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Abstract—A significant portion of modern network traffic
analysis still relies on human expertise only. To overcome human
limitations in light of increases in volume, dynamicity, and overall
traffic complexity, modern networks need to autonomously gain
an understanding of traffic patterns and present them in an
interpretable way. This work presents T-MAW, an approach
for Traffic Monitoring and Analysis using Weighted Stochastic
Block Models (WSBMs). T-MAW applies WSBMs to network
data to create traffic characterizations in human-interpretable
form. In addition to the insights gained from the fitted models,
T-MAW evaluates unseen traffic against these models to perform
anomaly detection. Both, network node behavior characterization
and anomaly detection complement human expertise in modern
network traffic analysis. As an example, we show how T-MAW
can be used to create a behavior-based structured view of network
nodes in a real campus network. In the anomaly detection context,
we present results for an IP scan attack against the network, as
well as from a layer-2 device fault that caused network disruption.

Index Terms—ntma, machine learning, wsbm

I. INTRODUCTION

Artificial Intelligence (AI) is becoming more relevant in all

parts of our lives. However, network management still heavily

relies on human expertise [1]. Within network management,

network analysis is a key building block for most network op-

erations. Even for non-automated decisions, operators usually

need rich information about network dynamics. Considering

increased traffic volume and complexity, human-only analysis

becomes a problem in network analysis tasks. The key to

allowing network growth beyond the limitation of human-only

network operation is data-driven analysis methods. For specific

use cases and applications, this has already been studied [2].

While useful in certain scenarios, we think that a general

model that represents a certain understanding of the network’s

behavior and inherent dynamics is needed for daily network

management work. Even considering the recent advances in

the field of general-purpose AI, especially based on Large

Language Models (LLMs), we think there is still a strong

need for human experts in network management [1]. Instead

of replacing human expertise, we propose to enhance it by

supporting specialists as best as possible in their tasks by

providing meaningful insights into network behavior through

data-driven methods. For this to be effective, we propose the

following criteria for suitable methods:

1) Approaches in this context should work on IP-level data.
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Fig. 1. T-MAW overview: Based on IP level flow data from network
monitoring T-MAW represents chunks of said data as traffic graphs. For
these graphs T-MAW fits WSBMs, resulting in host clustering and statistics
about cluster-to-cluster relations. Each WSBM represents network behavior
for the respective data and time. The whole ensemble of models allows for a
node-behavior-based network analysis. Further, evaluating current traffic ob-
servations against the model collection T-MAW performs anomaly detection.

2) In modern networks with high levels of encrypted traffic,

approaches should not rely on deep packet information.

3) Network phenomena can manifest on different levels

(link, host, host-group, network). A holistic analysis

approach should consider all of these levels.

4) Any considered approach should work in an online

fashion to be usable in daily network analysis tasks.

5) To not restrict an approach to well-documented phenom-

ena, considered methods should be unsupervised.

6) Models found as part of an approach should be inter-

pretable to combine human and machine-learned intel.

7) Any approach should be tested with real data.

Addressing all of the above criteria, we propose T-MAW, a

network analysis approach depicted in Fig. 1. T-MAW uses IP

traffic observations to formulate probabilistic network behavior

models (Weighted Stochastic Block Models (WSBMs)). The

key component of such a WSBM is a host clustering, including

cluster relations. Due to the unsupervised nature, the informa-
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tion about what hosts are grouped together and how the groups

relate to each other, provide important insights into network

dynamics in a meaningful and interpretable way. In addition

to these findings on a structural level, T-MAW is able to

provide a comparison of newly seen traffic against the learned

models. Such comparison results in an anomaly score that can

be analyzed on the link, host, and network levels. Our work

illustrates the effectiveness of the described functionalities by

applying T-MAW to data from a production network. We

showcase both, the characterization of the network through

a behavior-based structured view of network nodes during

normal operation and anomaly detection by identifying a

scanning attack.

The main contributions of this work are:

• An approach for applying WSBMs to network traffic

monitoring in an online fashion,

• characterization of network behavior dynamics using

multiple WSBMs,

• anomaly detection using multiple WSBMs,

• application of these capabilities on real network data.

