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Abstract—Phishing is a major threat, using deceptive tactics
to steal sensitive information such as passwords and financial
details. The inventive strategies of cybercriminals coupled with
advanced social engineering heighten the difficulties in countering
phishing attacks. Traditional blocklisting methods struggle due
to the dynamic nature of the Internet and the continuous
emergence of new phishing sites. Our research presents an
innovative approach to detect phishing domains using machine
learning classifiers built upon an extensive array of information
combined from DNS records, RDAP servers, TLS certificates, and
geolocation data for over 500,000 Internet domains and related IP
addresses. Based on a thorough analysis of the data, we propose
a fine-tailored vector of 143 unique features that characterize
a domain name. We tested the features with seven classification
methods and examined their impact on the decision making.
The best method achieved a 0.9830 precision rate, an F1 score of
0.9770, and a remarkably low false positive rate of only 0.27%.

Index Terms—Phishing, Domain, Detection, ML, DNS, IP,
RDAP, TLS, GeoIP

I. INTRODUCTION

Phishing is one of the most prevalent malicious threats
that Internet users face every day [1], [2]. Phishers create
sophisticated campaigns to catch users off guard, often leading
to data theft, privacy breaches, or financial losses. Phish-
ing sites are designed to mimic legitimate ones, appearing
trustworthy to users. The increase in phishing attacks has
spurred the development of stronger cybersecurity frameworks.
Researchers and companies have proposed systems to combat
phishing, focusing on channels like email, instant messaging,
and social networks. Protection mechanisms aim to detect
phishing URLs, domain names, emails, and websites.

Traditionally, phishing protection methods have relied on
blocklists and heuristic approaches. Blocklists, while effec-
tive, depend on user-reported phishing domains and URLs.
However, their scope and frequency of updates are limited,
capturing only a fraction of short-lived phishing sites [3]. In
recent years, the cybersecurity field has witnessed a paradigm
shift with the integration of machine learning techniques. They
learn hidden patterns in large datasets to match similarities,
leading to the identification of new threats.

This paper introduces a novel method that leverages ma-
chine learning for real-time phishing detection. We analyze
patterns in both benign and malicious domains using a dataset
of information about 500,925 domain names, verified and
double-checked to ensure the correctness of the ground truth.
The information covers DNS records, registration information

from RDAP or WHOIS, data from TLS handshakes, certifi-
cates, and geolocation information. From the dataset, we cre-
ated a comprehensive 143-feature vector on which we trained,
tuned, evaluated, and compared seven classifiers. Designed to
enhance existing blocklists, our approach adds an advanced
layer of defense against emerging phishing threats. It offers
a fresh perspective on how data-driven approaches can be used
to strengthen digital security.

The paper is organized as follows: Section II reviews the
evolution of phishing detection techniques. Section III covers
data collection methodology. Section IV analyzes the data.
Section V discusses feature selection. Section VI describes the
methodology for training and tuning classifiers. Section VII
presents experimental results. Section VIII interprets our find-
ings and, finally, Section IX concludes the paper.

II. RELATED WORK

Numerous studies have explored malicious domains, includ-
ing phishing domains, studying detection methods. Usable
features like character ratios are extractible solely from the
domain name, as demonstrated by Drichel et al. [4] on 136
lexical features for detecting DGA-based botnet domains.

Bilge et al. [5] highlighted the importance of DNS data
in phishing and botnet domain detection, using two lexical
features and 15 features from passive DNS traffic analysis.
Perdisci et al. [6] similarly employed passive DNS analysis,
focusing on statistical characteristics of IP addresses, such
as IP diversity and average TTL per domain. Antonakakis et
al. [7] further confirmed that IP address information, such as
BGP prefixes or AS numbers, is highly useful.

An effective phishing detection method is to analyze HTML
elements [8], [9]. However, such an approach requires full-
page scraping and often rendering, as dynamic content and
single-page applications have become a standard lately. This
results in high page-fetching and computational costs. Pala-
niappan et al. [10] detected malicious domains with DNS and
Web-based features using logistic regression. However, their
data set consisted of only 20,000 domains, and they reached
60% accuracy on the testing set.

