
A Practical Network Digital Twin for IGP Weight
Optimization

Mohamed Zalat
Systems and Computer Engineering

Carleton University
Ottawa, Canada

mohamedzalat@sce.carleton.ca

Maede Davoudzade
Systems and Computer Engineering

Carleton University
Ottawa, Canada

maededavoudzade@sce.carleton.ca

Chris Barber
Blue Planet

Ciena
Ottawa, Canada

cbarber@ciena.com

David Krauss
Advanced Development

Visionary Technologies, Inc.
Baltimore, USA

dkrauss@visionaryinc.net

Babak Esfandiari
Systems and Computer Engineering

Carleton University
Ottawa, Canada

babak@sce.carleton.ca

Thomas Kunz
Systems and Computer Engineering

Carleton University
Ottawa, Canada

tkunz@sce.carleton.ca

Abstract—Current research on Network Digital Twins (NDT)
focuses on building models that predict the behavior of the
network on simulations rather than building a complete NDT
that automatically monitors a physical network and optimizes it
according to its current state and traffic flows. In this paper, we
implement an online learning NDT for Interior Gateway Protocol
(IGP) weight optimization that monitors a physical network to
find IGP weight configurations based on a selected objective,
such as minimizing average traffic delay, and automatically
applies them to the network. We addressed the practical issues
of implementing a NDT on a real network, such as detecting and
dealing with an improperly trained digital model of the network.
Our results indicate that our NDT can effectively optimize a
physical testbed and that fine-tuning its digital model on high
traffic scenarios improves the performance of the NDT on a
small network.

Index Terms—Network Digital Twins (NDT), Traffic Engineer-
ing, IGP Weight Optimization, RouteNet-Fermi, Fine-tuning

I. INTRODUCTION

A. Motivation

Digital Twins (DT) of communication networks, known as
Network Digital Twins (NDT), are an idea that has been
theorized in recent years with a current work-in-progress
Internet Research Task Force (IRTF) draft to standardize
them [1]. Research efforts on NDTs have mostly focused on
developing models that predict the behavior of communication
networks rather than creating a NDT that monitors a physical
network and optimizes it in real-time [2]–[7]. Creating such a
NDT poses many challenges; for instance, how to continuously
monitor the topology and interface information from the
network and apply configurations automatically. Furthermore,
a NDT that relies on Machine Learning (ML) models can
sometimes inaccurately predict the behavior of the network
resulting in undesired effects that can negatively impact the
physical network. At the time of writing, no published study

We acknowledge the support of Ciena and the Natural Sciences and
Engineering Research Council of Canada (NSERC).

has implemented a real-time NDT for Interior Gateway Pro-
tocol (IGP) weight optimization on a physical network.

In the field of IGP weight optimization, most methods
focus on minimizing the maximum link utilization in the
network [8]–[11] or the energy consumption of the net-
work [12]. Only one method considers delay in the Service
Layer Agreements (SLA) of the traffic flows in the network
when optimizing IGP weights [11]. Those algorithms require
knowledge of the topology and flows of the network a pri-
ori and do not automatically optimize the network when it
changes. Using a NDT, we can monitor the network for
changes and continuously optimize its IGP weights for the
current traffic flows and its current topology. Moreover, we
can use our NDT to optimize the IGP metrics for the delay and
loss of traffic flows directly, instead of just link utilizations.
This allows us to meet SLAs without using more complicated
methods such as Multiprotocol Label Switching (MPLS) and
Segment Routing (SR).

B. Contributions

In [13], we proposed a NDT that uses RouteNet-Fermi,
a Graph Neural Network (GNN) based model proposed by
Ferriol-Galmés et al. [4], and a genetic algorithm to optimize
IGP weights. We show how the NDT can make poor decisions
that negatively impact the network in Section V, which may
result in the operator losing trust in the NDT. We address this
issue by extending [13] with an online learning component
and testing our NDT on a physical network to observe how
well our NDT optimizes the IGP weights of the network under
different scenarios. Our study is similar to the work of Ferriol-
Galmés et al. [7] where they use a physical network to collect
a data set to train and test the accuracy of their model’s
predictions.

