
Multi-Objective Scheduling and Resource
Allocation of Kubernetes Replicas
Across the Compute Continuum

Nicola Di Cicco‡, Filippo Poltronieri†, José Santos∗, Mattia Zaccarini†, Mauro Tortonesi†,
Cesare Stefanelli†, Filip de Turck∗

‡ Department of Electronics, Information, and Bioengineering (DEIB), Politecnico di Milano, Italy
† Distributed Systems Research Group, University of Ferrara, Ferrara, Italy

∗ Ghent University - imec, IDLab, Department of Information Technology, Gent, Belgium

Abstract—Orchestrating microservice applications deployed on
a federation of globally distributed Kubernetes clusters is a
challenging and multifaceted optimization problem. It is not
only computationally hard, but also requires balancing a del-
icate trade-off between competing performance metrics, such
as latency, deployment cost, and service interruption frequency.
Classical approaches in the literature merge multiple objectives
into a single one via, e.g., linear combinations. However, in
practice, it is complex to express a priori a quantitative preference
between heterogeneous objectives, let alone with simple linear
combinations. This paper adopts a more comprehensive approach
leveraging proper Multi-Objective Optimization (MOO), with
the goal of producing multiple solutions from the Pareto Front
(PF). Therefore, the orchestrator can inspect a posteriori all
possible “optimal” trade-offs and decide on the strategy that best
fits their operating requirements. To solve the MOO problem,
this paper adopts state-of-the-art Multi-Objective Evolutionary
Algorithms and shows their effectiveness in solving the MOO
problem. Illustrative results highlight the practical benefits of
a MOO formulation, providing several tens of nondominated
solutions and evenly covering the objectives’ space.

Index Terms—Kubernetes, Resource Allocation, Multi-
Objective Optimization, ILP, Evolutionary Algorithms, Compute
Continuum

I. INTRODUCTION

Microservices have revolutionized service provisioning in
Cloud Computing environments, allowing providers to dis-
tribute complex applications in the Compute Continuum
(CC) over loosely-coupled containers [1]–[3]. Specifically,
multi-cluster scenarios provide ample degrees of freedom for
scheduling and resource allocation of microservices, allowing
service providers to select among a large portfolio of compute
instances with different characteristics in terms of available
CPU, RAM, pricing models, and Quality of Service (QoS)
metrics, e.g., round-trip latency and guaranteed availability [4].

In this context, resource allocation in heterogeneous com-
pute clusters is well-studied in the literature, e.g., [4]–[7], and
can be framed as a generalization of the multidimensional tem-
poral bin packing problem [8]–[11]. Despite the compelling
interest, state-of-the-art automated management solutions (e.g.

N. Di Cicco and F. Poltronieri are co-first authors of this paper.

Amazon EKS, Platform 9) still lack the tools to provide
cost-efficient deployment subject to Service Level Agreements
(SLAs) such as availability and latency.

In this paper, building upon prior work, we put forward
proper Multi-Objective Optimization (MOO) for enabling in-
formed a-posteriori decision-making in multi-cluster Kuber-
netes (K8s) scheduling and resource allocation. We argue
that a Multi-Objective (MO) formulation is necessary for this
problem since the complex and unpredictable interactions be-
tween heterogeneous objective functions make it challenging,
if not impossible, to define precise and explicit preferences in
advance. In practice, when dealing with multiple competing
objectives, it is desirable to present to the decision-maker a
set of multiple “optimal” trade-offs, such that well-informed
decisions can be made a posteriori [12], [13].

In this regard, in contrast to single-objective optimization,
we aim to derive the entire Pareto Front (PF) of solutions, each
achieving “optimal” trade-offs between three competing objec-
tives: service latency, service deployment costs, and frequency
of service interruption. Specifically, our work improves over
the state-of-the-art by jointly considering the following four
main aspects: i) we simultaneously optimize both scheduling
and resource allocation, ii) we assume that the decision-
maker’s preferences between objectives are unknown before
optimizing, iii) we consider different pricing and latency
models between heterogeneous clusters, which we profile from
real-world AWS instances, and iv) we consider the possibility
of splitting multiple microservices over different compute
instances during resource allocation. In this context, we for-
mulate scheduling and resource allocation in K8s clusters as a
MO-Integer Linear Programming (ILP) problem and leverage
metaheuristics to solve it efficiently.

Our main contributions are summarized as follows:
• We derive a novel MO-ILP formulation for scheduling

and resource allocation in K8s clusters, to jointly op-
timize three competing objectives: service latency, total
deployment cost, and service reliability. (Section III)

• We develop several ad-hoc metaheuristics for solving
our MO-ILP efficiently. Specifically, we derive a custom

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

and efficient variable encoding suitable for state-of-the-
art Genetic Algorithms such as NSGA-II and NSGA-III,
and we implement a custom Particle Swarm Optimization
(PSO) specifically designed for MOO. (Section IV)

• We perform extensive numerical evaluations based on
real-world round-trip delay measurements, instance pric-
ing models, and reliability indicators, and we discuss our
observed trade-offs by analyzing the PFs. (Section V)

II. RELATED WORK

ILP-based optimization has been extensively applied in a
wide range of problems in networking, ranging from mi-
croservice orchestration in cloud systems [14] to service chain
management [15]. Typically, resource allocation problems are
modeled as ILPs, which are typically solved via ad-hoc
heuristics for large-scale instances to cope with the scalability
issues arising from ILP solvers [16], [17].

Thanks to their flexibility, ILPs have also been considered
for modeling MOO problems. For example, the authors in
[18] formalize a Mixed-Integer Linear Program (MILP) to
improve the acceptance rate and the delay and, at the same
time, prevent QoS violations for a Virtual Network Embedding
(VNE) problem in multiple cloud environments. In [19], Yao
et al. aim to examine the correlation between reliability and
costs in Internet-of-Things networks deployed at the Fog level.