TLS certificate chains provide additional signs of domain
maliciousness, as confirmed by Hageman et al. [11] who
showed that 84% of identified phishing attacks in Q4 2020
were carried out over HTTPS. They also discovered that
phishers often rely on a small group of issuers, as only 132 of
853 analyzed authorities were encountered among certificate
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chains in phishing campaigns. Torroledo et al. [12] utilized 30
TLS-based features to detect phishing and malware domains,
achieving a precision rate of 0.8963. Drichel et al. [13]
analyzed certificates from TLS transparency logs, achieving
a low false positive rate with 129 features.

Combining features based on the lexical properties, DNS, or
TLS data improves the results even further. Kuyama et al. [14]
detected malicious domains with 9 WHOIS and 8 DNS-based
features, and Shi et al. [15] added 2 IP-based features and
3 lexical features. Although they showed success, the studies
focused primarily on botnet domains. Chatterjee et al. [16]
reached a precision of 0.867 in detecting phishing websites
with 14 features, including DNS record counts and domain
age. However, they focused on URLs rather than domains.
Hason et al. [17] detected phishing and C&C domains with
9 features ranked by robustness. Sadique et al. [18] achieved
87% accuracy on a dataset with 38,000 phishing and 60,000
benign domains by merging host-based, WHOIS, GeoIP, and
lexical data, the latter having the highest importance. However,
no DNS or TLS information was used.

Apart from the study by Sadique et al. [18], most existing
ML-based approaches have drawn data from merely one or
two sources, for instance, DNS and WHOIS. Moreover, the
precision rate of the documented detection methods hardly
exceeded 0.9 [12], [16]–[18], indicating a considerably large
space for improvement. Previous studies were often conducted
on smaller datasets, typically between 10,000 and 110,000
samples [13], [15], [16], [18]. Most phishing detection efforts
have aimed to identify malicious content on web pages, URLs,
or emails. In contrast, methods that examine domain names
have focused primarily on malware C&C domains.

Following our preliminary research [19], this work fo-
cuses exclusively on phishing detection on a domain-name
basis, combining domain lexical features with other available
domain-related information from five external data sources.
This approach has two notable advantages. Firstly, it allows for
the detection of phishing in encrypted communication where
URLs are not available – in practice, domain names accessed
by clients could be collected in a network by observing
DNS queries. Secondly, our method does not require costly
scraping, rendering, and interpreting the entire page’s contents.
We propose a comprehensive feature vector consisting of
143 attributes that are used as an input to our classifier.
Additionally, we crafted a much larger dataset of 500,925
samples to propose and evaluate our classifiers.

III. DATA COLLECTION

With machine learning, we faced the challenge of securing
ground truth – lists of unquestionably benign and phishing
domains. As shown in Figure 1, the first step was to build our
dataset using publicly available domain lists and to perform
additional filtering to eliminate misclassified domains.

We chose the public Top One Million list provided by
the Cisco Umbrella platform [20] to acquire a set of benign
domains. The platform was chosen because of its collection
methodology, which covers the DNS resolutions of millions

Fig. 1. A holistic overview of the classifier creation.

of users in more than 150 countries worldwide. It also pro-
vides subdomains and is not limited to only domains hosting
websites but generally any popular ones. To ensure that only
benign domains are in the dataset, we applied recurrence
filtering as described by Rahbarinia et al. [21], resulting in
a compiled list of 432,572 benign domains.

Phishing domains were sourced from OpenPhish [22] and
PhishTank [23], which validate phishing domain and URL
reports. We collected reports from their MISP feeds upon pub-
lication, storing only domain names. Stripping URL can lead
to false positives, e.g., a phishing resource on a file-sharing
service may incorrectly make its domain malicious. To address
this, we conducted additional filtering with VirusTotal [24],
which consults domains and URLs with multiple security
vendors. This way, we identified and removed 476 mislabelled
domains, resulting in 68,353 verified phishing domains.

For each domain, we performed a DNS scan to gather
its available DNS records. As the domain names were often
subdomains of a higher-level zone, we also determined the
zone domain name. From its SOA record, we determined the
primary nameserver address. We then queried this nameserver
for the following record types associated with the domain of
interest: A, AAAA, CNAME, MX, NS, and TXT. If DNSSEC
was present, we locally validated the RRset signatures, without
establishing a chain of trust. We also determined the IP
addresses for names found in the CNAME records.