Lastly, we perform an online learning experiment to quan-
tify the number of training samples needed from our physical
network to re-calibrate a pre-trained RouteNet-Fermi model

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

used in our NDT to confidently optimize the IGP weights
of our network. In the next section, we briefly describe the
IGP weight optimization problem and introduce some of the
methods in the literature. We also discuss current research
efforts in creating DTs of communication networks.

II. STATE OF THE ART

To understand where we place our contribution, we discuss
the current literature in the field of IGP weight optimization
and the field of NDTs in this section. We divide this section
into two parts: Section II-A defines IGP weight optimization
and introduces the current literature on IGP weight optimiza-
tion approaches, and Section II-B discusses what a NDT is
and current research efforts in developing NDTs.

A. IGP Weight Optimization

Open Shortest Path First (OSPF) and Intermediate System
to Intermediate System (IS-IS) are two link-state routing
protocols that rely on a link metric in the network known
as the IGP weight. The IGP weight of a link denotes the cost
of taking the link. Link-state routing protocols route traffic
to their destination based on the minimum-cost path to their
destination. IGP weight optimization is the process of setting
the IGP metric of each link in the network to optimize for
some metric of the network, such as maximum link utilization,
average End-to-End (E2E), loss, etc.

As mentioned in Section I, the majority of research focused
on proposing methods to optimize IGP weights for maximum
link utilization [8]–[11] and energy consumption [12]. There
are two main approaches for IGP weight optimization: local
search and heuristic approaches, and a machine learning IGP
weight optimization approach. While local search approaches
can sometimes be slower than a machine learning approach,
they are simple to implement and provide better solutions [9].

While current techniques optimize IGP weight configura-
tions in a short period, none of them consider any optimization
target beyond link utilization. They also do not monitor for
changes in the network such as traffic flows and topology.
A NDT implementation of IGP weight optimization allows
us to monitor the network and automatically apply the IGP
weight configuration. This lets us automatically adapt the
network for different scenarios as they arise and reduces
human involvement. In the next subsection, we introduce
NDTs and some of the literature on NDT applications to
identify gaps in current NDT applications.

B. Network Digital Twins (NDT)

As mentioned in Section I, a NDT is a DT of a com-
munication network [2]. It encompasses the virtual model
of the network, and all modules involved in the bidirec-
tional data flow between the virtual model and the physical
model. The virtual model in a NDT provides a framework
for testing different traffic flow and network configuration
scenarios without affecting the physical network. Statistics and
metrics such as the average delay, loss, and jitter per flow
can be obtained from the virtual model for a given scenario.

The optimizer component of the NDT collects data from the
physical network, explores different network configurations
using the virtual model, and finally applies a configuration
to the network once a better configuration is found. In this
section, we discuss some of the literature on the applications
of NDTs and summarize the different components used by
each paper in a table.

1) Minimizing 5G Network Energy Consumption: Dong et
al. [14] used a NDT to minimize energy consumption in
5G networks by optimizing resource allocation, offloading
policies, and user association subject to Quality of Service
requirements. They use a mathematical NDT model to train a
deep neural network to determine the optimal user association.
Dai et al. [15] also used a NDT to monitor the parameters
of the network and optimize offloading computational tasks
to base stations in an Industrial Internet of Things (IIoT)
to minimize energy consumption using deep reinforcement
learning. Both NDTs were applied to a numerical simulation
instead of a physical network.

2) Network Slicing Management: Wang et al. [16] use a
NDT for network slicing management: a method of creating
multiple virtual logical networks over a common physical
network [17]. Their NDT model is a GNN that allows them to
predict the end-to-end latency of network slices under different
topologies of the physical network. They use existing datasets
collected from different topologies to train and evaluate the
accuracy of their model.