Due to the high computational complexity for solving MO-
ILPs optimally, heuristic algorithms, especially multi-objective
Genetic Algorithms such as NSGA-II, are frequently used
to obtain approximate solutions in reasonable computational
times, e.g., [20]–[23]. For example, the work in [21] lever-
ages NSGA-II to tackle network reliability and controller
load balancing in Software Defined Networks. The authors
empirically demonstrate its effectiveness on a collection of
different network configurations. In [20] the authors model
an adaptation of NSGA-II for discretized objectives in a task
scheduling problem. Their experiments prove the strength of
the proposed approach, minimizing execution times and costs
in the considered fog-cloud environments. In [22], the authors
deal with a workflow scheduling problem in cloud ecosystems
leveraging a PSO tailored to deal with multiple conflicting
objectives, such as makespan and resource usage. In [23],
the authors compare reinforcement learning and metaheuristics
techniques for service management across the CC. Specifi-
cally, the authors analyze the convergence of Computational
Intelligence (CI) and Reinforcement Learning (RL) techniques
and discuss their adoptions for dynamic scenarios.

A large body of literature is dedicated to scheduling and
resource allocation in cloud computing, and ILP-based ap-
proaches [5], [6]. The general mathematical framework of
the problem is the Temporal Multi-Dimensional Bin Packing
Problem [8]–[11], where bins (i.e., compute instances) have
multiple dimensions of capacity (e.g., CPU and RAM). Service
requests have to be scheduled over the time axis, either by
considering a fixed scheduling period or per-request deadlines.
The works that share the most similarity with our paper are

[4]–[6]. We now detail similarities and differences compared
to our work, highlighting our novel contributions.

In [5], the authors consider a multi-objective virtual machine
placement problem to jointly minimize the total number of
used physical machines and the number of “fire-ups”, i.e.,
the number of times a machine is switched off and back
on. In contrast to our paper, this work considers objectives
related to the deployment cost of virtual machines. Instead,
our model also incorporates QoS metrics (namely, latency and
probability of service interruption). Moreover, this work as-
sumes that virtual machines must be integrally allocated to one
compute instance, while we admit the possibility of splitting
microservices over different compute instances. Furthermore,
[5] assumes that all compute nodes are identical. Instead, our
work considers heterogeneous compute nodes with different
pricing models and QoS metrics. Finally, [5] considers only
resource allocation without temporal scheduling.

In [6], the authors consider the problem of resource allo-
cation of long-running microservices applications in shared
clusters to minimize the number of utilized hardware nodes.
Specifically, the authors admit the possibility of splitting
microservices over multiple shared clusters and impose fur-
ther constraints prohibiting the co-location of incompatible
microservices. Our work extends this general formulation by
jointly considering multiple objectives besides hardware costs,
namely, service latency and availability. Moreover, similarly to
[5], this work assumes that compute instances are identical and
does not consider temporal scheduling.

In [4], the authors consider online multi-cluster admission
control and resource allocation of K8s replicas. Specifically,
decisions on whether or not to admit a request and in which
cluster to assign a request are taken on the fly by a Rein-
forcement Learning agent. Instead, in this paper, we consider
offline scheduling and resource allocation of multiple requests,
a significantly larger-scale problem requiring different solving
methods. Moreover, though [4] considers multiple goals (e.g.,
deployment cost, latency, and fairness), it resorts to manually-
tuned objective weighting. Instead, our work considers a
principled MO approach, aiming to compute a PF of solutions
without the need for specifying the objectives’ preferences.

In summary, this paper significantly extends the state-of-
the-art by jointly i) considering both scheduling and resource
allocation, ii) considering a MO approach simultaneously
optimizing service latency, deployment cost, and microservice
availability, iii) considering heterogeneous compute clusters
with different resource availability and performance metrics,
and iv) admitting the possibility of splitting microservices over
multiple compute clusters.

III. BACKGROUND ON MULTI-OBJECTIVE OPTIMIZATION

MOO addresses optimization problems with two or more
conflicting objective functions to be optimized simultaneously,
seeking to find multiple solutions that balance the trade-offs

2024 20th International Conference on Network and Service Management (CNSM)

between the objectives. Specifically, a MO-ILP problem can
be generally written as:

min f(x) = (f1(x), f2(x), . . . , fk(x)) (1)
s.t. Ax ≤ b (2)

x ∈ Zn (3)

where (f1, f2, . . . , fk) are the objective functions, x are the
decision variables, and A,b are the constraint matrix and the
right-hand-side coefficients, respectively.

In contrast to single-objective optimization, a MO-ILP has
in general multiple “optimal” solutions, each achieving a
different trade-off between the objectives. Formally, the set of
optimal solutions to the MO-ILP consists of its Pareto Front
(PF), which is defined as:

F = {x ∈ Ω | f(x) ≻P f(x′) ∀x′ ∈ Ω}, (4)

where Ω is the feasible set of the MO-ILP, and ≻P is the
Pareto dominance relation, defined as:

x ≻P x′ ⇐⇒ (fi(x) ≥ fi(x
′) ∀i)∧(∃i : fi(x) > fi(x

′)) (5)

In other words, a feasible solution x Pareto-dominates x′ if
and only if x improves over x′ in at least one objective while
not worsening the others [24].

Deriving the full PF is significantly more complex than
conventional single-objective optimization, as it requires pur-
posely designed solving algorithms. To address the complexity
of MOO, a simple approach is to scalarize the objectives into a
single one via a scalarization function s : Rk → R. A popular
approach for MO-ILP problems is defining s as a convex
combination of the objectives, such that the linearity of the
objective function is preserved, and thus the problem can be
solved as a single-objective ILP with conventional algorithms.
According to this approach, each objective is assigned a scalar
weight, whose value represents the importance of the specific
objective function among the other. However, there are two
main drawbacks to this approach. First, it requires specifying
the relative importance of the objectives a priori. Since the
interactions between the objectives are often nonlinear, pre-
dicting the effect of changing a coefficient in the resulting
solution is impossible. Second, linear combinations can only
achieve solutions lying on the convex hull of the PF, which
can result in missing many potentially interesting trade-offs.
For the above reason, proper MOO algorithms aim to either
enumerate or approximate the PF, such that the decision-maker
is presented with multiple solutions, and is then able to decide
a posteriori on the trade-off that best satisfies the system’s
operational requirements.