For each IP address from A, AAAA, and the resolved
CNAME records, we measured the round-trip time (RTT) via
ICMP echo from a single specific point and determined their
geographic location and affiliation with autonomous systems
using the GeoLite2 City and ASN databases (v. 20230606)
[25]. We also gathered domain and IP registration data using
RDAP (or WHOIS when RDAP was unavailable). Lastly,
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we initiated a TLS connection to collect certificate chains
and handshake details. Data collection and validation was
performed as soon as the domain appeared on a list (received
from MISP). The final dataset is published on Zenodo1.

IV. HIGHLIGHTS FROM THE DATA ANALYSIS

After data collection, we analyzed the datasets to identify
key characteristics distinguishing legitimate from phishing
domains. This section presents some of the notable findings.

a) Lexical Properties: The net domain was more com-
mon (17.5%) in benign domains, compared to phishing (1.9%).
National TLDs, such as uk or fr, were much more frequent for
benign domains. Domains like io, site, or xyz were frequent
for phishing but rarely seen in the benign dataset. Phishing
sites often used clickbait TLDs like page, club, shop, info,
and online. Phishing domain names tend to be longer (avg.
29.35 characters for phishing, 22.25 for benign). Letter-only
domains were more prevalent in the benign dataset (56.48%)
compared to phishing (32.53%). Phishing domains also had
higher entropy and occurrence of numbers and hex symbols.

b) DNS Data: The mean and standard deviation of the
TTL values were similar in both sets. About 20% of the
phishing domains had TTL values below 100 in 60% to 70%
of their DNS records. Conversely, this applied for only 5%
of the benign set. Less than 1% of the phishing domains had
more than two A records. In the benign dataset, many domains
had large numbers of TXT records, while phishing domains
mostly had 0 to 2 TXT records. Higher number of NS and
MX records was more typical of benign domains.

c) IP-related Information: The benign dataset showed
a higher diversity in the total counts of IPv4 and IPv6
addresses. Over 76% of benign and 85% of phishing domain
names had 0 to 3 related IPs. We rarely discovered more
than 10 addresses for phishing domains, while some benign
domains had over 50. Most of the names in our datasets refer
only to IPv4 addresses (73% in the benign and 65% in the
phishing set). Domains often refer to an equal number of
IPv4 and IPv6 addresses (23% of the benign names, 33% of
the phishing names). IPv6 addresses make up 27% of all IP
addresses in the benign dataset, while the number of IPv6
addresses in the phishing dataset is 31%.

d) Registration Data from RDAP/WHOIS: By analyz-
ing domain-related WHOIS/RDAP information, we detected
approximately 21% of the domains in both datasets were
registered through MarkMonitor, Inc. The other top two regis-
trars for domains in the benign set were GoDaddy.com, LLC
(15.6%) and CSC Corporate Domains, Inc. (6.9%). In the
phishing set, SafeNames Ltd. (11.1%) and CloudFlare, Inc.
(6.2%) were the other top two.

e) TLS Handshakes & Certificate Chains: Having only
root and leaf certificate was more common (43.70%) for be-
nign domains, compared to phishing (30.22%). Most phishing
domains (59.22%) had chains of length three. Among benign
domains, the most frequent leaf certificate issuer was Dig-
iCert Inc (19.60%), followed by Let’s Encrypt (10.58%) and

1https://zenodo.org/doi/10.5281/zenodo.12518089

Amazon (10.14%). For phishing domains, the dominating leaf
certificate authorities were Google Trust Services (21.34%)
and Let’s Encrypt (20.15%). Many phishing sites were hosted
on Google Firebase, where Google allows hosting up to 1 GiB
of data at no cost under web.app and firebase.app domains.

f) Geolocation Data: Some countries, such as Singapore,
Taiwan, or Finland, were much more common in the benign
dataset, while Brazil, India, Italy, or Vietnam appeared more
frequently among phishing locations. In several countries, it
was even possible to pinpoint concrete regions where the
phishing sites were concentrated.