II. REQUIREMENTS FOR DATA-DRIVEN NETWORK

ANALYSIS

To provide background for the analysis and discussion of

related work in Sec. III we define our key features for traffic

monitoring and analysis as follows. Approaches should work

with IP-level data. Most of today’s computer networks are

connecting hosts via the Internet Protocol. Additionally, the

related data can naturally be collected at central points in

the network. We think that it is of great importance to not

rely on lower-level data, like actual topology, since this will

immediately rule out an approach for a lot of use cases where

such information might not be available.

As more and more traffic becomes encrypted it is important

to not rely on packet-internal data that might be encrypted.

Most of the times it is simply not feasible to work against

encryption efforts. Moreover, we also believe that network

monitoring shall be privacy preserving at all times.

Network behavior patterns manifest themselves on different

levels. A holistic approach considers at least link-level aspects

as well as host characteristics. A clustering-based approach

like T-MAW can additionally unveil behavior patterns on the

host-group level and provide valuable insight into collective

characteristics. To conclude about the general state of a

network, all of the above levels of analysis should be combined

into a network/graph-level analysis.

To be of practical use in real-world networks we argue that

network monitoring and analysis should ideally be achieved

in an ”online” fashion. While offline analysis definitely has

applications, we think that a system that is actually applied in

practice needs to work in a ”live” fashion.

To not restrict the analysis to the recognition of patterns

that are well-known beforehand, we think that approaches that

use unsupervised learning are generally superior to the ones

using supervised learning for the specific scenario at hand.

Further, labeled data in large quantities is oftentimes expensive

to obtain or simply not obtainable at all.

Neural Networks and other so-called black-box models have

been successfully used in a variety of network analysis tasks.

However, we believe that a solution for network monitoring

and analysis has to be interpretable to a high degree. That

means especially, that the properties of detected patterns

should be reflected in the model properties in a way that the

model itself can be helpful for analysis by gaining valuable

insights into the network’s dynamics.

Finally, we think that any approach that is a strong candidate

for usage in network analysis should be tested with real data.

Especially in the domain of anomaly detection, there is a

strong evolution of solutions around a small set of widely

used, partly synthetic, data sets with known properties for

performance evaluation. While this makes approaches com-

parable to some extent, relying on such datasets only creates

a lack of sense of how a particular approach will perform in

a real-world scenario with all its complexity.

III. RELATED WORK

This section provides an overview of related work. It is

structured into two subsections. Section III-A covers existing

work about network behavior characterization. Section III-B

presents the usage of Stochastic Block Models in networking.

A. Network Traffic Analysis

The topic of network traffic monitoring and analysis

(NTMA) is well-reviewed by the community. In the following,

we present the three most recent surveys [3], [4], [5], that cover

the scenario we are addressing with T-MAW most accurately.

Firstly, D’Alconzo et al. (2019) [4] give an overview of the

state of the art for the usage of ”Big Data” in Network Traffic

Monitoring and Analysis (NTMA). From this extensive survey

of different aspects of NTMA and the respective existing

approaches, we consider SeLINA [6] closest to this work. Like

this work, SeLINA relies on clustering to provide network

insights and detect anomalies. However, SeLINA clusters

flows based on statistical features and detects anomalies in

changing RTTs compared to T-MAW’s IP host clustering and

behavior-based anomaly detection.

Pacheco et al. (2019) [5] survey the deployment of ML

solutions in network traffic classification. Here, similar to this

work, [7], [8], [9] use features from traffic graphs. Addition-

ally, in the most recent suitable survey that we found, Lyu

et al. (2023) [3] mention [7], [8], [9] in the context of host

clustering and modeling of group interactions.

In [7], Jakalan et al. cluster IP hosts in a campus network

based on their similarity in interacting with IP hosts from

outside the network. In contrast, T-MAW focuses on IP

host interactions within the local network. Jusko et al. [8]

successfully identify member nodes of P2P networks through

a clustering approach, thereby enhancing existing anomaly

detection approaches.

By far closest to T-MAW is the approach proposed by Xu

et al. [9]. Here, bipartite graphs and one-mode projections are
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used to cluster end hosts, revealing behavioral structures within

the network. Similar to T-MAW, the structural knowledge is

then used to detect anomalies. While conceptually similar,

the cluster meaning differs between [9] and T-MAW. In

[9], similarity within a cluster is characterized by shared

destination or source IPs among cluster members. In contrast,

the WSBMs in T-MAW formulate similarity from group-to-

group level relations (see Sec. IV). Therefore, both approaches

capture a different form of structure in the network traffic.