IV. SYSTEM MODEL

We consider a scenario such as the one illustrated in
Fig. 1, where a service provider must schedule and assign
compute resources to a set of service requests over the Com-
pute Continuum (CC), considering multiple DCs and instance
types. Specifically, we assume that requests consist of multiple
microservice replicas, which can possibly be distributed over

Fig. 1. Orchestration of a service request in a multi-cluster CC scenario. Each
request is associated with a geographical area corresponding to the AWS DC
locations. Scheduling and resource allocation decisions are influenced by the
latency and pricing of the compute instances. (Numbers are illustrative.)

TABLE I
PARAMETERS OF THE MO-ILP

Parameter Description
D Set of service requests
Dt Set of service requests that are active at time-slot t
DC Set of data centers
I Set of compute instances available in each data center

Ir ⊂ I Set of RESERVED instances available in each DC
Io ⊂ I Set of ON-DEMAND instances available in each DC
Is ⊂ I Set of SPOT instances available in each DC
P r
j,k Total price for RESERVED instance j ∈ Ir in data center

k ∈ DC instance over the complete time horizon
P o
j,k Hourly price for ON-DEMAND instance j ∈ Io in data

center k ∈ DC
P s
j,k Hourly price for SPOT instance j ∈ Is in data center

k ∈ DC
Ri Set of replicas required by request i ∈ D
T Set of time-slots over the scheduling period
ci CPU required by one replica of request i ∈ D
mi RAM required by one replica of request i ∈ D
Cj vCPUs offered by instance j ∈ I
Mj RAM offered by instance j ∈ I
fj,k Interruption frequency of SPOT instance j ∈ Is in data

center k ∈ DC
li,k Latency between request i ∈ D and data center k

different K8s clusters in the CC and coordinated via a global
topology manager [4].

Formally, we model this optimization problem as a MO-
ILP. The MO-ILP is given as an input i) a set of deployment
requests, characterized by CPU and RAM requirements, a
request duration, and a required number of microservice
replicas, and ii) a set of potential compute resources, repre-
senting RESERVED, ON-DEMAND or SPOT cloud instances,
each characterized by a specific data center location, pricing
model, hardware resource availability, and average frequency
of service interruption. The objective of the ILP is to decide on
a scheduling and admission control rule that jointly optimizes
the acceptance rate, the hardware costs, and the average
reliability. Table I and Table II illustrate the parameters and
decision variables, respectively, of the MO-ILP formulation.

First, we describe in detail our considered objective func-
tions. Our first goal is to minimize the maximum delay
experienced by each request, which we express as follows:

min f1 = min
1

|D|
∑
i∈D

Li. (6)

2024 20th International Conference on Network and Service Management (CNSM)

TABLE II
DECISION VARIABLES OF THE MO-ILP

Variables Description
rj,k 1 if RESERVED instance j ∈ Ir in data center k ∈ DC

is active, 0 otherwise.
otj,k 1 if ON-DEMAND instance j ∈ Io is active at time-slot

t ∈ T in data center k ∈ DC, 0 otherwise
stj,k 1 if SPOT instance j ∈ Is is active at time-slot t ∈ T

in data center k ∈ DC, 0 otherwise
ati 1 if request i ∈ D is scheduled to start at time-slot

t ∈ T , 0 otherwise.
xt′
i,j,k,r 1 if K8s replica r of request i ∈ D is scheduled to

start at time-slot t′ ∈ T and is allocated to the instance
j ∈ I in data center k ∈ DC, 0 otherwise.

di,k 1 if request i ∈ D is assigned to data center k ∈ DC,
0 otherwise

Li Maximum latency experienced by request i ∈ D

Our second goal is to minimize the total cost of leasing the
hardware instances. Specifically, we adopt a realistic pricing
model inspired by AWS EC2 [25], [26], considering three
types of cloud computing instances, namely, RESERVED, ON-
DEMAND, and SPOT. RESERVED instances offer a low hourly
rate, but require reserving capacity for one or multiple years.
For this reason, we assume that, in the case a RESERVED
instance is activated, its cost is fixed respectively from usage,
and amounts to the total cost sustained over the considered
scheduling time period. ON-DEMAND instances offer a higher
hourly rate than RESERVED instances, but can be instantiated
on the fly (e.g., to sustain a small amount of demands, which
would not justify instantiating a RESERVED instance), and
are paid only for the amount of time they are used. Finally,
SPOT instances are the cheapest instances available. These
offer unused capacity on the cloud at a highly discounted rate
compared to RESERVED and ON-DEMAND instances, can be
instantiated on the fly, and are paid by their usage. However,
they offer a low level of reliability, since the allocated capacity
is not guaranteed, but can be requested back by the cloud
provider. By considering these instance types and their pricing
models, we express cost minimization as follows:

min f2 = min
∑
k∈DC

∑
j∈Ir

P r
j,krj,k

+
∑
k∈DC

∑
t∈T

∑
j∈Is

P o
j,ko

t
j,k +

∑
k∈DC

∑
t∈T

∑
j∈Is

P s
j,ks

t
j,k

(7)

Note that cost minimization competes with latency mini-
mization. In general, the cheapest cluster instances are not
necessarily the ones offering the lowest latency to a request.
For example, with reference to the parameters illustrated in
Tables III and IV, consider a set of requests coming from the
EU-SOUTH-1 area. Suppose that we assign all requests to ON-
DEMAND instances. Deploying them in AP-SOUTH-1 instead
of the closer EU-SOUTH-1 instances would decrease the hourly
rate for a single ON-DEMAND instance by 1.7x, but would
increase the average latency by 43x. In contrast, assigning
requests to EU-SOUTH-1 Spot instances would instead reduce
the hourly rate by 4x, at the price of a 10% average frequency
of disruption. Thus, we ask: Which solution is best? Are
there any preferable middle-ground solutions between these

extremes? Answering these questions before solving the opti-
mization problem requires quantifying the relative preferences
between the two objectives and formalizing them into a single-
objective formulation. Instead, adopting a MO formulation
allows us to derive a set of “locally optimal” trade-offs, and
decide which to deploy a posteriori.

