
CRDT Web Caching: Enabling Distributed Writes
and Fast Cache Consistency for REST APIs

Markus Sosnowski, Richard von Seck, Florian Wiedner, and Georg Carle
Technical University of Munich, Germany

{sosnowski, seck, wiedner, carle}@net.in.tum.de

Abstract—Web Application developers have two main options
to improve the performance of their REST APIs using Content
Delivery Network (CDN) caches: define a Time to Live (TTL)
or actively invalidate content. However, TTL-based caching is
unsuited for the dynamic data exchanged via REST APIs, and
neither can speed up write requests. Performance is important, as
client latency directly impacts revenue, and a system’s scalability
is determined by its achievable throughput. A new type of Web
proxy that acts as an information broker for the underlying data
rather than working on the level of HTTP requests presents
new possibilities for enhancing REST APIs. Existing Conflict-
free Replicated Data Type (CRDT) semantics and standards like
JSON:API can serve as a basis for such a broker. We propose
CRDT Web Caching (CWC) as a novel method for distributing
application data in a network of Web proxies, enabling origins
to automatically update outdated cached content and proxies
to respond directly to write requests. We compared simple
forwarding, TTL-based caching, invalidation-based caching, and
CWC in a simulated CDN deployment. Our results show that
TTL-based caching can achieve the best performance, but the
long inconsistency window makes it unsuitable for dynamic REST
APIs. CWC outperforms invalidation-based caching in terms of
throughput and latency due to a higher cache-hit ratio, and it is
the only option that can accelerate write requests. However, under
high system load, increased performance may lead to higher
latency for non-acceleratable requests due to the additional
synchronization. CWC allows developers to significantly increase
REST API performance above the current state-of-the-art.

Index Terms—CRDT Web Caching, REST APIs, CDNs, Web
Caching, Web Proxies, CRDTs, Network Performance Simulation

I. INTRODUCTION

Web caching is a well-elaborated topic (e.g., [1–3]), and
caching dynamic data presents a known challenge [4]. The
growing use of Content Delivery Networks (CDNs), the
separation of static code and dynamic application data in
software development, and the adoption of standardized API
formats like Representational State Transfer (REST) [5] or
JSON:API [6] have changed how Web applications are built.
Conflict-free Replicated Data Types (CRDTs) offer a unique
method for building distributed applications and have shown
significant progress in recent years (e.g., [7]). These changes
and new CRDT developments open up new opportunities
to enhance Web application performance. This is relevant
because sometimes a server cannot fulfill performance require-
ments regarding the scalability and latency of an application.
A low client latency can directly impact user experience
and create loss in revenue [8]. While Web caching promises
improved performance, applying it to dynamic REST APIs can

be challenging. Current options mainly fall into two categories:
caching based on a Time to Live (TTL) or active invali-
dation of content. Both approaches have limitations: TTL-
based caching is unsuited for frequently changing Application
Programming Interface (API) data, invalidation-based caching
requires CDN-specific logic, neither approach allows a CDN
to independently apply changes to the data to improve the
latency of write requests, and related work has suggested that
push-based approaches can outperform both [2].

This work presents CRDT Web Caching (CWC), a method
allowing an origin to keep the cache state of a CDN’s
Web proxies consistent and enabling CDNs to directly apply
mutations to the data. The aim is to provide developers with a
new option that combines the simplicity of Hypertext Transfer
Protocol (HTTP) caching with the power of a fully distributed
system seamlessly integrating into existing applications.

Our key contributions are:
i) definition of CWC and the requirements for enabling it

for REST APIs on three different levels;
ii) empirical comparison of different REST API caching

strategies based on a simulated CDN deployment; and
iii) published data, scripts, and code [9].

II. BACKGROUND

We focus on client-server applications, where the client
provides a User Interface (UI), and the server manages the
main application logic. This approach is commonly used in
enterprise applications and typically involves three primary
layers: presentation, domain, and data source [10], which are
typically realized by a client-side UI, a backend server, and a
database, respectively.