B. Stochastic Block Models in Communication Networks

SBMs and their variants have been applied mainly in

two different areas within the networking community, traffic

synthesis and analysis. Kalmbach et al. [10] use SBMs to

generate realistic synthetic traffic. In [11], WSBMs are used

for offline data center traffic replication. Both NOracle [12]

and AwareNet [13] perform analysis in the sense of anomaly

detection. While NOracle [12] applies traditional SBMs to traf-

fic in a testbed network and subsequently performs anomaly

detection. AwareNet [13] uses a fitted WSBM to detect tar-

geted host scans. The latter is our own prior work, which

this work is partly built on. In contrast to T-MAW, both

approaches rely on a single (W)SBM fit and, therefore, can

not account for natural change within the network.

IV. BACKGROUND

Stochastic Block Models (SBMs) are a class of gener-

ative models designed to understand and analyze network

community structure. Originating from the field of network

science and statistical modeling, SBMs provide a probabilistic

framework for representing the heterogeneity and modular

organization of complex networks. The concept of SBMs roots

in the need to statistically model social networks. The initial

formulation aimed to capture the intuitive notion that entities

(nodes) within a network are often organized into groups

(blocks or communities) with different patterns of connections

both within and between these groups. The pioneering work

by Holland et. al. [14] in 1983 formalized these ideas, laying

the foundation for modern SBMs.

At its core, an SBM consists of:

1) Nodes and Communities: The network’s nodes are par-

titioned into distinct communities or blocks.

2) Connection Probabilities: The probability of an edge

existing between any two nodes depends solely on the

communities to which these nodes belong.

This probabilistic approach allows SBMs to capture varying

densities of connections within and between communities,

thus modeling the modular structure of real-world networks.

Formally, an SBM is defined by the following parameters:

• n: The number of nodes in the network.

• k: The number of communities.

• z: A vector of length n where zi denotes the community

assignment of node i
• B: A KxK matrix where Bxy represents the probability

of an edge between a node in community x and a node

in community y.

An extension to the traditional SBM are Weighted Stochas-

tic Block Models (WSBMs) [15] [16]. While the traditional

SBM framework assumes binary edges (i.e., the presence or

absence of a connection), many real-world networks exhibit

weighted edges, where connections have varying strengths. To

address this, the WSBM extends the SBM by incorporating

edge weights into the model.

In a WSBM, each edge (i,j) is assigned a weight wij ,

which can be modeled in various ways depending on the

application. Common approaches include using a continuous

distribution such as Gaussian or exponential to represent the

edge weights. The model then defines a probability distri-

bution for the weights between nodes, conditioned on their

block memberships. Formally, the WSBM includes a weight

distribution matrix W in addition to the block partition and

connection probability matrix B. Each entry Wxy specifies

the parameters of the weight distribution for edges between

nodes in block x and block y. This allows the WSBM to

capture not only the presence of connections but also their

intensity, providing a richer representation of the network

structure. WSBMs are particularly useful in fields where the

strength of interactions between nodes plays a crucial role,

which is the case in communication networks, where traffic

flow intensity is relevant. By incorporating edge weights,

WSBMs enhance the ability to detect and analyze communities

in weighted networks, leading to more nuanced insights and

robust community detection results.

In summary, SBMs and their weighted counterparts, WS-

BMs, offer powerful methodologies for modeling and analyz-

ing complex networks. These models help uncover underlying

community structures and provide a deeper understanding of

the connection patterns within various types of networks.

V. TRAFFIC ANALYSIS WITH T-MAW

Given the capabilities of WSBMs described in Section IV,

T-MAW’s overall process is as follows: Firstly, T-MAW

represents chunks of IP level flow data obtained from a

suitable monitoring system and aggregated over a fixed-size

time window as directed weighted graphs. Then, the relevant

traffic characteristics of each chunk of data are captured by

fitting a WSBM to said graph. The resulting host clusterings

and the respective cluster-to-cluster relations for different time

windows can already be used for traffic analysis by unveiling

network inherent dynamics. Further, by evaluating current

traffic observations against the collection of fitted WSBMs

containing characteristics for network behavior in previous

time windows T-MAW creates an online anomaly score for

present data. Fig. 1 shows an overview of this architecture.

The next subsections cover the individual parts in more detail.