Finally, our third objective minimizes the average frequency
of replica interruption. Recall that Spot instances are the
cheapest compute instances available, but their offered ca-
pacity can be subject to interruptions. Thus, if one or more
K8s replicas are allocated to Spot instances, these might
experience a service interruption if the cloud provider must
request back the capacity to, e.g., allocate more ON-DEMAND
or RESERVED instances for other clients. For this reason, we
want to minimize the average interruption frequency relative
to the total number of allocated replicas, as follows:

min f3 = min
1

|D|
∑
i∈D

∑
j∈Is

∑
k∈DC

∑
r∈Ri

∑
t∈T

zti,j,k,rfj,k

ri
(8)

With arguments similar to our previous discussion, we can
see from Table III and Table IV that minimizing the average
interruption frequency is in competition with both latency and
cost minimization. In other words, the Spot instances offering
the lower interruption frequency are not necessarily the ones
offering both the lowest latency and costs.

By jointly considering these three objective functions, we
formulate our optimization problem as a MO-ILP. Specifically,
we pre-compute the set Dt for each time-slot, containing the
indexes of all scheduling and resource allocation assignments
(i.e., starting time-slot, instance, and DC assignment) that are
“active” (i.e., they must occupy CPU and RAM resources)
at time-slot t. The MO-ILP formulation, comprising all the
necessary constraints, can be expressed as follows:

min (f1, f2, f3) (9)

∑
(i,t′)∈Dt,

r∈Ri

xt′

i,j,k,rci ≤

rj,kCj , ∀j ∈ Ir, k ∈ DC, t ∈ T

otj,kCj , ∀j ∈ Io, k ∈ DC, t ∈ T

stj,kCj , ∀j ∈ Is, k ∈ DC, t ∈ T

(10)

∑
(i,t′)∈Dt,

r∈Ri

xt′

i,j,k,rmi ≤

rj,kMj , ∀j ∈ Ir, k ∈ DC, t ∈ T

otj,kMj , ∀j ∈ Io, k ∈ DC, t ∈ T

stj,kMj , ∀j ∈ Is, k ∈ DC, t ∈ T

(11)∑
j∈I

∑
k∈DC

∑
t∈T

xt
i,j,k,r = 1, ∀i ∈ D, r ∈ Ri (12)

xt
i,j,k,r ≤ ati, ∀i ∈ D, j ∈ I, k ∈ DC, r ∈ Ri, t ∈ T (13)∑

t∈T

ati = 1, ∀i ∈ D (14)

di,k ≥
∑

t∈T,j∈I

xt
i,j,k,r, ∀i ∈ D, k ∈ DC, r ∈ Ri (15)

Li ≥ di,kli,k, ∀i ∈ D, k ∈ DC (16)
rj,k, o

t
j,k, s

t
j,k, a

t
i, x

t
i,j,k,r, di,k ∈ {0, 1} (17)

2024 20th International Conference on Network and Service Management (CNSM)

Li ≥ 0 (18)

Constraints (10) and (11) impose the CPU and RAM con-
straints, respectively, for RESERVED, ON-DEMAND, and SPOT
instances. Constraints (12) impose that each request must
be allocated its demanded amount of replicas, which can
distributed across every available instance type and DC. Note
that, while multiple replicas can be split across multiple
instances and DCs, a single replica must be integrally allocated
to a single instance and a single DC. Constraints (13) and
(14) ensure that only one starting time can be chosen for
scheduling each service request. Constraints (15) and (16) set
the maximum delay experienced by each allocated request.
Constraints (17) and (18) impose the variable domains. Fig. 2
shows an illustrative feasible solution for this problem.

This problem, along with similar problems in the context of
packing and scheduling, is NP-Hard. Specifically, our problem
can be considered a variant of the Temporal Multidimensional
Bin Packing Problem, a popular ILP model for representing
resource allocation problems in cloud computing environments
[8]–[11]. In our problem, differently from the literature, the
bins (i.e., the compute clusters) are not assumed to be iden-
tical and have different capacities, pricing models, network
latencies, and frequencies of service interruption depending
on the bin type. All of these performance metrics play a role
in their respective objective function.

The optimal solution to this MO-ILP is the complete Pareto
Front, i.e., in a set of solutions covering all possible “op-
timal” trade-offs between the three objectives. Enumerating
the Pareto Front is computationally challenging for large-
scale instances, since it would require solving to optimality
hundreds, or even thousands of single-objective ILPs [27].
We now discuss several exact and heuristic computational
strategies for efficiently computing Pareto-optimal solutions.

A. ILP-based Multi-Objective (MO) Algorithms

A popular and effective approach for solving MO-ILP prob-
lems is leveraging conventional single-objective ILP solvers to
either enumerate or approximate the Pareto Front [28]–[30].
Intuitively, the idea is to solve a sequence of suitable single-
objective ILP problems, such that each solver call returns
a Pareto-optimal solution. A classical and simple example
of these strategies is the ε-constraint method [28], which
optimizes one objective at a time while constraining all other
objectives to be less or equal to a constant value ε. The
algorithm can return a good approximation of the Pareto Front
by choosing suitable discretization strategies for the objectives.
Modern exact and approximating algorithm, e.g., [29], [30],
refine this general methodology to further reduce the number
of solver calls. Unfortunately, small-scale instances (e.g., 10
service requests with 1-2 replicas per request) of a single-
objective version of our problem require hundreds of seconds
to be solved to optimality by state-of-the-art open-source
solvers such as HiGHS [31]. For this reason, we resort to
scalable metaheuristics to compute approximate Pareto Fronts
for our problem, which we describe as follows.

Fig. 2. Illustrative feasible solution MO scheduling and resource allocation of
K8s replicas, considering only vCPUs for ease of visualization. Replicas may
be split across multiple compute instances, each with different characteristics,
and must start at the same time-slot.