V. FEATURE ENGINEERING

To define features for phishing detection, we started with
a list of potentially helpful features based on our findings
from the data analysis and previous studies. After initial exper-
iments, we removed those with no significant contribution, and
those that duplicate information, resulting in the final vector of
143 features. Table I lists and describes the features, divided
into six categories based on their origin. The features with
citations are adopted from related work. The rest we consider
novel, as we have not found studies that cover them.

We identified 43 lexical features based only on the domain
name, as the lexical analysis has been proven useful in previ-
ous studies [4], [15], [35]. Our features include lengths of the
domain and its subdomains, flags for whether the domain starts
with a digit or ”www”, character occurrence and ratios, the
longest consonant sequence length, and normalized entropies
for the second-level domain (sld ) and for a concatenation of
all subdomain parts (sub ). Furthermore, we counted the oc-
currence of 45 common phishing-related clickbait words such
as “account” or “free”, and of the most common {2,3,4,5}-
grams in phishing domains. In addition, we added a feature
that reflects the statistical likelihood that the site is abusive
based on its TLD. The tld abuse score ranges from zero to
0.6554, based on data published by Tim Adams [27].

We included 38 DNS-related features such as record type
counts, proven useful by Kuyama et al. [14], or records with
TTL values in intervals [0, 100] and [101, 500] since Bilge et
al. detected lower TTL values are more frequent for hi-flux
malicious domains [5]. We also introduced novel features. To
domains that contain a DNSKEY, we assigned a DNSSEC
score expressing discrepancies in the signatures, calculated as
(v−2i)/(v+ i), where v, i are the counts of valid and invalid
signatures respectively. Moreover, we scored the domains
by the presence of common verification strings in the TXT
records, such as “google-site-verification=”. Inspired by lexical
features, we also calculated lengths, digit counts, and entropy
for various strings found in the DNS.

Eight IP-related features describe properties of IP addresses
from DNS A, AAAA records, and resolved CNAMEs. IP
address count and IPv4 ratio showed contributions in prior
studies [5], [7], [15]. Motivated by Perdisci et al. [6] who
suggested that low IP diversity often indicates high-flux mali-
cious domains, we included the average entropy of IP prefixes
and AS numbers. As we suppose that credible services may
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TABLE I
FEATURE VECTOR FOR PHISHING DOMAIN CLASSIFICATION

Domain Name Lexical Features (lex )

Name Description & References
name len Length of the domain name [7], [15], [17], [26]
has digit Flag if the Domain name (DN) contains a digit [13]
phishing kw count Occurence count of 47 phishing keywords [13]
consecutive chars Longest consecutive sequence length [15], [17], [26]
tld len Length of the Top-level domain (TLD)
tld abuse score Score for most-abused TLD [27]
tld hash Hash of the Top-level domain
sld len Length of the Second-level domain (SLD)
sld norm entropy Normalized entropy of SLD
sld phishing kw count Occurence count of 47 phishing keywords in SLD
sub count Number of subdomains (level) [10]
stld unique char cnt Number of unique characters in TLD and SLD
begins with digit Flag if the name begins with a digit
www flag Flag if the name begins with “www”
sub max conson len Longest consonant sequence length in subdomains [13]
sub norm entropy Norm. entropy of subdomains [4], [15], [18], [26]
{sub,sld} digit count Number of digits in subdomains and SLD [10]
{sub,sld} digit ratio Ratio of digits in subdomains and SLD
{sub,sld} vowel count Number of vowels in subdomains and SLD [18]
{sub,sld} vowel ratio Ratio of vowels in subdomains and SLD
{sub,sld} consonant count Number of consonants in subdomains and SLD
{sub,sld} consonant ratio Ratio of consonants in subdomains and SLD
{sub,sld} nonalnum count Total number of hyphens in subdomains and SLD [10]
{sub,sld} nonalnum ratio Ratio of underscores and hyphens in subdomains and SLD
{sub,sld} hex count Number of hex symbols in subdomains and SLD
{sub,sld} hex ratio Ratio of hex symbols in subdomains and SLD
bigram matches No. of common phishing bigram matches [28]
trigram matches No. of common phishing trigram matches [28]
tetragram matches No. of common phishing tetragram matches [28]
pentagram matches No. of common phishing pentagram matches [28]
avg part len Average length of domain name parts
stdev part lens Standard deviation of domain name part lengths
longest part len Length of the longest domain name part
shortest sub len Length of the shortest subdomain