In modern applications, the interface between the pre-
sentation and the domain layer is often implemented using
REST APIs. REST [5] is a popular design paradigm for
APIs in a distributed client-server system, covering principles
and constraints such as statelessness, cacheability, a uniform
interface, and support for multi-layered systems. However,
communication with backend servers becomes a bottleneck
if users frequently wait for server responses. Ultimately, the
physical distance those API calls must traverse imposes a hard
limit on application performance. To address this limit, web
caching can be utilized, allowing web proxies to answer some
requests directly. CDNs operate such proxies worldwide and
offer them as service to application providers. If using a CDN,
the backend is called origin. Web caching is typically realized

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP

with HTTP caching (cf., [11]), a TTL-based approach. A
more concrete format for REST APIs is JSON:API [6],
which defines how resources and relations are represented,
accessed, and mutated. JSON:API indicates how REST is
implemented in practice: using HTTP to access API endpoints
and transmitting data via JSON, revealing REST commonly
relies on HTTP caching for its cacheability. Modern CDNs
go beyond standard HTTP caching functionality by extending
the “expiration-based caching model and additionally expose
(non-standardized) interfaces for asynchronous cache invali-
dation” [12]. For instance, Fastly claims to purge all global
caches in less than 200 ms using a bimodal multicast algo-
rithm [13]. Furthermore, Web performance can be improved by
servers actively pushing data to caches, as discussed by [2]. In
summary, three general Web caching approaches exist: TTL-
based, Invalidation-based, and Push-based caching.

In this work, we explore CRDTs for Web caching. CRDTs
are used in distributed computing to achieve eventual consis-
tency only through the definition of the data type. Each peer
can modify a CRDT without coordinating with other peers. It
might result in different peers having different states, but the
logic of the CRDT ensures consistency when all changes have
been propagated to all peers. Developing powerful CRDTs
for actual Web applications is an active field of research, and
effective CRDTs for arbitrary JSON data types exist, e.g., [7].
JSON CRDT libraries like Automerge [14] go beyond the
basic functionalities and provide mechanisms to synchronize
them between peers or a server and its clients.

III. RELATED WORK

Ever since the development of the World Wide Web, there
have been numerous efforts to enhance its performance. Espe-
cially Web caching of static content (documents, texts, videos,
audio, etc.) is a well-elaborated topic.

In 1995, Abrams et al. [1] discussed the general potential of
Web proxy caching covering HTTP. Bestavros [2] highlighted
the performance benefits of servers pushing data to proxies
closer to the client based on local popularity and emphasized
the need for actively invalidating cached content. In 1997,
Baentsch et al. [15] refined the concept and demonstrated the
performance advantages of replication over caching. Iyengar
and Challenger [4] explored caching dynamic data on proxies
and suggested an invalidation-based approach. Cao and Liu [3]
compared approaches such as TTL, “polling-every-time”, and
invalidation, concluding that an invalidation-based protocol
provides the best cache consistency. However, our results
indicate that replication still outperforms invalidation.

Over time, the Internet landscape has evolved, with caching
primarily carried out by end devices (e.g., a browser) or CDNs
specifically configured by application developers. Ninan et al.
[16] argued that existing cache consistency mechanisms are
unsuitable for CDNs. They propose a concept of cooperative
leases where the origin notifies the CDN of any changes and
sends an invalidation or updated object. Recently, Abolhassani
et al. [17] showed that caching strategies on Web proxies
remain relevant, interpreting push- and pull-based caching

approaches as a cost optimization problem and proposing
a combined approach. Wingerath et al. [18] developed a
different approach to handling dynamic data, suggesting to
push application-specific caching logic to the client. Other
works explored strategies to populate a cache before a user
accesses it. For instance, Wan et al. [19] proposed grouping
users based on their navigational patterns and pre-fetching web
requests according to a common user profile.

To the best of our knowledge, CRDTs have not been
considered for Web caching yet nor has an approach similar
to CWC been proposed.

IV. CRDT WEB CACHING (CWC)

We define CWC as an approach for distributing application
data using CRDTs from a central origin to one or multiple
trusted Web proxies with the option for proxies to apply
changes to the CRDTs directly. The constantly synchronized
CRDTs enable the origin to push changes on the data source
to Web proxies to keep the cache states consistent. If the
origin defines a set of allowed mutations, the Web proxies can
directly apply these mutations via uncoordinated distributed
writes to speed up simple write queries.

Web proxies can either grant clients direct access to the
CRDTs or provide an automatically generated interface to
access the underlying CRDT data. Proxies can only directly
modify a CRDT if the contained data is structured according
to a well-defined format, e.g., using JSON:API [6], and when
simple Create Read Update Delete (CRUD) operations are
sufficient. The eventually-consistent and conflict-free nature of
CRDTs allows Web proxies to asynchronously forward applied
mutations to the origin. CWC facilitates only on-demand
replication, e.g., when a client accesses an API endpoint.
Any CRDT replica can be removed from a Web proxy once
all changes have been successfully forwarded to the origin.
Hence, CRDT Web caching combines pull- and push-based
caching elements, allowing clients to initiate replication while
the origin actively populates relevant caches with updates.