B. Multi-Objective Evolutionary Algorithms (EAs)

Thanks to their scalability, Evolutionary Algorithms (EAs),
are a popular and effective solution for approximately solv-
ing MO problems. These algorithms combine conventional
crossover and mutation operators of classical EAs with ad-
hoc heuristics for maximizing the diversity of the discovered
Pareto Front [32]–[34]. We now briefly outline some of the
most popular and effective algorithms in the literature, which
we also employ in our work.

NSGA-II [33]: Born as an improved version of NSGA [35],
it is characterized by three core design elements: i) a fast
sorting procedure for identifying Pareto-dominating solutions
in short computational times, ii) the introduction of a crowding
distance metric to maximize the spread of the solutions over
the Pareto Front, and iii) an elitist approach, which preserves
the best-found Pareto-dominating solutions at each iteration.
The general applicability and effectiveness of NSGA-II make
it a de-facto default choice for MO problems.

NSGA-III [36]: improves over [33] for MO problems with
a large number of objectives. To maximize the approximated
Pareto Front’s diversity, instead of computing a crowding
distance as in NSGA-II, it assigns each solution to a reference
point in a normalized objective space, which the algorithm
tries to cover uniformly. For high dimensions (i.e., 3 or more
objectives), this procedure is more effective and computation-
ally lighter than the crowding distance.

Particle Swarm Optimization (PSO) [34]: In addition
to the characteristics of its architecture as an evolutionary
algorithm, PSO is particularly suitable for multi-objective opti-
mization thanks to its notable convergence speed and efficient
exploration of the solution space. The standard approach for
MO with PSO algorithms relies on an external repository to
store non-dominated feasible solutions and use them to guide
the evolution process. Over the years, many adaptations have
been made to its structure, such as the selection methodologies
to find local and global bests, the mutation operators [37], and
the number of total swarms involved [38], [39]. In particular,
the last aspect demonstrated to be particularly promising
thanks to its ability to explore the solution space efficiently
and the possibility of delegating every individual objective of
the problem to a specific swarm. For this reason, we devel-

2024 20th International Conference on Network and Service Management (CNSM)

oped a custom Multi-Swarm Particle Swarm Optimization
(MSPSO) inspired by the work described in [39]. Specifically,
our implementation creates a swarm with a fixed number of
particles for each objective, and adopts strategies to influence
the movement of the particles (i.e., the exploration of the
solution space) tailored for dealing with integer solutions, such
as Integer Polynomial mutation and a custom comparator to
select dominated solutions while taking into account penalties
related to constraint violations. We adopt this custom operators
also for our NSGA-II and NSGA-III implementation.1

V. ILLUSTRATIVE NUMERICAL RESULTS

In this Section, we solve the MO-ILP described in Section
IV and analyze the resulting PF of solutions. For visualization
purposes, we first solve a restricted version of our MO problem
considering only two competing objectives at a time, namely,
latency with cost and cost with replica interruption frequency.
Then, we solve the complete MO problem considering all three
objectives simultaneously. We solve the problem via NSGA-II,
NSGA-III, and MSPSO (implemented via jMetalPy [41]).

A. Reference scenario

We consider a large-scale instance similar in size to those
reported in the literature [7], [42], consisting of 50 requests
with replicas ranging from 1 to 6 and a duration ranging from
10 to 50 time-slots (hours), over a scheduling period of 100
time-slots (hours).2 Each request is characterized by a per-
replica required number of vCPUs (number of virtual cores)
and RAM, a duration, i.e., the time the deployed replicas must
remain active, and a requested number of replicas. To model
the round-trip latency, we assume that requests originate from
a location close to one of the AWS EC2 DCs.

To realistically model the cloud instance specifications
alongside their pricing models, we select the t4g AWS EC2
computing instances for the configurations 2XLARGE, LARGE,
and SMALL to specify different capacities. For each one of
these computing instances, we collected the hardware speci-
fications and pricing details for the respective ON-DEMAND,
RESERVED, and SPOT renting options, which are illustrated
in Table III. Specifically, we consider six EC2 DCs, located
in different geographical regions: EU-SOUTH-1, EU-WEST-2,
EU-EAST-1, US-WEST-1, AP-NORTHEAST-3, and AP-SOUTH-
1. Furthermore, for SPOT instances, we also report the in-
terrupt frequency, which is the maximum frequency at which
instances’ interruption occurred according to Amazon’s official
reports.3 Finally, we modeled the latency between the different
EC2 DCs according to the Cloud Ping website [40], from
which we retrieved the average latency, i.e., the ping, collected
over a one-month period between each pair of EC2 DC
considered for this evaluation.

1The source code for this study is available at https://github.com/
DSG-UniFE/cnsm 2024 moo scheduling ra.

2As a rough estimate of the problem’s scale, considering six DCs and three
instance types per DC, such an instance admits millions of possible time-slots
and instance assignments.

3https://aws.amazon.com/it/ec2/spot/instance-advisor/

Fig. 3. Scheduling and RA decisions taken with MOEA. The encoding vector
is divided into two parts: the first decides the scheduling for each request, and
the second assigns each replica to a proper instance type (DC, type, size),
encoded as an integer. Then, instances are created according to a next-fit
algorithm: replicas are packed sequentially, and new instances are opened as
soon as the capacity is exceeded.

To numerically assess the quality of the approximated PFs,
we consider the following two performance metrics.

Hypervolume metric. Measures the volume of the PFs
relative to a fixed reference point in the objective space, e.g.,
the worst possible values that the objective functions can take.
A higher hypervolume metric signals a better approximation
of the true Pareto Front.

Sparsity. Measures the resolution of the approximated PF.
Intuitively, a higher resolution (i.e., a large number of solutions
in the PF) is more desirable, since it provides a greater degree
of flexibility to the orchestrator. Sparsity is defined as [43]:

S(F) =
1

|F − 1|

m∑
j=1

|F−1|∑
i=1

(
F̃j(i)− F̃j(i+ 1)

)2

(19)

where m is the number of objectives, F is the PF approxima-
tion, and F̃j(i) is the value of the j-th objective of the i-th
solution, sorted by objective value. Lower sparsity implies a
higher resolution of the approximated PF.

Before presenting the results, we detail our custom solution
encoding for solving the MO problem with Multi-Objective
Evolutionary Algorithms (MOEA)s.