3) Meeting Traffic SLAs: Ferriol-Galmés et al. [7] use a
NDT model based on GNNs and Recurrent Neural Networks
(RNN) called TwinNet to optimize the routes that individual
traffic flows take to meet SLAs. They find the route that each
traffic flow should take by iteratively modifying the route of
each traffic flow, where each flow follows a fixed route that
can be configured using MPLS (i.e. it is unaware of the IGP
weights of the topology), until all SLAs are met. They also
employ TwinNet to find queueing and scheduling policies that
meet their SLAs. The objective of their work is to showcase
how TwinNet can be used in a NDT for different traffic
engineering applications. Hence, we will be using the latest
version of their NDT model in our NDT, called RouteNet-
Fermi, as it was shown to be useful in applications where we
need to optimize for QoS metrics such as delay and loss.

In Table I, we summarize some of the main papers that em-
ploy NDTs and classify their virtual model and whether they
had a physical network as their twin. We can see from Table I
that none of the approaches were directly retrieving data and
applying configurations to a physical test-bed in real-time.

In this section, we saw how current IGP weight optimization
approaches do not provide a generic objective, where the
operator can specify what to optimize the IGP weights for.
We also saw that there are no reports of NDTs that monitor
a real network. To address this, we provide a generic IGP
weight optimization approach using a NDT where the operator
defines the objective to optimize for. We also perform our
experiments on a physical testbed where our NDT collects

2024 20th International Conference on Network and Service Management (CNSM)

TABLE I: A summary of NDT contributions

Paper Digital model Trained Online? Physical Twin?

Dong et al. [14] Mathematical N/A 7
Dai et al. [15] Mathematical N/A 7
Wang et al. [16] GNN 7 7
Ferriol-Galmés et al. [7] GNN + RNN 7 7

Fig. 1: Online learning NDT for Quality of Service (QoS) based IGP weight optimization.

data from the network in real-time and configurations are
automatically applied to the network.

III. BACKGROUND

In this section, we introduce some of the algorithms and
models used to build our IGP weight optimization NDT.
We start by introducing the ML model used in our NDT,
RouteNet-Fermi [4].

A. RouteNet-Fermi

Fig. 2: Inputs and outputs of RouteNet-F. [4]

RouteNet-Fermi, also known as RouteNet-F, is a GNN
model of communication networks proposed by the same
authors as TwinNet, Ferriol-Galmés et al. [4]. It uses the
topology of the network (including link bandwidths, queuing
policy of each interface, and the number of queues at each
interface and their respective sizes), the traffic flows between
each source-destination node (described by the average band-
width demand, and the packet size and time distributions), and
the route each traffic flow takes as input. The resulting output
of RouteNet-F is the predicted delay, loss, and jitter of each
traffic flow. Their results show that RouteNet-F can generalize
and accurately predict QoS metrics on unseen topologies and
traffic flows. It serves as a ML-based network model that is
capable of predicting QoS metrics much faster than tools such

as OMNeT++ which makes it a good fit for the virtual model
of our NDT.

In the following subsection, we introduce online learning,
the method used in our NDT to make sure that the IGP weights
applied by our NDT do not impact the network negatively.

B. Online Learning

Online learning is a ML method where a ML model is
trained using one data point at a time from a sequence of
data [18]. For our NDT, we assume that we have full feedback
on the data we receive and hence we focus on supervised
online learning. This form of online learning involves a
sequence of data where full feedback on its predictions is
provided, i.e. the ground truth for its input is provided.

Online Gradient Descent (OGD) is one method of super-
vised online learning where a learning step is used to update
the weights of a neural network after each prediction [19].
To ensure that the IGP weights being applied by our NDT
are based on valid predictions, we use OGD to train on
the measurements obtained from the physical network when
RouteNet-F’s predictions are not correlated to the physical
network. This step is important because we do not want our
NDT to apply IGP weight configurations that can worsen the
overall QoS of the traffic flows in the physical network.

In the next section, we bring all the components discussed in
this section together to describe the architecture of our online
learning NDT for IGP weight optimization.