A. Fitting a WSBM to traffic observations

At its core T-MAW relies on fitting a Weighted Stochastic

Block Model to traffic that was observed during a specific

time period. The idea is that the resulting model then contains

characteristics about the network behavior from the respective

time period. The raw data stems from a monitoring system
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Fig. 2. WSBM fit: Data about IP to IP communication for a given time
window is represented as a directed graph. Then a WSBM is fit to the graph
to capture the communication pattern.

that processes a stream of mirrored traffic from the network’s

core switches. Any other technology that allows the collection

of flow-level data, like, for example, NetFlow, would work

equally well in this scenario. Here, a state-of-the-art traffic

analyzer, including special capture hardware, receives the

mirror streams and processes the raw packets. Aggregated

data about IP-to-IP communication in terms of sent packets

and bytes is then created for 1 min buckets (finest granularity

at time of writing). T-MAW pulls and further aggregates the

1 min data chunks relevant for a specific time window of

interest via a REST API. Fig. 2 shows a scheme of this data

for a single time window represented as a table. It contains

information about the number of packets that were observed

from individual source to destination IP address pairs within

the time window. Note that T-MAW currently only considers

IP address (Layer 3) information but including Layer 4, i.e.,

considering five tuples is a straightforward extension. T-MAW

then creates a directed graph representation from the data. In

the graph, nodes represent IP hosts, and edges represent the

traffic seen from one host to another, described by the number

of packets. For example, 10 packets from IP-A to IP-B would

be represented by a directed edge from A to B annotated with

a weight of 10. If no packet was observed from one host to

another, no edge will be added. Consequently, all edges have at

least a weight of 1. The resulting graph includes two important

features about the network traffic:

1) Which nodes are communicating with each other?

2) How ”heavily” do two communicating nodes interact?

To structure nodes according to these characteristics, T-

MAW fits the parameters of a WSBM, as described in Sec.

IV, to the graph. In more detail, we chose the degree-corrected

hierarchical variant of the WSBM in this work [17], [18].

T-MAW uses a normal distribution for the general weight

distribution form since this has already shown promising

results in previous work [13]. Finding the ’optimal’ fit for

any variant of SBMs is an NP-hard problem. A Markov-chain

monte-carlo approach is used to find ’good’ fits [19]. T-MAW

uses the Graphtool [20] library to implement the described

WSBM fit procedure. The resulting model consists of:

• a partition z of the nodes into k groups. This is indicated

by the node’s colors in Fig. 2.

• statistics about group-to-group relationships based on

edge existence and edge weight distribution between

member nodes of the groups (indicated by the greyscale

colors of the matrix in Fig. 2).

Recall that the unsupervised nature of this method, and thus,

B
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Fig. 3. Fitting multiple WSBMs over time.

node grouping and the found group relations, can yield new

insights into the network state for the respective time window.

However, a single WSBM is not enough to capture the chang-

ing nature of modern communication networks. As depicted in

Fig. 3, T-MAW fits an individual WSBM for consecutive time

windows. The series of models then represents the network

behavior over time.

B. Multi-WSBM traffic evaluation

The fitted WSBM represents the network traffic character-

istics seen during the respective time window, as described

in the previous subsection. A natural next step is to evaluate

how well a traffic observation from outside the model-related

time window fits these characteristics. Given the WSBM’s

representation of whether an edge between two nodes exists

and, if so, how heavy the connection is in terms of the number

of packets sent over the edge, we formulate likelihoods for

arbitrary observed edge data.

For any edge eij between node i and j, the log-likelihood

for the existence of this edge in context of the WSBM model

θ is calculated according to:

logLexist(eij |θ) = log Poisλzi,zj
(1) (1)

Where zi and zj denote the respective groups of the two

involved nodes i and j in θ. At the core, Eq. 1 assumes a

Poisson distribution for edge existence between two nodes

from groups zi and zj . λ is calculated as the ratio of total

observed edges from nodes in group zi to nodes in group zj
and the total number of possible edges between nodes from

the two groups. Here, both observed and possible edges refer

to the data that θ was originally fitted to. The related λ value

can be computed at the time of model fitting according to:

λzi,zj =
|eobserved|
|zi| · |zj | (2)

Assuming independence from edge existence, we calculate

the log-likelihood for any edge eij with a certain number of

packets annotated as weight wij as follows:

logLweight(eij |θ) = logNμzi,zj
,σzi,zj

(wij) (3)

In accordance with the WSBM fitting process, Eq. 3 assumes

a normal distribution for the edge weights. Both parameters

μzi,zj and σzi,zj are the respective maximum likelihood es-

timates based on the set of weights annotated to edges from

group zi to group zj in the data that was used to fit the model.