DNS-based Features (dns )

Name Description & References
A count Number of A records [29]
AAAA count Number of AAAA records
MX count Number of MX records [14], [30]
NS count Number of NS records [14]
TXT count Number of TXT records
CNAME count Number of CNAME records
resolved rec types Number of discovered RRsets
has dnskey Flag if a DNSKEY RRset is in the zone
dnssec score DNSSEC scoring (See Section V)
ttl avg Avg. of TTLs across RRsets [6], [15], [17], [26], [29]
ttl stdev Standard dev. of TTLs across RRsets [15], [17], [26]
ttl low Number of RRsets with TTL ∈ [0, 100] [5]
ttl mid Number of RRsets with TTL ∈ [101, 500] [5]
ttl distinct count Number of distinct TTL values across RRsets [5]
soa refresh SOA refresh parameter
soa retry SOA retry parameter
soa expire SOA expire parameter
soa min ttl SOA minimum TTL
dn in mx Flag if any mailserver is a subdomain of the DN
txt ext verif score No. of vendor verification strings in TXT RRs
txt spf exists Flag if an SPF record is in the TXT RRs
txt dkim exists Flag if a DKIM record is in the TXT RRs
txt dmarc exists Flag if a DMARC record is in the TXT RRs

DNS-based Lexical Features
zone level No. of subdomains in the zone’s DN
zone digits No. of digits in the zone’s DN
zone len No. of characters in the zone’s DN
zone entropy Normalized entropy of the zone’s DN
soa pri ns level No. of subdomains in the primary NS’s DN
soa pri ns digits No. of digits in the primary NS’s DN
soa pri ns len No. of characters in the primary NS’s DN
soa pri ns entropy Normalized entropy of the primary NS’s DN
soa email level No. of subdomains in the admin’s mail DN
soa email digits No. of digits in the admin’s mail DN
soa email len No. of characters in the admin’s mail DN
soa email entropy Normalized entropy of the admin’s mail DN
mx avg len Avg. number of characters of the DNs in MX records
mx avg entropy Avg. normalized entropy of the DNs in MX records
txt avg entropy Avg. normalized entropy of TXT RRs values

IP-based Features (ip )

Name Description & References
count Number of IP addresses [5], [7], [15], [17], [26], [31]
mean average rtt Average RTT of all ICMP Echo attempts
ip v4 ratio Ratio of IPv4 to all IP addresses
entropy Total entropy of all /16 (/64 for v6) IP prefixes [6], [32]
as address entropy Entropy of autonomous systems (AS) IP prefixes [32]
asn entropy Entropy of AS numbers [10], [18]
distinct as count Number of distinct ASNs [7], [29], [33]

RDAP-based Features (rdap )

Name Description & References
Related to the Domain Name

registration period Diff. between expiration and regist. date [15], [17], [26]
domain age Days elapsed from the domain registration [29]
time from last change Days elapsed from the last change [18]
domain active time min(today, expiration) - reg. date [15], [17], [26]
has dnssec Flag if domain uses DNSSEC
registrar name len Length of the registrar’s name [10], [18], [29]
registrar name entropy Entropy of the registrar’s name [10], [18], [29]
registrar name hash Hash of the registrar’s name [10], [18], [29]
registrant name len Length of the registrant’s name [10], [18]
registrant name entropy Entropy of the registrant’s name [10], [18]
admin name len Length of the administrative contact’s name
admin name entropy Entropy of the administrative contact’s name
admin email len Length of the administrative contact’s e-mail [14]
admin email entropy Entropy of the administrative contact’s e-mail [14]

Related to Domain-associated IP addresses
ip v4 count No. of IP addresses recognized by RDAP as IPv4
ip v6 count No. of IP addresses recognized by RDAP as IPv6
ip shortest v4 prefix len Length of the shortest IPv4 prefix
ip longest v4 prefix len Length of the longest IPv4 prefix
ip shortest v6 prefix len Length of the shortest IPv6 prefix
ip longest v6 prefix len Length of the longest IPv6 prefix
ip avg admin name len Average length of the admin’s name for IP addresses
ip avg admin name ent Average entropy of the admin’s name for IP addresses
ip avg admin email len Average length of the admin’s e-mail for IP addresses
ip avg admin email ent Average entropy of the admin’s e-mail for IP address