IV. ONLINE LEARNING NDT FOR IGP WEIGHT
OPTIMIZATION

A NDT allows us to test IGP weight configurations without
affecting the traffic of the real network. Using the data
collected from the physical network, we can use a NDT to

2024 20th International Conference on Network and Service Management (CNSM)

search the IGP weight configuration space. The NDT’s model
provides us with the predicted QoS metrics of each traffic flow,
allowing us to fine-tune our IGP weights in the NDT until
we find a configuration that meets our requirements. Once
found, we can apply this configuration to the network while
still monitoring the traffic flows and the network in case of
any changes to the network or its traffic. Hence, the ideal
NDT for QoS-based IGP weight optimization should have
three essential components: (i) monitoring of the network to
detect changes in the network and its traffic, (ii) quick and
accurate predictions of the traffic flows’ QoS metrics for any
given topology, and (iii) the ability to automatically modify
the IGP weights of the network. We use RouteNet-F as the
model within our NDT to address the second component. The
first and third components are a matter of having modules
that interface with the devices in the network to collect
information, search the IGP weight configuration space, and
apply configurations to the devices.

In Figure 1, we present the architecture of our online learn-
ing NDT for IGP weight optimization. Our NDT continuously
polls the network for information on its current topology
including the bandwidths and queue sizes of the interfaces
in the network. It also collects information on the traffic flows
going through the network and their respective delays and
losses. Then, it compares the delay and loss measurements
from the network to the predictions of RouteNet-F to decide
whether it should train RouteNet-F or optimize the IGP
weights of the physical network. If the measurements from
the network are not positively correlated with the predictions
of RouteNet-F, with a statistical significance α, it continuously
trains RouteNet-F on new samples collected from the network
until it is positively correlated. Each new sample is collected
when a change in the network occurs (including flow changes).
Once the measurements from the network and the predictions
of RouteNet-F are sufficiently correlated, it executes a ge-
netic algorithm to try different IGP weight configurations on
RouteNet-F to search for a better configuration for the current
scenario. Once a better IGP weight configuration is found, it
is applied to the physical network.

A. Genetic Algorithm

We use the same algorithm described in our previous
publication [13]. Each candidate IGP configuration generated
is ranked based on a fitness function that ranks a configuration
based on the predicted delays and losses of the traffic flows
from RouteNet-F. For instance, we used the negative average
traffic delay as the return value of our fitness function in one
of our experiments. The highest scoring configuration is then
mutated to create the next generation until no improvements
are found within 4 generations. Once it terminates, the NDT
applies the new IGP weight configuration to the physical
network by connecting to each router and applying the respec-
tive IGP weights to its interfaces. Our online learning NDT
polls the network for its current topology and traffic flows
at 5-minute intervals and executes the genetic algorithm to
adjust the IGP weights of the network accordingly. For our

digital model, M , we use RouteNet-F. In the next subsection,
we introduce the algorithm of our online learning NDT,
which uses the genetic algorithm to optimize the IGP weight
configuration for the physical network.

B. Online Learning

To optimize the IGP weights of the network for traffic QoS,
it is sufficient for the QoS predictions, such as traffic delays,
of RouteNet-F to correlate with the actual QoS metrics in the
network. In other words, when the QoS metrics of a traffic flow
decreased due to a change in the network, then the predictions
from RouteNet-F should also decrease even if they do not
match in absolute value. In cases where our delay predictions
from RouteNet-F are not correlated with the values in the real
network, we augment RouteNet-F’s training data with obtained
measurements from the network until there is a sufficient cor-
relation between the prediction of RouteNet-F and the network
before optimizing IGP weights. To determine when to train
RouteNet-F, we set a threshold correlation (specifically, the
Spearman correlation coefficient [20]) value, below which we
train RouteNet-F on samples from the physical network until
our correlation exceeds this threshold. Once the correlation
coefficient between the predicted and measured values exceeds
a preset threshold, we begin optimizing the IGP weights of the
network until it drops below the threshold again.

We assume that we have at least 3 flows in our network
so we can perform a one-tailed Student t-test based on f − 2
degrees of freedom, where f is the number of flows in the
network. Suppose t is above the 95th percentile, tα=0.05,
for its corresponding f − 2 degrees of freedom in Student’s
t-distribution. In that case, we can conclude a significant
correlation exists between the delays predicted by RouteNet-
F and the delays measured from the network, with a 0.05%
statistical significance. We perform an experiment to determine
the optimal value for α on our physical network in Section VI.
In cases where there are 2 flows or fewer, we assume that the
RouteNet-F model predictions are accurate and our genetic
algorithm for IGP weight optimization is executed.