2024 20th International Conference on Network and Service Management (CNSM)



T

Reference WSBMs Traffic Observation

�Le� �Lw��Le� �Lw�

Eq. 1 Eq. 3

�max�Lw��max�Le��Le� �Lw�

j

i
eij

Fig. 4. Traffic Evaluation.

T-MAW uses the evaluation scheme depicted in Fig. 4

to enable multi-level anomaly detection. On the left are

the reference WSBMs representing known network behavior

patterns from past time windows, created as shown in Fig.

3. On the right, Fig. 4 shows the traffic observation from the

current time window represented in graph form. From there,

any edge eij is evaluated against all reference WSBMs. For

each WSBM, log-likelihood values for existence and weight

(Le and Lw in Fig. 4) are calculated for eij according to

Eq. 1 and Eq. 3. The result is a vector of values for each

likelihood representing how eij from the current observation

fits communication patterns in the reference WSBMs. To

capture the notion of whether the behavior described by eij
in the current observation was seen before, T-MAW extracts

the maximum values from the likelihood vectors, representing

the best fit. Any current traffic observation (graph in Fig. 4)

might result from overlapping independent patterns seen at

different times in the past. Consequently, these patterns are

possibly encoded in different reference WSBMs. To account

for that, the procedure is done per edge, allowing edges to

have different best-fit WSBMs.

The whole evaluation can be performed directly on any

newly seen traffic graph, allowing T-MAW to be deployed

in an online fashion.

VI. DATA AND NETWORK

To provide an understanding of the data that is used in the

evaluation part, this section briefly introduces the monitored

network and presents notable statistics about the collected data.

The underlying network is the production network of a large

research group at a German university. It holds infrastructure

for network experiments, machine learning tasks and data

storage. Further, it provides services like cloud and chat

applications. In summary, the network activities result in a

healthy mix of static, periodic and dynamic traffic patterns.

This is reflected in the number of active nodes for 30 minute

intervals depicted in Fig. 5. In order to limit the number of

different nodes that T-MAW needs to keep track of, all IP

addresses that are not native to any of the locally known

subnets are mapped onto one single node. With that, we still

retain the knowledge of how nodes connect with the outside.

Over 6 months of data collection, the number of total unique

nodes observed is at around 500. While nearly all of the nodes

act as destinations (dst) in most of the time windows, the

proportion of nodes that act as sources (src) is smaller at

2024−03 2024−05 2024−07

200

300
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#
n
o
d
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total src dst s&d

Fig. 5. Number of unique active nodes aggregated for 30 minute intervals
in the last 6 months. The orange and green lines distinguish between nodes
that were seen as source (src) and destination (dst) of a packet respectively,
the blue line represents all nodes, regardless whether seen as src or dst and
the red line represents nodes that were seen as src and dst. (Missing data is
marked with black lines)
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Fig. 6. Number of unique src-dst pairs (edges) aggregated for 30 minute
intervals in the last 6 months. (Missing data is marked with black lines)

around 300. The number of nodes that act as both sources

and destinations (s&d) is even slightly smaller.

For the same time period, the number of observed unique

edges is between 1500 and 1750 (see Fig. 6). Both, the number

of nodes and edges show a static component with dynamic

patterns on top. Further, Fig. 7 depicts the distribution of

the number of packets recorded for the seen edges. It shows

the presence of various connection intensities between nodes.

While a lot of edges have few packets, some nodes exchange

0 5000 10000 15000 20000 25000 30000 35000 40000

packets per edge

0.00
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0.50
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1.00

E
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Fig. 7. Empricial CDF of number of packets seen per edge in 30 minute
intervals in the last 6 months.
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Fig. 8. ECDFs of log-likelihood values for edge existence and weights.

vast amounts. We think that all those characteristics render the

presented data an excellent basis to evaluate our approach.

Because T-MAW relies on the ability to track hosts over

time via their IP, frequent DHCP-related IP changes have

the potential to throw off T-MAW. However, the network

investigated partly uses DHCP, and we have not experienced

issues so far. We suspect that this is due to relatively long

lease times. In a more fast-paced DHCP setting, another layer

of device mapping that assigns fixed identities to endpoints

could solve the problem (e.g., host names).

