applications, is a small price for the advantage of running
multiple virtual switches in parallel with real hardware line
rate processing and throughput.

B. Experiment #2: Block RAM Usage

The proposed virtualization architecture is able to share
hardware resources while providing logical isolation to the
tenants. Additionally, tenants may opt to explicitly share their
resources among their own virtual switches. Due to hardware
optimizations, sub-linear space growth can be achieved when
the declared table sizes grow.

With the developed prototype, a tenant can specify not only
a single virtual switch to be instantiated but also multiple
devices and virtual links between them. It does so by sending
a JSON file with this information to the Code Composition
module instead of a single P4 file. The modular design of the

L3 Router

Load Balancer Load Balancer

Clients

Server 1 Server 2 Server 3 Server 4

Topology 1

IP Firewall

NAT NAT

Clients

Server 1 Server 2 Server 3 Server 4

Topology 2

Fig. 5. Emulated topologies for the hardware usage test.

architecture allows for such modifications to fit each operator-
specific needs. Resources and tables can be shared between
those devices, such as a common firewall table.

To ascertain that it is possible to save hardware resources,
we instantiated six virtual switches divided into two topolo-
gies, each topology belonging to a different tenant. Fig. 5
depicts the emulated topologies.

Table II shows the Block RAM (BRAM) usage for each
emulated switch when their programs are compiled individu-
ally. The table also shows the same values for the composed
program. The results show that it is possible to save hardware
space when tables are unified. The total number of BRAMs
used (46) is 21% less than a composition without table
unification (58)2.

V. RELATED WORK

The first works in PDP virtualization (Hyper4 [5], HyperV
[8] and P4Visor [9]) were described in Section II, since
they introduced important concepts such as emulation and
composition-based PDP virtualization. While those works laid
the foundations for further research, much has changed in
the processing power and architecture of PDP hardware since
then, requiring significant updates. The new specification of
the P4 language, P416, is incompatible with their original im-
plementations. Most recently, multi-tenancy PDP virtualization
is gaining traction, with solutions targeting modern hardware.

P4MT [20] recognizes that prototyping and testing are crit-
ical steps in the development of innovative network protocols
and services. They reinforce the importance of a complete
testbed to ensure that most problems are identified and fixed
before those innovations are deployed in production. To in-
crease the support for this part of development, they proposed
i-P4EN (International P4 Experimental Networks). The lim-
itation of that approach is the heavy target dependency of
the solution. It needs hardware support for multiple pipelines
to accommodate multiple tenants. This limitation would also
imply that the maximum number of tenants supported by
the system is the number of pipelines available in the target

2Equivalent to the sum of the individual tables (53) and the overhead tables
of the virtualization solution (5).
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TABLE II
BRAM USAGE FOR INDIVIDUAL AND COMPOSED PROGRAMS.

Program ipv4 t firewall src t dst t nhop lb table Overhead Total
L3 Router 5 5
Load Balancer 4x2 4x2 16
Firewall 4 4 8
NAT 4x2 4x2 4x2 24
Composed 14 4 8 6 4 5 5 46

hardware. To circumvent this limitation, P4MT adopts a shared
table design in which they cannot freely design the NFVs.
The tenants must choose from a set of available functions to
compose their programs.

In MTPSA [10], the authors propose a virtualization solu-
tion to emphasize the need for programs belonging to different
tenants to not interfere with each other’s processing. Again,
the architecture is heavily target-dependent, tailored for the
reference software switch implementation of P4, bmv2, and
FPGA-based P4 switches from Xilinx. Moreover, the architec-
ture defines the entity of a “Superuser”, which is a program
that is appended at the ingress pipelines of the switches and
defines which headers the users (i.e. tenants) programs can
parse, such as Ethernet, IPv4, TCP, UDP, etc.

Most recently, SwitchVM [11] aims to revisit emulation-
based approaches leveraging hardware advancements. The
authors achieve an acceptable performance by mixing static
packet processing functions with user-defined functions with
code that is encapsulated in the packet headers (similar to
the concept of active networks [21]). The main disadvantage
of SwitchVM is the constraints imposed on the data-plane
programming logic due to the newly designed programming
language. Additionally, the tenants’ pre-existing base code
must be rewritten using that language.

VI. FINAL CONSIDERATIONS

This work presented a complete end-to-end multi-tenant
PDP virtualization architecture based on program composition
that provides logical isolation for each tenant’s virtual devices.
The architecture is target-independent and does not require
changes in the tenant’s code for the data and control planes.
In future work, we intend to explore new applications of
the virtualization architecture, such as virtual programmable
switches as a service.
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