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Abstract—Identifying and safeguarding key nodes is crucial
for maintaining the reliability and stability of business functions.
Currently, most key node identification algorithms are based on
manual or deductive models, which are complex and suboptimal.
While deep reinforcement learning algorithms have demonstrated
promising practical results, they often exhibit excessive random-
ness in network feature extraction. To address this challenge,
this paper proposes a deep reinforcement learning framework
based on multi attributes attention mechanism. This framework
extends node attributes to encompass general business scenarios
and employs graph convolutional networks combined with an
attention mechanism to learn adaptive weights for different
attributes of various nodes. Subsequently, reinforcement learning
is utilized to determine the sequence of key nodes in the network.
This algorithm is compared with six algorithms across six
types of networks, consistently achieving optimal results, thereby
validating the effectiveness of the proposed approach.

Index Terms—Key Nodes, Multi Attributes Attention, Graph
Neural Network, Deep Reinforcement Learning

I. INTRODUCTION

Key nodes serve as central hubs within a network, signifi-
cantly influencing on network functionality. The applications
of key nodes is of utmost importance. However, in complex
and large-scale networks, it remains challenging to compre-
hensively analyze and identify key nodes by integrating struc-
tural, attribute characteristics. Current mainstream research
methods predominantly fall into five categories:

1) Node centrality models: Examples encompass De-
gree Centrality (DC), Betweenness Centrality (BC), Closeness
Centrality (CC), the PageRank algorithm, and the KG Core
Decomposition algorithm [1]. The Collective Influence (CI)
algorithm [2] evaluates node influence by delineating a spe-
cific range of influence. While these algorithms are relatively
simple and easy to implement, the set of nodes (or edges)
identified as individually important may not necessarily form
the most critical set collectively.

2) Optimal decycling methods: Designed for addressing
network disintegration problems. The Minsum [3] proposes
a message-passing algorithm. The Belief Propagation-guided
Decimation (BPD) [4] assesses the removal probability of each
node within the current network. The CoreHd [5] identifies the

most critical nodes as core nodes. These algorithms generally
surpass centrality models and exhibit greater flexibility, though
they are often not optimal in most scenarios.

3) Graph partition methods: The Generalized Network
Dismantling (GND) introduces a spectral partitioning approx-
imation algorithm [6]. The RatioCut [7] method aims to min-
imize the number of edges removed to partition a graph into
several components of similar sizes. However, these methods
often become trapped in local optima.

4) Heuristic algorithms: The Index of Influence on Epi-
demic (IIE) algorithm [8] assesses the influence of nodes on
the spread of epidemics. The Gravity Model (GM) algorithm
[9] is inspired by the gravitational model from physics. The H-
index [10] represents a class of algorithms based on the local
properties of nodes. These algorithms can achieve superior
decompositions, but they has complex inference logic.

5) Deep Reinforcement Learning (DRL): FINDER [11]
combines GNN and DQN. PIANO [12] integrates influence
maximization with DRL. Xu et al. [13] present a graph
reinforcement learning for SDN routing path selection. Chen
et al. [14] propose a method that uses link equations based on
DRL. Chen et al. [15] discuss a DRL framework utilizing an
attention mechanism. Although effective, DRL lacks general
applicability when integrated with specific business scenarios.

To tackle this challenge, we introduce a novel unsupervised
framework named KRA: Finding Key Nodes in Complex Net-
works via Deep Reinforcement Learning and Multi Attributes
Attention. This framework employs GNN and Multi Attributes
Attention (MAA) to extract node features which serve as
representations of the network state. DRL is then utilized to
compute the Q-value for all nodes, facilitating optimal action
selection and state transitions by incorporating techniques such
as experience replay and N-step DQN, an offline model is
pre-trained, enabling direct application in real-world network
scenarios. The core contributions of this study:
• Present a method of node multi attributes attention: MAA.
• Propose a novel architecture MAA+DRL.
• Achieve state-of-the-art performance: Data will be avail-

able upon request.
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II. PROBLEM FORMULATION
This section outlines the problem formulation in two parts:

1) Node Attributes and Node Embedding: Introduce the
multi attributes of nodes and the process of node embedding;
2) Network Metrics: Design a node removal strategy aimed at
minimizing the Accumulated Normalized Connectivity(ANC).