Ethical considerations: We are aware of the ethical chal-

lenge that comes with working on data from a live network.

We want to stress again that the data itself stems from the data-

center/core parts of the overall network. Therefore, it does not

include day-to-day user traffic (e.g. browsing). However, if

users interact with components in the core part of the network

(e.g., an experimental setup), the related data is recorded on

the described level. Therefore, IPs that are in a part of the

address space that allows linkage to a specific person are

pseudonymized before usage. Furthermore, the users are aware

of the traffic monitoring system in place and are encouraged

to approach us with any concerns.

VII. EVALUATION

In this section, we evaluate T-MAW as described in Sec-

tion V on the data described in Section VI. This involves fitting

a WSBM for each 30 minute interval in the data. Because

both, Eq. 1 and 3 return unnormalized log likelihoods we need

to establish a notion which value ranges can be considered

normal. For that, we evaluated every edge against the WSBM

from the edge’s own time window. Fig. 8 shows the results

of that as ECDFs of log-likelihood values for edge existence

and weights. From the results, we derive a normal value range

for edge existence of -1 to -8 and 0 to -20 for edge weight

log-likelihoods.

Comment: We removed a single node that had consistently

bad edge weight log-likelihoods from the results. Upon further

investigation, we found that it is an SNMP-based network

management node.

A. Network Analysis

Next to the online evaluation of newly seen traffic described

in Section VII-B, its interpretability is the main perk of

the T-MAW approach. One aspect of this is that the fitted

WSBMs provide a natural behavior-based grouping of the

Fig. 9. Node to node relative joint-clustering values. Nodes on the x and y
axis are sorted by /24 subnets. White fields indicate missing values.

Fig. 10. Node to node relative joint-clustering values. Nodes on the x and y
axis are sorted by scikit-learn’s AgglomerativeClustering. White fields indicate
missing values.

network nodes. In contrast, many network management and

analysis tools group nodes by subnet membership. Especially

in heterogeneous networks, this approach groups together

nodes with very different roles and behaviors.

For the data from one month, we analyzed how often two

nodes are clustered together across all WSBMs fitted for that

month. The resulting value is then normalized by the number

of their joint appearances. This then represents a kind of

similarity. For example, if node A and node B were both

seen in the same 100 30-minute time windows and were in

the same cluster in 50 of those intervals, the resulting value

would be 0.5.

Fig. 9 is a heatmap of these values for all node pairs sorted

by /24 subnets. The white cells indicate that the respective

nodes are never seen in the same time window, resulting in

missing values for our calculation. The matrix shows structure

to some degree, especially on the outer part.

In order to show the potential benefit of a behavior-based

structure, we applied scikit-learn’s AgglomerativeClustering
[21] method to the data from Fig. 9. Fig. 11 depicts the related

dendrogram. Here, the y-axis values are inverse to the heat

values in Fig. 10 and represent distance instead of similarity.

Fig. 10 shows the very same data as Fig. 9 but resorted
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Fig. 11. Dendrogram for AgglomerativeClustering of nodes based on joint
cluster occurences. Values on the y-Axis are inverse to Fig. 9.

based on the outcome of the AgglomerativeClustering. The

difference between subnet-based and WSBM-clustering-based

visualization becomes apparent immediately. Node pairs with

high similarity values are grouped. Especially the large bright

orange-colored square on the top left provides a concise view

of a group of nodes from different subnets that are consistently

clustered together over time. Upon further investigation, the

respective nodes can be identified as client machines with

moderate amounts of communication. In Fig. 11 the respective

group (brown color) additionally shows how well the particular

nodes fit together.

In summary, we propose to use the node clustering provided

by the T-MAW approach to create a behavior-based view of

network nodes, in addition to existing ones, for traffic analysis.

We acknowledge that, as of now, this analysis is quite static

in the sense that it is performed on historic data and does not

account for a stream of new data and the respective WSBMs.

Future work is directed towards solving this by creating a

meaningful connection between consecutive WSBMs that, for

now, are treated independently.

B. Anomaly detection

As described in Section V, one objective of the proposed T-

MAW approach is to evaluate traffic observations for anoma-

lies based on how well current observations fit previous fitted

models. Because T-MAW is an unsupervised approach by

design and, therefore, does not deal with any labels, the ques-

tion arises: ”What exactly constitutes an anomaly?” The short

answer: ”Everything that differs enough from the previously

seen patterns!” To establish a more firm notion about what

”enough” and ”previously” means in this context, we further

formalize the T-MAW approach as follows.