In Algorithm 1, we describe our online learning NDT. As
described, our algorithm executes periodically every c minutes
or on a network change (including traffic changes). Our NDT
continuously polls the network by logging in to each router
and collecting information on each interface including their
status, queues, bandwidths, and IGP weights. When a network
change is detected (or c minutes have passed), our NDT checks
if the calculated t is below the preset α threshold of its
corresponding Student’s t-distribution using the measurements
from the network and trains RouteNet-F if t is below the
threshold. Once the calculated t exceeds the tα threshold, we
optimize the IGP weights of the network instead of learning
from the network. The goal of this is to ensure that our model
is sufficiently accurate before we optimize the network.

V. PRELIMINARY EXPERIMENT

To test how well a pre-trained NDT optimizes the IGP
weights of the network when RouteNet-F poorly predicts the

2024 20th International Conference on Network and Service Management (CNSM)

Algorithm 1: Online Learning NDT
Input: The physical network, N,

the digital model, M,
the t-test correlation error threshold, α,
the maximum update interval in minutes, c,
the fitness function, fitnessFunction(config,
flows, M).

repeat every c minutes or on network change
currentTopology ← retrieve topology and features
of N

currentFlows ← retrieve estimated distribution of
each flow in N

actual ← Retrieve average delay, jitter and loss per
flow from N

predicted ←
predict(M, currentTopology, currentF lows)
rs ← spearmanCorrelation(predicted, actual)
t← calculateT(rs, |currentF lows|)
if t < tα then

train(M, currentTopology, currentF lows, actual)
//Retrain M with the new configuration/flows
and the actual delays, jitters and losses from N

else
geneticAlgorithm(N,M, fitnessFunction)

//Refer to Section IV-A
end

end

QoS metrics, we plotted a histogram of the link utilizations
of the 128-fat-tree dataset used to train RouteNet-F. We saw
that only a few cases have a link utilization above 70% in
RouteNet-F’s training set. To have many links with high uti-
lization, we used a 6-node OMNeT++ topology with constant
bit-rate traffic flows between each node pair that demand
bandwidths between 18kb/s and 25kb/s, with all links having
a capacity of 100kb/s. The queue sizes were set to 32kb and
were using First-In First-Out (FIFO) queueing.

We then used this OMNeT++ network as the “physical”
twin of our pre-trained NDT, where the fitness function was
set to return the negative global average delay. As we can see
from our results in Figure 3, the IGP weight configuration
recommended by our NDT increased the average delay of
our OMNeT++ network instead of decreasing it due to the
inaccurate predictions of the pre-trained RouteNet-F model.
When the NDT operates on a physical network, this can cause
service disruptions and negatively impact the network traffic.
While unseen link utilizations are one example of cases where
RouteNet-F’s predictions can be inaccurate, there may be
other cases such as unseen traffic size and time distributions.
In Section VI-B, we address those issues by constantly training
the RouteNet-F model on the physical network.

Fig. 3: Results of the NDT when optimizing a network with
unseen link utilizations.

VI. RESULTS AND DISCUSSIONS

For our experiments, we used a physical testbed provided by
Ciena [21] with 7 routers and an IXIA traffic generator where
we can specify the traffic flowing through the network (refer
to Figure 4a, the numbered nodes are routers and the links
between them are L3 links). Our network consisted of Cisco
7200 routers, where each interface (link) has a bandwidth
of 1000Mbps and is configured with a queue depth of 1000
frames. All the flows generated in our experiments are constant
bit-rate traffic flows with a frame size of 1kByte.