TLS-based Features (tls )

Name Description & References
chain len Length of the certificate chain [31]
is self signed Flag if leaf ceriticate is self-signed [12], [31]
root authority hash Hash of root certificate authority’s name
leaf authority hash Hash of leaf certificate authority’s name
leaf cert validity len Length of the validity period of the leaf cert. [8], [12],

[31]
negotiated version id Negotiated TLS version number (TLSv1.x)
negotiated cipher id An identifier of the negotiated TLS cipher [31], [34]
root cert validity len Length of the validity period of the root certificate
broken chain Flag if there is a certificate that was never valid
expired chain Flag if there is an expired certificate in the chain
total extension count Total extensions in all certificates in the chain [12], [34]
critical extensions Total extensions flagged as “critical” in all certificates
with policies crt count No. of certificates that include the policies extension
percentage with policies Percentage of certificates with the policies extension
x509 anypol crt count No. of certificates not enforcing any policy
iso pol crt count Total discovered policies from the 1.* OID space
isoitu pol crt count Total discovered policies the 2.* OID space
subject count No. of subject alt. names (SANs) in the leaf cert. [12],

[31]
unique SLD count No. of unique domain name SANs
server auth crt count No. of certs. with “Web Server Authentication”
client auth crt count No. of certs. with “Web Client Authentication”
CA certs in chain ratio Ratio of CA certificates in the chain
common name count No. of common names in the chain

Geolocation Features (geo )

Name Description & References
countries count Number of distinct countries [5], [7], [15], [17], [26]
countries hash Unique hash for each combination of countries [10]
continent hash Unique hash for each combination of continents
lat stdev Standard deviation from latitudes of IP locations
lon stdev Standard deviation from longitudes of IP locations
mean lat Mean latitude of IP locations
mean lon Mean longitude of IP locations
centroid lat Central latitude of IP locations
centroid lon Central longitude of IP locations
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show lower latencies, especially when located in the same area
as clients, we incorporated the average RTT.

Next, we included 24 RDAP-based features. They capture
domain registration details, such as registration period or time
since the last change, all measured in days with the extraction
date as a fixed reference point, ensuring data collection timing
does not affect the classifiers. Others describe the textual prop-
erties of the domain’s registrar, registrant, DNSSEC support,
and registration information for the related IP addresses.

Furthermore, 23 TLS-related features were extracted from
the TLS handshakes and certificate chains. Some, like validity
length, were adopted from Torolledo et al. [12], while others,
such as extensions and security policies, are novel.

The final nine features relate to geolocation. The number of
distinct countries showed contributions in previous studies [5],
[7], [15], [17]. We also computed unique hashes for combina-
tions of countries and continents, hypothesizing that specific
phishing campaigns may originate from particular regions. For
finer detail, we added the mean and central latitude and longi-
tude of all IP locations, along with the standard deviations of
these to indicate the geographic dispersion of domain-related
servers. These features help differentiate between localized
services and larger, international operations.

VI. TRAINING AND TUNING CLASSIFIERS

To verify our approach, we examined seven classification
methods using a train-test split with 70% of the data for train-
ing and tuning and 30% for final validation. For each method,
we tuned the model to find the optimal hyperparameter values
using a grid search with 5-fold cross-validation [36]. Our goals
were to maximize the F1 score, keep the false positive rate low,
and reduce overfitting. Using this methodology, we examined
the following classification algorithms:

• Logistic Regression – The method was chosen as a base-
line because it does not rely on linear feature relations.

• Support Vector Machine (SVM) – We selected this clas-
sifier for its effectivity with high dimensional data and
capability of modeling non-linear relationships [37].

• Decision Tree – Provides decent performance, clear in-
terpretability of the results, and robustness to outliers.

• Random Forest – The method was selected to test how
a classifier with many weak learners behaves on our data.

• AdaBoost – The method assigns higher weights to rele-
vant features, being beneficial on large feature vectors.

• XGBoost – The classifier is known for its high perfor-
mance and resilience against overfitting [38].

• LightGBM – The method was chosen for its effectivity,
high training speed, low memory consumption, and native
support for categorical features [39].