It is certainly not feasible for a running system to keep

a record of all WSBMs fitted for every 30-minute interval

forever. Also, depending on the resources, it might not be

possible to have the latest fitted WSBM ready for every

interval. To formalize the specific WSBMs in the evaluation

context for this study, we introduce two parameters:

• o: An offset describing how far in the past the latest

considered model is.

• f : The number of models considered, going back in time,

starting at the offset o.
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(d) Edge weight: ECDF tail.

Fig. 12. ECDF of log-likelihood values of edge existence (a & b) and weight
(c & d) for evaluations with different parameters o and f . The first 15 days
of the evaluation were cut for fairness between parameter sets.

Both o and f are in multiples of the time window size (here 30

min). For example, o = 2, f = 48 describe the case where the

first model to consider is from one hour ago. From there, the

considered models would cover 24 hours backwards in time.

Following, we applied T-MAW to the whole 6 months of

data with different o, f combinations. That means every edge

in every 30-min time window was evaluated against all WS-

BMs specified by o and f with respect to the evaluated time

window itself. From all the values calculated in accordance

with Eq. 1 and 3, the best ones were picked for each edge.

Fig. 12(a) shows the ECDF of edge existence log-likelihood

values for various parameter settings. As expected, there is a

steep increase towards 1.0 at the -1 mark. This corresponds to

λ = 1 from the underlying Poisson distribution. The tail end

of the values is shown in more detail in Fig. 12(b). Here, it

becomes evident that both large o (light blue line) and small

f (orange line) struggle to find good matches in some cases.

With 384 models corresponding to 8 days of data to match

against, the configurations depicted by red, brown, and grey

show stable behavior.

A similar conclusion can be drawn from Fig. 12(d) depicting

a part of the tail of the ECDF for the edge weight log-

likelihood values. While the front part of this ECDF shown in

Fig. 12(c) indicates a wider range of common log-likelihood

values for edge weights than for existence.

Recall that to evaluate an edge against a specific WSBM,

both edge nodes need to be present in the model or, in other
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TABLE I
INVALID EVALUATIONS FROM 12.7M EDGES

variant no-match no-valid-llh-w no-valid-llh-e
o 1 f 50 12541 13688 12742
o 1 f 146 6720 6892 6834
o 1 f 384 3225 3334 3306
o 8 f 146 30515 30766 30683
o 8 f 384 13442 13622 13577

o 16 f 146 47317 47505 47454
o 16 f 384 20688 20863 20805
o 48 f 384 41196 41527 41461
o 336 f 384 184920 185207 185122
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Fig. 13. Distribution of per edge best weight log-likelihood values for each
time window. Color shades from light to dark describe percentile ranges (1,
99), (5, 95), (10, 90), (25, 75).

words, need to be seen during the time window corresponding

to the model. Naturally, not all node pairs are active in all

time windows, which is why the total number of calculated

likelihood values to choose from per edge can vary. Worst case,

no match can be found for a particular edge. Further, there is

the possibility that in some cases, the distribution parameters

for evaluation of a certain edge against a specific WSBM do

not allow a valid calculation. For example if λzi,zj from the

Poisson distribution in Eq. 1 becomes zero due to no observed

edges between the groups of the two nodes. Table I shows an

overview of how often no valid evaluation can be performed

out of all 12.7M edges for different settings. (Note that both

”no-valid-llh-w” and ”no-valid-llh-e” also include the cases

from ”no-match”.) Like before, the setting with o = 1 and

f = 384 shows the best results, but especially o = 8 and

f = 384 seems to offer a good trade off between performance

and having a higher offset. That is why the remainder of this

section utilizes this particular variant.

1) Natural Anomaly: One of the big advantages of T-MAW

is that its unsupervised nature allows for detecting all kinds of

anomalies. To showcase this capability we applied T-MAW

to 6 months of data. Fig. 13 shows the distribution of per

edge best weight log-likelihood values for each time-window.

The different color shades represent different percentile ranges.

With the lightest one covering values between the 1th to 99th

percentile. Similarly, ranges between 5th to 95th, 10th to 90th,

and 25th to 75th are represented by increasingly darker shades.