Our NDT monitors the setup by logging in to each router
through Secure Shell Protocol (SSH) and collecting queue
size, IGP metric, interface status, and bandwidth information
for all interfaces to update the topology, which takes about 5
minutes. Hence, if a new router gets added, this needs to be
manually added to the NDT routers list so that the NDT can
access the router. Our NDT obtains traffic information about
the flows and their delays from the IXIA traffic generator. To
scale the NDT to a larger production network, traffic flow and
topology information should be collected using protocols such
as NetFlow [22] and Simple Network Management Protocol
(SNMP) to save time. Our NDT also applies the optimal
IGP weight configuration by logging in to all the routers and
applying the weights to the respective interfaces.

The RouteNet-F model used in our experiments only pre-
dicts traffic delays. We use a RouteNet-F model trained on the
128-fat-tree dataset for 15 epochs using the Adam optimizer
with a 0.001 learning step.

A. Case Study

In the first experiment, we test if the NDT can automatically
improve the average traffic delay of the network by changing
the IGP weights of the network and to assess the performance
in connecting a NDT to a physical network. We measure the
time it takes to collect information from the network and the
time it takes to apply IGP weights after finding the optimal
configuration.

We used two constant bit rate traffic flows of 80Mbps
bandwidth each, one going from node 0 to 1 and another from
node 3 to 1 with the IGP weight settings in Figure 4a. We also
used traffic shaping to limit the bandwidth of all the links in the

2024 20th International Conference on Network and Service Management (CNSM)

(a) In this scenario, two 80Mbps flows share the
same path from node 2 to 1 congesting that link,
resulting in an average delay of 4ms.

(b) The IGP weights and the new traffic routes
after one cycle of the NDT. The result is an
improved average traffic delay of 1ms.

Fig. 4: The physical testbed with a traffic flow scenario
denoted by the colored arrows. We bottleneck the traffic flows
and demo the NDT. The numbers on each link denote its IGP
metric.

network to 150Mbps to congest the links. The average delay
of both traffic flows is 4ms from IXIA before optimizing the
IGP weights for those two flows. After one cycle of our NDT,
the IGP weights changed to reroute traffic as in Figure 4b,
reducing the average delay of both traffic flows to 1ms. The
current implementation of the NDT also changed the weights
of the links between nodes 0 and 2, and nodes 2 to 1 to 5
which might congest a future flow going from node 2 to node
0. This congestion should not last long because once a new
flow is introduced that is going from node 2 to node 0, the
NDT will consider it, and the IGP weights will change back
to 1 to minimize the delay of the new flow. To solve this issue
we need to change the genetic algorithm to select the best IGP
weight configuration with the least number of changes to select
configurations that are closer to the current configuration of
the network.

To collect data about the interfaces and the routers in the
network, our NDT requires to login to all the routers in the
network through SSH. Hence, we maintain a database of all
the routers in the network and their login information. New
routers need to be added manually to this list. This information
includes sensitive information about the network and hence
we need to store this information securely. Collecting all the
information required from the topology on our setup takes
approximately 4 minutes. Applying the IGP weights to the
network after optimization takes about 2 minutes.

Our NDT successfully improved the average traffic delay of
the physical testbed on a preset scenario in this experiment;

however, we need to perform more experiments with different
scenarios to make a stronger conclusion on its performance on
a physical testbed. Moreover, our virtual model was predicting
the delays accurately in this scenario which does not tell us
how it performs when the predictions diverge from the physical
network. In the next section, we test different α thresholds
and use a pre-trained RouteNet-F model to determine how
many samples we need to collect from the network for each
threshold and whether our online learning NDT improves the
maximum delay of difficult to predict network traffic scenarios
(specifically, high traffic load scenarios) with its recommended
IGP weight configurations.