A. Node Attributes and Node Embedding

This paper proposes a method to compute node importance
based on multiple types of node attributes (blue) xi =
{T1, T2, B1, B2, B3}, as Fig.1 shows: topological attributes
(T1, T2) and business attributes (B1, B2, B3). Through GNN
(grey) and Multi Attributes Attention (MAA, yellow), various
attributes are weighted differently in node embedding (green).
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Fig. 1: The Node Embedding Based on MAA

1) Node Attributes: The method contains both business and
topological dimensions, as Fig.1 blue shows.
a) Topological Attributes: The model utilizes degree and
betweenness centrality as topological attributes for training.
• Degree: The most basic and important attributes.
• Betweenness: A global static feature.
b) Business Attributes: Different types of networks have
various business characteristics, allowing readers to customize
according to their specific requirements.
• Management Business: Business of managing the network.
• Security Business: Business of stability and resilience.
• Basic Business: Basic functions and services of the network.
2) GNN and MAA: Map the structural and attribute character-
istics to a low-dimensional space. We employ the GraphSAGE
and MAA(yellow) to aggregate messages on the graph G =
(V,E) (grey), combining topological and business attributes.
3) Node Embedding: As Fig.1 (green), 64 dimensional vector.

B. Network Metrics

In this paper, our learning objective is to design a node
removal strategy that minimizes the cost of network disinte-
gration, formulated as Eq.(1), called Accumulated Normalized
Connectivity (ANC). R(v1, v2, . . . vN ) represents the overall
connectivity after removing corresponding nodes.

R(v1, v2, . . . vN ) =
1

N

n∑
k=1

σ(g/v1, v2, . . . vn)

σ(g)
. (1)

The Giant Connected Component (GCC) serves as the
indicator of network connectivity. σ (g) selects the GCC with
Eq.(2). It will be utilized in Sec.III-C Decoding.

σ(g) = max{σm : Cm ∈ g}. (2)

III. THE PROPOSED MODEL
This section outlines the architecture of KRA. As shown in

Fig.2, KRA is combined with MAA+DRL:
• Training Dataset: Synthetic BA networks.
• Encoding: Node embedding (color bars) by Fig.2 Encoder.
• Decoding: Q-values (green bars) by Fig.2 Decoder.
• Loss Function& Traning Process
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Fig. 2: The Framework of KRA: Encoder extracts node
embeddings (color bars) and state as inputs for DRL. Decoder
computes the Q-values (green bars) for each node to select the
next Action. Calculate the Reward with ANC Eq.1. Then trans-
fer to the next State and repeats N episodes until the network
becomes isolated nodes. Select new (St, At, Rt,t+n, St+n) in
Experience Replay Buffer for subsequent training sessions.

A. Training Dataset
BA networks are randomly generated using Networkx, com-

prising 30-50 nodes. 500 batches of data were updated every
5000 iterations, totaling approximately 5 million iterations.

B. Encoding
In Fig.2, Encoder presents Encoding. Node embeddings

are as color bars shown, and node’s various business and
topological attributes are assigned different weights through
Multi Attributes Attention (MAA). The details are as follows:
1) GraphSAGE Aggregate: GraphSAGE updates node rep-
resentations by sampling neighboring nodes and aggregating
their features with eq.(3). hk

v is the representation of node v
at layer k, N(v) is the set of neighbors of v, AGG is the
aggregation function, and σ is an activation function.

hk
v = σ

(
W •AGGk−1

(
hk−1
v ∪ {hk−1

u ,∀u ∈ N (v)}
))

. (3)

2) Attention Coefficients Calculation: The attribute vector of
node v is xv . The attention mechanism is used to calculate the
weight of each attribute as Eq.(4), where a,W are learnable
weight vectors.The attention coefficients αvi is normalized
using the softmax function in Eq.(4).

evi = LeakyReLU(aT [Wxvi]).