B. MOEA Encoding

MOEAs require encoding a feasible solution of the opti-
mization problem in a vector representation. Then, operators
such as mutation as crossover are iteratively applied to a pop-
ulation of multiple vector representations to explore efficiently
the solution space [33], [36].

To encode the scheduling and resource allocation problem,
we design an integer vectorized representation illustrated in
Fig. 3, which shows both the scheduling and the resource
allocation phases. The encoding vector is divided into two
main parts: the first contains one element for each request to
map the respective scheduling decisions, i.e., when to schedule

2024 20th International Conference on Network and Service Management (CNSM)

TABLE III
HARDWARE CONFIGURATION OF EACH CLUSTER BASED ON AMAZON EC2 ON-DEMAND AND SPOT PRICING [25], [26].

Data Center (DC) Instance On-Demand ($/h)
Reserved

On-Demand ($/h) Spot ($/h) vCPU RAM
Spot Interrupt

Frequency
eu-south-1 (Milan) t4g.2xlarge 0.3072 0.1842 0.0308 8 32.0 10%

t4g.large 0.0768 0.0461 0.078 2 8.0 15%
t4g.small 0.0192 0.0115 0.0019 2 2.0 10%

eu-west-2 (London) t4g.2xlarge 0.3008 0.1808 0.01148 8 32.0 5%
t4g.large 0.0752 0.0452 0.0267 2 8.0 10%
t4g.small 0.0188 0.0112 0.0061 2 2.0 5%

us-east-1 (N. Virginia) t4g.2xlarge 0.02688 0.1606 0.1135 8 32.0 15%
t4g.large 0.0672 0.0402 0.0268 2 8.0 20%
t4g.small 0.0168 0.0100 0.0090 2 2.0 5%

us-west-1 (N. California) t4g.2xlarge 0.3200 0.1918 0.0849 8 32.0 10%
t4g.large 0.0800 0.0480 0.0248 2 8.0 10%
t4g.small 0.0200 0.0120 0.0061 2 2.0 5%

ap-northeast-3 (Osaka) t4g.2xlarge 0.3482 0.2089 0.0415 8 32.0 10%
t4g.large 0.0879 0.0522 0.0298 2 8.0 15%
t4g.small 0.0218 0.0130 0.0031 2 2.0 15%

ap-south-1 (Mumbai) t4g.2xlarge 0.1792 0.1080 0.0760 8 32.0 10%
t4g.large 0.0448 0.0270 0.0211 2 8.0 15%
t4g.small 0.0112 0.0068 0.0049 2 2.0 5%

TABLE IV
AVERAGE LATENCY (MS) BETWEEN AWS EC2 DCS [40].

DC eu-s1 eu-w2 us-e1 us-w1 ap-n3 ap-s1
eu-s1 2.57 27.69 102.16 162.51 231.99 110.53
eu-w2 26.92 3.88 77.57 147.85 217.17 119.41
us-e1 102.04 78.57 5.15 64.21 154.10 195.66
us-w1 162.10 147.91 63.61 3.24 109.47 231.06
ap-n3 232.13 217.81 153.88 110.11 2.32 131.98
ap-s1 109.98 119.64 193.90 231.79 131.34 3.23

the request in the time horizon, while the second part contains
one element for each replica. Specifically, the integer value of
the element encodes a specific combination of the EC2 DC,
the instance size (small, large, or 2xlarge), and the instance
type: ON-DEMAND, RESERVED, or SPOT instance.

We perform decoding (i.e., converting the encoded vector
into a feasible solution) according to a classical Next-Fit Bin
Packing algorithm, as illustrated in Fig. 3. Specifically, we can
identify three different possibilities: i) if there are no active
instances for a specific combination, a new instance of the
selected type is activated, and the replica is allocated in it; ii)
if there exists a running instance for the selected combination,
and it has enough CPU and RAM capacity to accommodate the
replica, and iii) if there exists a running instance of the selected
combination, but it has not enough resources to accommodate
the new replica, a new instance of the same time is activated
and the replica is allocated in it.

We ran all the experiments on a commodity laptop (Mac-
Book Pro M3) with 50.000 iterations as a termination con-
dition, after which we observed no significant improvements
in solution quality. On average, across 100 instances, the
experiments took 24 seconds for NSGA-II and NSGA-III and
about 110 seconds for MSPSO.

C. MOEA evaluation with two objectives

Fig. 4a and 4b illustrate the PF for bi-objective versions
of our problem. We first observe that, when optimizing
latency and cost (Fig. 4a), the NSGA algorithms and the

(a)

(b)

Fig. 4. PFs found by NSGA-II, NSGA-III, and MSPSO considering the
Deployment Costs and Latency as problem objectives (4a) and Deployment
Costs and the Avg. Interruption Frequency as problem objectives (4b).

MSPSO converge on completely different solutions in the
objective space. Specifically, while NSGA-II and NSGA-III
favor solutions with higher costs and lower latencies, MSPSO
favors the opposite. Still, NSGA-II and NSGA-III obtain
more practically useful solutions, in correspondence with the
“elbow” of the PF, which signals a point of diminishing
returns for either objective. In particular, NSGA-II provides
the “best” PF approximation since it densely covers the elbow
point with multiple solutions, providing the orchestrator with a
fine decision-making granularity. In contrast, when optimizing
cost and availability (Fig. 4b, the MSPSO produces a PF

2024 20th International Conference on Network and Service Management (CNSM)

(a) (b) (c)

Fig. 5. PFs found by NSGA-II, NSGA-III, and MSPSO, considering total deployment costs, avg. request maximum latency and avg. interruption frequency.

that strongly dominates NSGA-II and NSGA-III, providing a
well-spaced set of nondominated solutions with no discernible
elbow point signaling diminishing returns for either objective.

We numerically validate the above qualitative comparisons
with the quantitative performance metrics illustrated in Table
V. Since the algorithms run relatively fast and might focus
on completely different parts of the solution space, we rec-
ommend running them as an ensemble and combining the
resulting PFs. Overall, these results highlight the benefits of a
MO approach, producing tens of possible solutions (instead of
just one), and providing an explicit way to identify the “ideal”
trade-off regions, such as the elbow point in Fig. 4a.