B. Setting the α Threshold for Online Learning

In a second experiment, we use the same pre-trained
RouteNet-F model from the previous experiment as our
baseline model. Our fitness function selects the IGP weight
configuration that minimizes the maximum flow delay in the
network. We use α = 1, 0.03, 0.02, 0.01 in our online learn-
ing algorithm to determine the number of training samples
required before optimizing the IGP weights of the network.
Since it takes 4 minutes for the NDT to poll our network,
we assume that the traffic flow changes at every time-step
of the NDT in a live network. Hence, we randomly assign
12 flows between each pair of ports of the IXIA generator
with bandwidths between 30Mbps and 50Mbps on each time-
step to simulate a live network. We chose this bandwidth
range and set the rate of all links to 100Mbps to ensure
that the links are as highly utilized as in our preliminary
experiment. We also evaluated how well they improved the
maximum traffic delay of the network on the first traffic
scenario above their α threshold. For our online learning, we
used the AdamW optimizer with a 0.0001 learning rate for
10 epochs per sample, and we only update the weights of
the final readout layers of RouteNet-F to fine-tune the model.
The intuition behind this is to not forget the encoding of the
network learnt by RouteNet-F on the old training set. We also
repeated this experiment with fine-tuning all the weights of
the model (including the hidden layers of the model) and got
similar results.

TABLE II: Online Learning NDT results table

α Max Delay
Reduction (%)

Number of Samples
Required to Meet
Optimization
Criteria

α = 1 4.5% 0
α = 0.03 15% 1
α = 0.02 14% 12
α = 0.01 30% 25

Our results in Table II show that fine-tuning the pre-trained
NDT, with increasing values of α, helps us optimize the
network to minimize maximum delay better in high traffic
load scenarios. Even with fine-tuning the RouteNet-F on one
sample (at α = 0.03), our predictions in high traffic scenarios
were better because we perform 10 epochs of fine-tuning per

2024 20th International Conference on Network and Service Management (CNSM)

sample obtained. At α = 0.01, we got the best result at a
reasonable number of samples from our set of experiments.
This means if we collect samples every c minutes, it takes
25 × c minutes to before we can optimize the network.
However, in this experiment, we were changing the network
traffic flows at each step triggering the algorithm before c = 10
minutes have passed. Without fine-tuning the network (at
α = 1), the maximum delay of the network after applying
the IGP weights did not improve by much. Optimizing the
network with predictions that are not correlated to its behavior
does not improve its state and may even negatively impact it.
From our results we can conclude that it is important to fine-
tune the NDT’s model when our predictions are not correlated
with the network’s behavior.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we set up a NDT for IGP weight optimization
on a physical test-bed to test its ability to optimize a real
network and to learn about what it takes to fully automate
the retrieval of data from the network and the optimization of
the network. We required interfacing with the router through
management interfaces to get queue sizes, bandwidths, link
status, IGP weights, and to apply the found optimal weights to
the network. We collected traffic information and metrics from
IXIA; however, in a real network we would have to obtain
this data from routers that support flow monitoring. We used
the NDT with a pretrained RouteNet- model in a low intensity
traffic scenario to successfully reduce the average traffic delay.
We were able to observe a self-adapting network with physical
routers and links, where better routes for current traffic flows
are found without human intervention.

We also proposed an online-learning NDT to deal with
high-traffic load scenarios, where the pre-trained RouteNet-
model does not perform well. Our results indicate that using
our online-learning NDT with a small α <= .03, improves
the maximum flow delay in high traffic load scenarios in our
physical network and prevents it from making changes that
negatively impacts the network. Future experiments include
performing the online learning experiment on a larger scale
network, and testing our approach with more fitness functions,
such as average delay and average packet loss.

REFERENCES

[1] C. Z. et al., “Network Digital Twin: Concepts and Reference
Architecture,” Internet Engineering Task Force, Internet-Draft
draft-irtf-nmrg-network-digital-twin-arch-05, Mar. 2024, work in
progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-irtf-
nmrg-network-digital-twin-arch/05/

[2] P. A. et al., “Digital twin network: Opportunities and
challenges,” CoRR, vol. abs/2201.01144, 2022. [Online]. Available:
https://arxiv.org/abs/2201.01144

[3] M. F. G. et al., “Routenet-erlang: A graph neural network for network
performance evaluation,” in IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications, London, United Kingdom, May 2-5,
2022. IEEE, 2022, pp. 2018–2027.

[4] ——, “Routenet-fermi: Network modeling with graph neural networks,”
IEEE/ACM Transactions on Networking, vol. 31, no. 6, pp. 3080–3095,
2023.