For the best-performing LightGBM classifier, we utilized 897
estimators of a maximum depth of 17 and 59 leaves. We
used a learning rate of 0.15, column subsample ratio of
0.9, min_child_samples of 27, and 240,000 samples
for constructing bins. The scale_pos_weight set to 6.28
compensated the class imbalance.

VII. EXPERIMENTAL RESULTS

We first evaluated the classifiers’ performance on the vali-
dation portion of the dataset. To assess stability and minimize
the impact of random seed selection, we conducted 10 training
rounds per classifier with different random seeds. The effect
of randomization depends on model configurations and differs
across classification methods. Additionally, since the model’s
performance can be influenced by the order of training sam-
ples, we randomly shuffled the dataset in each run.

Table II compares standard metrics’ values among the
methods when validated on the reserved 30% of the data. For
each metric, namely precision, recall, and false positive rate
(FPR), the table shows the mean and the variance of all values
collected in each round. Due to class imbalance and the goal to
eliminate both false positives and false negatives, we consider
the F1 score to be the most descriptive metric of success.

The best-performing classifier was LightGBM, achieving
the highest scores across all metrics. Given that many related
studies focus on accuracy, we also calculated the weighted
accuracy, which averaged 99.39%. To gain deeper insights
into the classifier’s decisions, we used SHapley Additive
exPlanations (SHAP) to assess feature impact and interactions
[40]. Figure 2 displays the top 20 features by SHAP score.

To evaluate the contribution of the different information
sources, we analyzed how each feature category influences
the decision process. We calculated the influence IC of feature
class C ∈ {lex, dns, ip, tls, rdap, geo} as an aggregated mean
of the absolute SHAP values: IC = 1

n

∑n
i=1 |SHAP(fi)|

where SHAP(fi) is the SHAP value for the i-th feature in
category C, and n is the number of features in that category.
The resulting impact for all categories is displayed in Figure 3.
The longer the bar, the more important the category is for the
LightGBM classifier.

10 1 1
lex_tld_hash

lex_sub_nonalnum_ratio
dns_zone_len

rdap_ip_avg_admin_name_ent
lex_sub_count

ip_mean_average_rtt
dns_zone_entropy

lex_phishing_tetragram_matches
dns_ttl_stdev

lex_phishing_pentagram_matches
dns_TXT_count

rdap_domain_active_time
rdap_registrar_name_entropy
rdap_ip_avg_admin_name_len

rdap_time_from_last_change
rdap_ip_v4_count

rdap_registrar_name_hash
rdap_domain_age

lex_tld_abuse_score
dns_ttl_low

0.268
0.283

0.305
0.311
0.316
0.322

0.382
0.382
0.390
0.394

0.424
0.440
0.463

0.509
0.532
0.535

0.824
0.885
0.944

1.282

Fig. 2. SHAP score for the 20 most important features (LightGBM)

VIII. DISCUSSION

Logistic regression, with an average F1 score of 0.8608,
struggled to capture complex relations between domain at-
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TABLE II
COMPARISON OF RESULTS FOR INDIVIDUAL CLASSIFICATION METHODS

Precision Recall F1 FPR
Classifier Avg. Variance Avg. Variance Avg. Variance Avg. Variance
Logistic Regression (LR) 0.906419 4.00e-08 0.819711 8.24e-08 0.860887 2.92e-08 0.013373 1.06e-09
SVM 0.969702 1.30e-07 0.943646 3.60e-08 0.956541 2.72e-08 0.004659 3.33e-09
DecisionTree (DT) 0.965228 5.73e-08 0.904394 1.76e-08 0.933821 4.75e-09 0.005148 1.39e-09
RandomForest (RF) 0.977666 1.13e-07 0.907915 3.11e-07 0.941500 1.13e-07 0.003277 2.55e-09
AdaBoost (ADAB) 0.970674 5.82e-09 0.957354 1.72e-09 0.963968 1.56e-09 0.004570 1.51e-10
XGBoost (XGB) 0.981501 1.71e-07 0.970540 1.17e-07 0.975990 4.98e-08 0.002890 4.37e-09
LightGBM (LGBM) 0.983007 2.11e-07 0.971004 4.09e-07 0.976968 1.23e-07 0.002652 5.39e-09
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Fig. 3. Impact of individual feature categories (LightGBM)