αvi =
exp(evi)∑n
j=1 exp(evj)

.
(4)
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3) Weighted Aggregation: The normalized attention coeffi-
cients are used to compute a weighted sum of the transformed
features of the neighbors with Eq.(5).

hv =

n∑
i=1

αvixvi;hv =
hv

∥hv∥2
;h′

v = [hk
v∥hv]. (5)

The MAA leads KRA to learn the importance of each
neighbor’s attributes in neighborhood, providing a powerful
tool for capturing complex patterns and relationships in graph-
structured data, which can improve the quality of node embed-
dings. Algorithm.1 outlines the encoding process employed in
KRA. W1,W2,W3 are weight parameters, N(v) is the neighbor
set of node v. To represent the graph state, we use a virtual
node s connected to all nodes but no one connected to it.

Algorithm 1: Encoding Process in KRA
Input: g = (V, ε);Xv, v ∈ V ;N(v), v ∈ V ;W1,W2,W3

Output: Embedding Vector zv, v ∈ V
1 Create a virtual node s to denote the state of graph ;
2 Initialize h0

v ←
ReLU(X0·W1)

∥ReLU(X0·W1)∥2
;

3 for l = 0 to K do
4 for v ∈ V ∪ {s} do
5 hl−1

N(v) ←
∑

j∈N(v) h
l−1
u ;

6 hl
v ← ReLU(W2 · hl−1

N(v)∥W3 · hl−1
v );

7 end
8 hl

v ←
hl
v

∥hl
v∥2

;
9 end

10 Compute αvi with Eq.4, Compute h′
v with Eq.5;

11 zv ← h′
v,∀v ∈ V ∪ {s};

C. Decoding

In Fig.2, Decoder presents Decoding. The node embeddings
encoded in Sec.III-B Encoding, serve as inputs into the DRL
to compute the Q-values of the nodes (Fig.2 green bars). The
decoder is a basic Multi-Layer Perceptron (MLP), as Eq.(6).
Za and Zs are embeddings obtained from Algorithm.1, learned
within the DRL. W4,W5 are weight parameters.

Q(s, a) = WT
5 ReLU(ZT

a • Zs •W4). (6)

KRA adopts N-step DQN, with detailed design considera-
tions for states, actions, rewards, and loss functions as follows:
1) State: The embedding of virtual nodes.
2) Action: Selecting an action to execute, delete a node.
3) Reward: After executing each action, the value of the
objective function on the graph g = (V, ε) is calculated. The
reward is derived from a tuple (St, At, Rt,t+n, St+n) and used
in training the N-step DQN model. The N-step reward rt,t+n

is defined in Eq.(1). The calculation method of σ(g) refers to
Eq.(2). The reward is based on minimizing the Eq.(1)-ANC.
4) Policy: Based on the Q-values of each node (Fig.2 green
bars), we use the ϵ-greedy strategy to select the action with the
maximum Q-value argmaxaQ (s, a) with a probability of 1-ϵ.

Otherwise, a node is selected uniformly at random. Execute
the Action, and the system transitions to the next state.
5) Experience Replay: To address issues of sample correlation
and smoothness, we employ Fig.2 Experience Replay Buffer,
from which mini-batches are randomly sampled for training.
6) Double DQN: Stabilize the training process.

D. Loss Function

The target network is defined as yt = rt,t+n +
γmaxa′Q̂(st+n, a

′; θ̂Q), where rt,t+n is the reward, γ is the
discount factor, st+n is the state after n steps, and Q̂ represents
the target Q-values with parameters θ̂Q. The prediction value
of DQN is Q(st, at; θQ). The loss is defined as Eq.(7).

Loss(θQ) = α

N∑
i,j=1

si,j∥yi − yj∥2 + E(St,At,Rt,t+n,St+n)[(
rt,t+n + γmaxa′Q̂(st+n, a

′; θ̂Q)−Q(st, at; θQ)
)2

]
.

(7)

E. Training Process

The inputs to the model include embedding vectors zv, za,
episode N , and time T . θQ = {W1,W2,W3} are parameters.
The tuple (St, At, Rt,t+n, St+n) is randomly selected from the
Fig.2 Experience Replay Buffer to train the model. The detail
is presented in Algorithm.2.