(Note, the graph is cut off at −40 to increase visibility in

the main focus area. The visible spikes that touch the bottom

line extend to more than −1000 without exception.) While
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Fig. 14. Distribution of per edge best existence log-likelihood values for each
time window. Color shades similar to Fig. 13.

there are some instances that show significant drops the most

prominent one is the one marked with an arrow. An extended

analysis for the specific time window revealed very low

weight-likelihoods for pairwise edges between a select small

group of nodes. The respective IPs belong to management

interfaces of servers in the research group’s compute cluster

which are used to synchronize the cluster state. At the time, a

layer-2 fault on one of the data center switches caused a loss

of connection between the nodes. The result was that some

of the nodes panicked, causing an unusually high amount of

cluster sync packets. This example indicates that applying T-

MAW can facilitate the detection of naturally occurring faults

in the network.

2) Malicious Intent Anomaly: In contrast to such natural

anomalies are actions driven by malicious intent. Oftentimes

such malicious activities contain some sort of network scan as

part of the initial reconnaissance phase. In this subsection, we

show how applying T-MAW can facilitate the identification of

a network ping scan. Fig. 14 shows the distribution of per edge

best existence log-likelihood values for each time window

(similar to Fig. 13). The underlying data represents an 8 day

period. In the second half of this period, we initiated a Nmap

ping scan of three local subnets on a virtual machine usually

used for ML tasks. The ping scan causes a clear spike in the

edge existence log-likelihood values. Many of the observed

edges created by the scan heavily violate the usual connection

properties and thus allow detection of the scan.

One case where a valid anomaly judgment might be difficult

with T-MAW is if a previously unseen IP starts to behave

maliciously immediately. Since T-MAW’s notion about what

is ”normal” and what constitutes an ”anomaly” relies on pre-

viously seen patterns, the malicious behavior of that IP would

not show a significant deviation in likelihood. One solution

could be to identify newly seen hosts and flag their behavior

as unknown until their initial legitimacy is confirmed.

VIII. DISCUSSION

To complement the findings of Section VII, this section

discusses important considerations in the context of T-MAW.

Scalability: A single run of the Markov-chain Monte Carlo
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method for finding good WSBM model fits is linearly depen-

dent on the number of edges [20]. For the 1500-1750 edges

per time window of our data, we ran the method for 1000

iterations. On a single standard server core, this took about

5min for a single model to be fitted onto a 30min interval of

data. This enables T-MAW to run easily in an online fashion.

The calculation of log-likelihoods for traffic observations is

linearly dependent on the number of edges to evaluate and the

number of models to evaluate against (dependent on o and f ).

Both, fitting and log-likelihood calculations lend themselves

well to parallel computing. The memory complexity for a

single model is given as O(k2 + n). With k groups and n
nodes, this represents group-to-group relations as well as node-

to-group assignments that need to be stored. The total memory

needed then is, of course, linearly dependent on the number

of models used in the specific variant of T-MAW.

Data availability: This work relies on mirrored traffic from

core switches of the network, but other solutions involving

tools like NetFlow can also support a T-MAW approach.

One important consideration is the place the data is collected.

Ideally the monitored network allows for a collection of traffic

at only a few central devices.

Online vs. real-time: T-MAW could be applied to network

monitoring data in an online fashion, e.g., in the context of

anomaly detection. However, it is important to distinguish

between “online” and “real-time”. “Online” refers to the fact

that each new time window data is processed immediately

with minimal delay. But because T-MAW operates on graph

representations of traffic, it involves aggregating monitored

traffic until a meaningful new graph has formed creating an

inherent delay (in our case, 30 minutes). This is the reason

why, in its current form T-MAW is not “real-time”; efforts in

that direction are part of our ongoing research.

IX. CONCLUSION

This work presents T-MAW, a multi-WSBM-based ap-

proach for network analysis and online anomaly detection.

We describe a methodology for applying WSBMs to IP

network traffic observations over time in a meaningful way. A

collection of fitted WSBMs then allows for a behavior-based

structured view of network nodes that facilitates understanding

of network inherent dynamics. Further, by evaluating new

traffic observations against a collection of WSBMs, T-MAW

is able to perform anomaly detection. We show this by

applying the approach to 6 months of data from a production

network and identifying an occurring fault in a layer-2 device

as well as an initiated scan attack against parts of the network.

Possible avenues for future work include the integration of

more fine-grained traffic data such as Layer 4 information,

the identification of more sophisticated attack profiles as well

as evaluating possible steps towards a real time application.
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