D. MOEA evaluation with three objectives

Fig. 5 illustrates the approximated PFs for the complete
three-objective problem. We first observe that the PFs for each
algorithm are quite rich, comprising several tens of solutions
(150 for NSGA-II, 112 for NSGA-III, and 100 for MSPSO).
This is because the flexibility provided by orchestrating single
microservices enables a fine decision-making granularity, i.e.,
the balance between the three objectives can be slightly tilted
by moving one or a few replicas from one cluster to another.
From a practical perspective, this allows MO algorithms to
produce a large set of nondominated solutions, providing
ample choices to the orchestrator. Though harder to discern
visually compared to the 2D case, the quantitative performance
metrics in Table V show that NSGA-III is the best-performing
algorithm both in terms of solution quality (measured by the
HyperVolume metric) and resolution of the PF (measured by
the Sparsity metric), with MSPSO coming second. Indeed,
similarly to what we observed in the bi-objective case, we
can see how NSGA-III and MSPSO attained convergence in
different sections of the solution space. Specifically, NSGA-III
discovers solutions with a few percent interruption frequency
while trading off cost and latency, while MSPSO discovers
solutions with a low interruption frequency but higher costs.
As before, considering this complex and multifaceted objective
function landscape and the different exploration strategies of
metaheuristics, we recommend running all of these algorithms
as an ensemble to maximize the quality of the resulting PF and
the number of available nondominated solutions.

TABLE V
SUMMARY OF THE MO PERFORMANCE METRICS

Objectives HV S(F)

Avg. Max. Latency (f1) &
Deployment Costs (f2)

NSGA-II : 64264
NSGA-III: 62477
MSPSO: 38293

NSGA-II : 3452
NSGA-III: 5730
MSPSO: 2893

Deployment Costs (f2) &
Avg. Interruption Frequency (f3)

NSGA-II : 15.18
NSGA-III: 15.34
MSPSO: 21.47

NSGA-II : 1634
NSGA-III: 1276

MSPSO: 887

Avg. Max. Latency (f1) &
Deployment Costs (f2) &

Avg. Interruption Frequency (f3)

NSGA-II : 3694
NSGA-III: 4048
MSPSO: 3930

NSGA-II : 203.29
NSGA-III: 123.79
MSPSO: 166.77

VI. CONCLUSION

Scheduling and resource allocation in microservice repli-
cas across the Compute Continuum is a fundamental and
challenging optimization problem. In this paper, we proposed
a novel MO formulation simultaneously accounting for in-
stance pricing, latency, and interruption frequency. Conven-
tional methods, which often combine these objectives into a
single linear equation, fail to capture the complex nature of
the trade-offs involved. Instead, we solved the MO problem
by computing an approximated PF via custom metaheuris-
tics. This allows decision-makers, such as network managers,
to evaluate the spectrum of trade-offs and select the most
appropriate strategy for their specific operational needs. We
empirically show that, thanks to the flexibility provided by
orchestrating individual replicas, the resulting PFs provide
several tens of potential solutions (instead of just one, as with
conventional approaches), of which we quantify the relative
performance and qualitatively identify the trade-off regions
that can be of major interest. Our custom metaheuristics are
computationally fast for large-scale instances, and converge
in distinct regions of the objective space, highlighting the
benefit of running them as an ensemble and then combining
the resulting PFs. Future work will consider strengthening
the MO-ILP formulation (e.g., by the means of covering
and column generation approaches), considering production
workloads, and validating the solutions’ performance on a
Digital Twin to perform what-if analyses of multiple Pareto-
optimal service deployments [44].

2024 20th International Conference on Network and Service Management (CNSM)

ACKNOWLEDGMENT

This work has been partially supported by the Spoke 1 “Fu-
tureHPC & BigData” of the Italian Research Center on High-
Performance Computing, Big Data and Quantum Computing
(ICSC) funded by MUR Missione 4 - Next Generation EU
(NGEU). José Santos is funded by the Research Foundation
Flanders (FWO), grant number 1299323N.

REFERENCES

[1] X. Larrucea et al., “Microservices,” IEEE Software, vol. 35, no. 3, pp.
96–100, 2018.

[2] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,”
Present and ulterior software engineering, pp. 195–216, 2017.

[3] J. Santos et al., “Towards low-latency service delivery in a continuum
of virtual resources: State-of-the-art and research directions,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 4, pp. 2557–2589,
2021.

[4] ——, “Efficient microservice deployment in kubernetes multi-clusters
through reinforcement learning,” in NOMS 2024-2024 IEEE Network
Operations and Management Symposium, 2024, pp. 1–9.

[5] N. Aydın et al., “Multi-objective temporal bin packing problem: An
application in cloud computing,” Computers & Operations Research,
vol. 121, p. 104959, 2020.

[6] C. Mommessin et al., “Affinity-aware resource provisioning for long-
running applications in shared clusters,” Journal of Parallel and Dis-
tributed Computing, vol. 177, pp. 1–16, 2023.

[7] Y. Hu et al., “Multi-objective container deployment on heterogeneous
clusters,” in 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), 2019, pp. 592–599.

[8] E. M. Arkin et al., “Scheduling jobs with fixed start and end times,”
Discrete Applied Mathematics, vol. 18, no. 1, pp. 1–8, 1987.

[9] A. Lodi et al., “Two-dimensional packing problems: A survey,” Euro-
pean Journal of Operational Research, vol. 141, no. 2, pp. 241–252,
2002.

[10] M. Dell’Amico et al., “A branch-and-price algorithm for the temporal
bin packing problem,” Computers & Operations Research, vol. 114, p.
104825, 2020.

[11] J. Martinovic et al., “Compact integer linear programming formulations
for the temporal bin packing problem with fire-ups,” Computers &
Operations Research, vol. 132, p. 105288, 2021.

[12] R. Marler et al., “Survey of multi-objective optimization methods for
engineering,” Structural and Multidisciplinary Optimization, vol. 26, pp.
369–395, 04 2004.