We propose implementing CWC for REST by upgrading the
API access to a JSON CRDT [7]. During the upgrade process,
the origin provides meta-data informing proxies about the
structure of the API, access permissions, allowed mutations,
and other details. Web proxies will handle the upgrade trans-
parently to the client by returning regular JSON and providing
access to the CRDT only through an automatically generated
REST interface. This upgrade mechanism enables applications
to selectively use CWC for specific endpoints and seamlessly
integrate it into existing REST APIs.

An example deployment illustrating CWC is shown in
Fig. 1. It contains a client making a GET request to a REST
API endpoint. As the API endpoint is distributed as a CRDT,
proxy 1 can directly return the current state of the CRDT to
the client. Proxy 1 does not replicate the CRDT directly from
the origin but via proxy 2. For read-only APIs, changes to the
CRDT propagate only from the origin to the proxies. However,
when client 2 requests a mutation with the POST request,
proxy 3 can immediately apply it on the CRDT, provide a

2024 20th International Conference on Network and Service Management (CNSM)

origin

proxy 2

proxy 1

proxy 3

proxy 4

§
client 2

§
client 1

nPOST /api

○

GET /api

n n

n Synchronized CRDT CRDT State ○ Confirmation

Figure 1. Example deployment utilizing CWC.

confirmation, and synchronize the changes back to the origin
later. Since no client accesses the API over proxy 4, it holds
no replica of the CRDT.

A. Requirements

CWC for REST APIs can support different levels: basic,
advanced, and mutable. The basic level is for read-only data,
supports various CRDT definitions (e.g., not limited to JSON
CRDTs), and has the following requirements:
R1 A Web proxy stores a mapping of REST API endpoints

(i.e., URL patterns) to local CRDT replicas. If the origin
upgrades an API request to a CRDT, the proxy creates
a local replica of the CRDT and maps the observed
endpoint to it. Multiple endpoints can map to the same
CRDT. A background task on the proxy ensures constant
synchronization of all local CRDTs with the origin.

R2 Received requests to an unknown endpoint are forwarded
to the origin. Any read-request (HTTP GET) to a known
endpoint previously upgraded to a CRDT is answered
with the current state of the respective CRDT.

R3 Web proxies periodically forward requests to a known
CRDT endpoint to the origin to repeat the upgrade
process and adjust for changes in the API metadata. If
the connection between the origin and the Web proxy
breaks, the Web proxy immediately repeats the upgrade.

R4 The origin informs Web proxies about existing permis-
sions during the upgrade, e.g., which users are allowed
to access the data. Web proxies enforce the permissions
on all client requests.

Advanced CWC enables a Web proxy to provide clients
with additional functionality for read-only API endpoints. In
addition to requirements R1 to R4, it requires:
R5 The origin structures the data of the CRDT according to

a standardized format that the Web proxy understands,
e.g., based on linked data with a well-defined format like
JSON:API [6].

R6 The origin informs the Web proxy about the structure
of the API, different access patterns, and whether only
subsets of the CRDT should be served to clients for some
of the patterns. The Web proxy will store the patterns in
the local mapping. This enables Web proxies to directly
answer a group of API endpoints, e.g., each API call that
returns a single object of a collection.

proxy

origin

GET /api
GET /api
Proxy-Upgrade: CRDT/Automerge

101 Switching Protocols
Proxy-Upgrade: CRDT/Automerge
CRDT-Data: [Permissions, . . .]

CRDT thread
initialize()

GET /api
subscribe

synchronizationget()

JSON state

unsubscribe

[else] JSON

JSON

alt [API should use CRDT Web Caching]

Figure 2. Sequence diagram of an example REST API call where the origin
has the choice to use CWC. Future requests can directly start at the second
GET request, skipping the initial round-trip to the origin.

Mutable CWC enables proxies to directly change the data
and requires, in addition to R1-R6:
R7 The origin flags a CRDT as mutable and informs the Web

proxy which HTTP methods (GET, POST, DELETE, etc.)
and which operations are allowed. The origin upgrades
all allowed methods to the same CRDT. The Web proxy
stores the corresponding methods in the local mapping.