Algorithm 2: Training process of KRA.
Input : embedding vectors zv, za, episode N , time T
Output: Target Q network with parameters θQ

1 Initialize Buffer B with size M Q-net with θQ;
2 for epoch = 1 to N do
3 Generate BA randomly; Initialize state s1 = ();
4 for t = 1 to T do

5 at =

{
argmaxaQ(st, a; θQ) 1− ϵ

node v ∈ St ϵ
;

6 Compute I(vi), rt(st, at), st+1 = st − {at};
7 if t ≥ n then
8 Store (st−n, at−n, rt−n,t, st) in B;
9 Sample (sj , aj , rj,j+n, sj+n) from B;

10 yj ={
rj,j+n, terminal state
rj,j+n + γmaxa′ Q(sj+n, a

′; θ̂Q), else
11 Update θQ with Eq.(7)
12 end
13 end
14 end

This section introduces the training process of KRA. Firstly,
nodes are encoded using Algorithm.1, then put node embed-
dings into the DRL to identify the key nodes, as Algorithm.2.
The pre-trained KRA will be tested in the next section.
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IV. EXPERIMENTS

In this section, we evaluate six real-world networks on
the proposed algorithm and six benchmarks, to assess the
performance and applicability of KRA across various domains.
Real-world networks: covers various fields and multi-scales.
1) Crime: A 911 crime network;
2) HI-II-14: A biological protein network;
3) Digg: A communication network;
4) Gnutella31: A peer-to-peer Gnutella file sharing network;
5) Facebook: A well-known social network;
6) Youtube: Another prominent social network.

The parameters of real-world networks shows in Table.I:
number of nodes(N), number of edges(E), average degree(D),
average shortest path length(S), clustering coefficient(C).

TABLE I: The parameters of the real-world networks

Crime HI-II-14 Digg Gnutella31 Facebook Youtube

N 829 4165 29652 62561 63392 1134890
E 1473 13087 84781 147878 816831 2987624
D 3.55 6.28 5.72 4.73 25.77 5.27
S 5.04 4.16 4.68 5.96 4.31 5.55
C 0.0058 0.0444 0.0054 0.0055 0.2218 0.0808

Benchmarks: Considering that Heuristic algorithms are usu-
ally cumbersome and difficult, we will focus on classic algo-
rithms and the state-of-the-art algorithm currently.
1)HDA(DC):A classic and effective node centrality algorithm;
2)MinSum [3]: An optimal decycling method by percolation;
3)BPD [4]: An optimal decycling method based on the spin
glass model of the minimum FVS problem;
4)CoreHD [5]: An optimal decycling method based on a
simple and fast heuristic algorithm;
5)GND [6]: A graph partition method, the state-of-the-art
method to address the ND problem;
6)FINDER [11]: The state-of-the-art algorithm based on DRL;

The performance evaluation comprises two parts: 1) Com-
pare the effectiveness of all algorithms, assessed by the
Accumulated Normalized Connectivity (ANC) after network
disintegration. 2) Analyze the running times of each algorithm.

A. Effectiveness of Real-world Networks

Fig. 3: The Bars of Real-world Networks

1) Bar Chart: As depicted in Fig.3, the horizontal axis
represents the names of real-world networks, while the ver-
tical axis shows the ANC values. The bar chart compares
the performance of seven algorithms across six real-world
networks, emphasizing the effectiveness of KRA. The chart
clearly illustrates that KRA achieves the smallest ANC value
compared to other methods.

Fig. 4: The Heat Map of Real-world Networks

2) Heat Map: Fig.4 presents statistics on ANC values
across real-world networks, using a heatmap to visualize the
performance of various algorithms. The colors represent disin-
tegration effectiveness across different networks, with varying
shades indicating different levels of performance. Networks
with higher average degrees and clustering coefficients tend
to show lighter shades, signifying higher ANC values and
greater difficulty in disintegration. Notably, the right side of
the heatmap exhibits darker shades, highlighting the superior
performance of KRA compared to other algorithms.