[13] C. F. Hayes et al., “A practical guide to multi-objective reinforcement
learning and planning,” Autonomous Agents and Multi-Agent Systems,
vol. 36, no. 1, p. 26, 2022.

[14] M. Zambianco et al., “Cost minimization in multi-cloud systems with
runtime microservice re-orchestration,” in 2024 27th Conference on
Innovation in Clouds, Internet and Networks (ICIN), 2024, pp. 65–72.

[15] J. Santos et al., “Efficient orchestration of service chains in fog com-
puting for immersive media,” in 2021 17th International Conference on
Network and Service Management (CNSM), 2021, pp. 139–145.

[16] S. Long et al., “A global cost-aware container scheduling strategy in
cloud data centers,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 11, pp. 2752–2766, 2022.

[17] L. N. Vijouyeh et al., “Efficient application deployment in fog-enabled
infrastructures,” in 2020 16th International Conference on Network and
Service Management (CNSM), 2020, pp. 1–9.

[18] M. Diallo et al., “A qos-based splitting strategy for a resource embed-
ding across multiple cloud providers,” IEEE Transactions on Services
Computing, vol. 14, no. 5, pp. 1278–1291, 2021.

[19] J. Yao et al., “Fog resource provisioning in reliability-aware iot net-
works,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8262–8269,
2019.

[20] I. M. Ali et al., “An automated task scheduling model using non-
dominated sorting genetic algorithm ii for fog-cloud systems,” IEEE
Transactions on Cloud Computing, vol. 10, no. 4, pp. 2294–2308, 2022.

[21] J.-M. Sanner et al., “An evolutionary controllers’ placement algorithm
for reliable sdn networks,” in 2017 13th International Conference on
Network and Service Management (CNSM), 2017, pp. 1–6.

[22] Shubham et al., “An effective multi-objective workflow scheduling in
cloud computing: A pso based approach,” in 2016 Ninth International
Conference on Contemporary Computing (IC3), 2016, pp. 1–6.

[23] F. Poltronieri et al., “Reinforcement learning vs. computational in-
telligence: Comparing service management approaches for the cloud
continuum,” Future Internet, vol. 15, no. 11, 2023.

[24] T. Tušar et al., “Visualization of pareto front approximations in evolu-
tionary multiobjective optimization: A critical review and the prosection
method,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 2, pp. 225–245, 2014.

[25] Amazon AWS, “Amazon ec2 on-demand pricing.” accessed on 1
July 2024. [Online]. Available: https://aws.amazon.com/ec2/pricing/
on-demand/.

[26] ——, “Amazon ec2 reserved instance pricing.” accessed on 1
July 2024. [Online]. Available: https://aws.amazon.com/ec2/pricing/
reserved-instances/pricing/?nc1=h ls.

[27] J. Legriel et al., “Approximating the pareto front of multi-criteria
optimization problems,” in Tools and Algorithms for the Construction
and Analysis of Systems, J. Esparza et al., Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 69–83.

[28] G. Mavrotas, “Effective implementation of the ϵ-constraint method in
multi-objective mathematical programming problems,” Applied Mathe-
matics and Computation, vol. 213, no. 2, pp. 455–465, 2009.

[29] S. Tamby et al., “Enumeration of the nondominated set of multiobjective
discrete optimization problems,” INFORMS Journal on Computing,
vol. 33, no. 1, pp. 72–85, 2021.

[30] M. Ángel Domı́nguez-Rı́os et al., “Effective anytime algorithm for mul-
tiobjective combinatorial optimization problems,” Information Sciences,
vol. 565, pp. 210–228, 2021.

[31] Q. Huangfu et al., “Parallelizing the dual revised simplex method,”
Mathematical Programming Computation, vol. 10, no. 1, pp. 119–142,
2018.

[32] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference
on Genetic Algorithms. L. Erlbaum Associates Inc., 1985, p. 93–100.

[33] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: Nsga-
ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[34] C. Coello et al., “Handling multiple objectives with particle swarm
optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 256–279, 2004.

[35] N. Srinivas et al., “Multiobjective optimization using nondominated
sorting in genetic algorithms,” Evolutionary Computation, vol. 2, no. 3,
pp. 221–248, 1994.

[36] J. Blank et al., “Investigating the normalization procedure of nsga-iii,” in
International Conference on Evolutionary Multi-Criterion Optimization.
Springer, 2019, pp. 229–240.

[37] M. R. Sierra et al., “Improving pso-based multi-objective optimization
using crowding, mutation and ϵ-dominance,” in Evolutionary Multi-
Criterion Optimization, C. A. Coello Coello et al., Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 505–519.

[38] S. Sedarous et al., “Multi-swarm multi-objective optimization based on
a hybrid strategy,” Alexandria Engineering Journal, vol. 57, no. 3, pp.
1619–1629, 2018.

[39] Z.-H. Zhan et al., “Multiple populations for multiple objectives: A
coevolutionary technique for solving multiobjective optimization prob-
lems,” IEEE Transactions on Cybernetics, vol. 43, no. 2, pp. 445–463,
2013.

[40] CloudPing, “Aws latency monitoring.” accessed on 1 July 2024. [Online].
Available: https://www.cloudping.co/grid/latency/timeframe/1M.

[41] A. Benı́tez-Hidalgo et al., “jmetalpy: A python framework for multi-
objective optimization with metaheuristics,” Swarm and Evolutionary
Computation, vol. 51, p. 100598, 2019.

[42] V. Bracke et al., “A multiobjective metaheuristic-based container consol-
idation model for cloud application performance improvement,” Journal
of Network and Systems Management, vol. 32, no. 3, p. 61, 2024.

[43] J. Xu et al., “Prediction-guided multi-objective reinforcement learning
for continuous robot control,” in International conference on machine
learning. PMLR, 2020, pp. 10 607–10 616.

[44] D. Borsatti et al., “Kubetwin: A digital twin framework for kubernetes
deployments at scale,” IEEE Transactions on Network and Service
Management, 2024.

2024 20th International Conference on Network and Service Management (CNSM)