[5] S. Xiao, D. He, and Z. Gong, “Deep-q: Traffic-driven qos inference
using deep generative network,” in Proceedings of the 2018 Workshop on
Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest, Hungary,
August 24, 2018. ACM, 2018, pp. 67–73.

[6] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “Routenet: Leveraging graph neural networks for network
modeling and optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, pp. 2260–2270, 2020.

[7] M. F. G. et al., “Building a digital twin for network optimization using
graph neural networks,” Computer Networks, vol. 217, p. 109329, 2022.

[8] O. Brun and J. Garcia, “Dynamic IGP weight optimization in IP
networks,” in IEEE First Symposium on Network/Cloud Computing and
Applications, NCCA 2011, Toulouse, France, November 21-23, 2011.
IEEE Computer Society, 2011, pp. 36–43.

[9] K. Rusek, P. Almasan, J. Suárez-Varela, P. Cholda, P. Barlet-Ros, and
A. Cabellos-Aparicio, “Fast traffic engineering by gradient descent with
learned differentiable routing,” in 18th International Conference on
Network and Service Management, CNSM 2022, Thessaloniki, Greece,
October 31 - Nov. 4, 2022. IEEE, 2022, pp. 359–363.

[10] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in Proceedings IEEE INFOCOM 2000, The Conference
on Computer Communications, Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies, Reaching the
Promised Land of Communications, Tel Aviv, Israel, March 26-30, 2000.
IEEE Computer Society, 2000, pp. 519–528.

[11] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot, “IGP link weight
assignment for operational tier-1 backbones,” IEEE/ACM Transactions
on Networking, vol. 15, no. 4, pp. 789–802, 2007.

[12] F. François, N. Wang, K. Moessner, S. Georgoulas, and K. Xu, “On IGP
link weight optimization for joint energy efficiency and load balancing
improvement,” Computer Communications, vol. 50, pp. 130–141, 2014.

[13] M. Zalat, C. Barber, D. Krauss, B. Esfandiari, and T. Kunz, “Network
routing optimization using digital twins,” in Companion Proceedings of
the 16th IFIP WG 8.1 Working Conference on the Practice of Enterprise
Modeling and the 13th Enterprise Design and Engineering Working
Conference: DTE 2023, Vienna, Austria, November 28 - December 01,
2023, ser. CEUR Workshop Proceedings, vol. 3645. CEUR-WS.org,
2023. [Online]. Available: https://ceur-ws.org/Vol-3645/dte4.pdf

[14] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic,
“Deep learning for hybrid 5g services in mobile edge computing
systems: Learn from a digital twin,” IEEE Transactions on Wireless
Communications, vol. 18, no. 10, pp. 4692–4707, 2019. [Online].
Available: https://doi.org/10.1109/TWC.2019.2927312

[15] Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep
reinforcement learning for stochastic computation offloading in
digital twin networks,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4968–4977, 2021. [Online]. Available:
https://doi.org/10.1109/TII.2020.3016320

[16] H. Wang, Y. Wu, G. Min, and W. Miao, “A Graph Neural Network-
Based Digital Twin for Network Slicing Management,” IEEE Transac-
tions on Industrial Informatics, vol. 18, no. 2, pp. 1367–1376, 2020.

[17] S. Zhang, “An overview of network slicing for 5g,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111–117, 2019.

[18] S. C. H. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A
comprehensive survey,” Neurocomputing, vol. 459, pp. 249–289, 2021.

[19] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washing-
ton, DC, USA, T. Fawcett and N. Mishra, Eds. AAAI Press, 2003, pp.
928–936.

[20] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, vol. 100, no. 3/4, pp. 441–
471, 1987.

[21] C. Corporation, “A networking systems, services, and software company
— ciena.com,” https://www.ciena.com/.

[22] R. H. et al., “Flow monitoring explained: From packet capture to
data analysis with netflow and IPFIX,” IEEE Commun. Surv. Tutorials,
vol. 16, no. 4, pp. 2037–2064, 2014.

2024 20th International Conference on Network and Service Management (CNSM)