3) Curve Chart: Fig.5 illustrates the performance of seven
algorithms tested across six real-world networks, highlighting
the superiority of KRA over other algorithms. The horizontal
axis represents the fraction of removed nodes, while the verti-
cal axis shows the ANC values. KRA demonstrates exceptional
performance, particularly in the removal of head nodes. This
suggests that KRA accurately identifies the sequence of critical
nodes, especially when compared to FINDER.

As shown in Fig.3,4,5, KRA exhibits significant perfor-
mance improvements on real-world networks, achieving a
4.92% enhancement over FINDER. Compared to other al-
gorithms, KRA outperforms HDA by 7.61%, MinSum by
14.31%, BPD by 17.90%, CoreHD by 8.77%, and GND by
16.16% across various real-world networks. This underscores
the superior capability of KRA in accurately identifying key
node sequences. Particularly noteworthy is the improvement of
KRA over BPD by 25.42% on the YouTube network, high-
lighting its enhanced effectiveness on larger-scale networks. In
summary, the above experiments demonstrate that KRA excels
in four key aspects of effectiveness:
• KRA demonstrates a notable improvement over FINDER.
• KRA surpasses other methods in identifying head nodes.
• KRA achieves extremely well on large-scale networks.
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Fig. 5: The Curves of Real-world Networks
B. Running Times of Real-world Networks

TABLE II: Running times of real-world networks

Times(s) Crime HI-II-14 Digg Gnutella31 Facebook Youtube

HDA 0.00 0.00 0.27 4.09 11.64 1785.27
MinSum 1.82 18.18 98.36 204.91 1280.00 4980.18
BPD 0.27 8.18 35.45 37.27 762.73 420.00
CoreHD 0.09 1.82 7.73 10.82 195.27 1835.36
GND 0.09 1.18 11.55 351.18 4195.00 47496.55
FINDER 0.27 1.09 6.45 12.09 66.73 255.65
KRA 0.29 1.12 6.51 11.90 62.97 240.44

Table.II presents the running times of various algorithms
on real-world networks used in our experiments. Entries
highlighted in bold indicate optimal performance. Among
the algorithms, HDA demonstrates the shortest running time.
However, its effectiveness appears poor. As the network size
increases, KRA consistently exhibit lower running times over-
all. Particularly, KRA shows superior efficiency on Youtube,
indicating its effectiveness on large-scale networks.

Based on the experiments conducted in this section, it can
be concluded that KRA achieves notable improvements in
effectiveness while maintaining manageable complexity,
particularly advantageous in handling large-scale scenarios
within neural networks and identifying head nodes.

V. DISCUSSION AND CONCLUSION
This paper introduces a novel deep reinforcement learning

algorithm called KRA, which leverages a node attributes at-
tention mechanism to identify key nodes in complex networks.
This approach significantly enhances the accuracy of feature
extraction from nodes within the network. When applying
KRA in practical fields, we can adjust the network weights
to represent the actual business volume. Retrain the model,
then we can obtain an excellent model in the corresponding
field directly. Extensive validation conducted on real-world
networks underscores KRA’s superiority in both effectiveness
and efficiency, particularly when applied to large-scale net-
works. In summary, KRA introduces three core innovations:
• A method of node multi attributes attention: MAA.
• A novel architecture: MAA+DRL.
• Achieve the state-of-the-art results.
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[5] L. Zdeborová, P. Zhang, and H. J. Zhou, ”Fast and simple decycling and
dismantling of networks,” Scientific Reports, vol. 6, p. 37954, 2016.

[6] Ren, X., Gleinig, N., Helbing, D., et al. ”Generalized Network Disman-
tling.” Proceedings of the National Academy of Sciences of the United
States of America, vol. 116, no. 14, pp. 6554-6559, 2019.

[7] U. von Luxburg, ”A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, pp. 395-416, 2007.

[8] Zhang, L., Yu, B., Yan, T., et al. ”Information Entropy Based on
Propagation Feature of Node for Identifying the Influential Nodes.”
Complexity, vol. 2021, pp. 1-13, 2021.

[9] Li, Z., Ren, T., Ma, X., et al. ”Identifying Influential Spreaders by
Gravity Model.” Scientific Reports, vol. 9, no. 1, pp. 1-7, 2019.
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