tributes. In contrast, all other methods achieved precision
above 0.96, F1 scores above 0.93, and demonstrated bet-
ter resilience to class imbalance. While the Decision Tree
classifier produced fair results, Random Forest performed
better due to the use of multiple individual trees. SVM and
AdaBoost achieved even higher F1 scores but were com-
putationally demanding. The top performers were XGBoost
and LightGBM, with LightGBM slightly ahead. As shown in
Table II, LightGBM excelled in all metrics, offering superior
performance, fast training, resilience to class imbalance, and
effective handling of categorical features

The results further show that all the feature categories
contributed to the LightGBM classifier decisions, with RDAP
having the highest importance. By conducting a separate
additional experiment, we verified that classification based
solely on RDAP features was less successful, underlying the
fact that other sources also play an important role.

The most important feature was “dns ttl low”, confirming
the findings of Bilge et al. [5] and our insights from the
data analysis. Lexical features appeared frequently in the top
20 list, notably our proposed TLD abuse score and n-gram
matching. From RDAP-based features, the most important was
domain age, referring to the fact that long-running services
are statistically more likely to be trustworthy. The domain’s
registrar was also crucial in the decision process, which further
confirms its usefulness, documented in previous studies [10],
[18]. International service providers such as Facebook or
Amazon distribute their servers across many nodes around the
world, which is a plausible explanation for why the number of
IPv4 addresses is so important. Although not included in the
top 20 list, geolocation features are an important input for the
classifier. The most contributive geo-based features were mean
latitude, longitude, and hash of countries. Surprisingly, TLS-
based features had much lower impact than other categories,

while the most useful was the negotiated cipher, followed by
the length of the certificate chain.

Direct comparisons with related studies are difficult due to
significant differences in data collection, processing method-
ologies, or private datasets. Furthermore, they often focus on
entire URLs instead of domain names only. Nevertheless, the
results still look promising. With XGBoost and LightGBM
classifiers, we achieved a much lower false positive rate
(0.29% and 0.27%) than Bilge et al. [5], who had FPR 1.1%
on their dataset. Attempts from Torroledo et al. [12] and
Chatterjee et al. [16] showed precision and F1 below 0.90.
Hason et al. [17] achieved 0.9292 F1. Our best classifier
had 0.9830 average precision and 0.9770 F1 score. Sadique
et al. [18] used a method that was closest to our approach
and achieved 90.35% accuracy with Random Forest on batch
learning test and 87% accuracy in a real-time setup. Our
best two classifiers both achieved weighted average accuracy
over 99%.

IX. CONCLUSION

We built and published a large dataset of domain-related
data to identify key attributes for evaluating domain credibility.
Boosted ensemble learning methods proved highly effective,
with low false positive rates. Our results also show that
phishing sites can be detected solely on a domain basis,
without needing full URLs or web page scraping. Publicly
available information, such as certificate chains, RDAP, DNS,
and geolocation data, provides easy-to-extract phishing in-
dicators, making this approach both practical and efficient.
From an ethical standpoint, the dataset contains only publicly
available information about services, ensuring that no personal
or sensitive data was disclosed.

Our approach can be applied not only to secure client
machines but also in detecting phishing activity at the network
perimeter. Domain information can be extracted from passive
DNS traffic analysis without decrypting HTTPS sessions. By
enriching this data with RDAP, DNS, TLS, and geolocation
information, we provide sufficient clues to detect phishing
attempts with high success. The proposed methodology thus
might be used to deploy classifiers as part of anti-phishing
browser extensions, application firewalls, or broader network
security systems, such as SIEM systems. Practical deployment
would require applying adaptive learning techniques, such as
refitting the models over time with data from threat intelli-
gence platforms to withstand new emerging threats.
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In the future, we intend to test deep learning approaches and
implement various optimizations to enhance our classifiers’
performance. Moreover, we are experimenting with a much
larger corpus of data captured directly from an ISP’s network,
covering also short-lived benign domains to better match
the real traffic. We believe that these efforts will improve
our phishing detection techniques and introduce more precise
decisions, taking the false positive rate to even lower levels.
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