R8 A Web proxy flags local CRDT replicas as dirty if it
applies a mutation. The flag is removed when all changes
are successfully synchronized with the origin. No dirty
replicas are purged from the local cache of a proxy.

B. Upgrading a REST API Endpoint to Use CWC

An example for an upgrade to a JSON CRDT is shown
in Fig. 2. The process starts with a client accessing a REST
API endpoint that is expected to return a JSON object. A
Web proxy receives the request and forwards it to the origin
according to standard HTTP proxy rules. The Web proxy
appends its support for CRDTs in an HTTP header, indicating
its support for Automerge [14] by adding Proxy-Upgrade:
CRDT/Automerge. The origin server then decides whether
the endpoint should be upgraded. If not, it responds with a
regular HTTP response, and the Web proxy acts as a shared
HTTP cache. However, if the endpoint should be upgraded
to a CRDT, the origin responds with a 101 Switching
Protocols response and the necessary details to access the
CRDT. The origin informs the Web proxy about the permission
model, such as a required user authentication, endpoint access-
control, and CRDT mutability. Then, the proxy can initialize
its local replica of the CRDT and establish synchronization.
The local replica will be continuously synchronized in a
background thread until the proxy decides to evict it. Once
the CRDT instance is fully replicated on the proxy, the current

2024 20th International Conference on Network and Service Management (CNSM)

origin

proxy (near)

proxy (far)

proxy (far)

proxy (far)

proxy (far)

D0

D
1000

D100
0 D

1000

D100
0

§
§
…

Dr

§
§
…Dr

§
§
…

Dr

§
§
…

Dr

§
§
…

Dr

RTT according to simulated distance (km) in Europe:

Dx = 10.89ms + 0.02ms · x r = random(50, 500)

Figure 3. Simulated CDN deployment used to evaluate API caching strategies.

state can be returned to the client as a JSON object. If a client
requests the same API endpoint again, the proxy can directly
respond with the state of the local replica, skipping the initial
round-trip to the origin.

V. EXPERIMENT METHODOLOGY

To evaluate the performance implications of applying CWC
to REST APIs, we simulated a simple CDN deployment with
two example applications: a flight booking service and a
discussion forum. These applications were chosen to represent
different use cases. The flight scenario represents write-heavy
applications with complex logic that only the origin can
handle. In contrast, the forum scenario involves many reads,
and only simple CRUD operations. We tested the four caching
strategies using nocache, TTLs, invalidations, and CWC.

A. Experiment Model and Setup

For our study, we modeled a simplified CDN deployment
with Mininet [20], a tool capable of simulating complex
network typologies on a single machine. The deployment
comprises multiple load generators, a few proxies, and a single
origin spread evenly over a large area, as illustrated in Fig. 3.
The load generators simulate clients; however, they create
higher loads than real-world clients because they constantly
make requests without the idle times caused by a human user.

We simulated the physical distance covered by network
connections with artificial delays. The load generators send
their requests to the nearest proxy, which either responds to
the requests or forwards them to the origin. For the distances
to be realistic, we modeled them after the European Union,
approximately 4 000 km from west to east and north to south.
Martinez et al. [21] measured network delays worldwide
depending on distance and created a regression model to
estimate the RTT on different continents based on distance.
For Europe, they measured the function Dx from Fig. 3,
allowing us to simulate physical distances in our experiments.
The origin is located at the center to best serve all clients. A
single proxy is also located at the center, and four more are
evenly distributed around the area, each 1 000 km away from
the origin. Up to 100 load generators connect evenly to the
five proxies, each being randomly located between 50 km and
500 km from the proxy. The resulting latencies are close to

real-world values: [22] measured a median latency of 14ms
targeting CDNs and 34ms targeting data centers in Europe.

B. Evaluated API Caching Strategies

In this work, we compare four different caching strategies:
Nocache The proxies did not cache any responses and only

acted as a relay between client and origin.
TTL The APIs utilized an expiration-based strategy where

responses to read requests were cached for a defined
period. For this study, we choose a TTL of 5min as
representative value for TTL-based caching. Real-world
applications could use lower or higher TTL values de-
pending on their concrete requirements.

Invalidation Responses to read requests were cached with
a TTL longer than the experiment. When the origin
updates the data source, affected cached responses are
invalidated. We implemented this functionality by tagging
each response of the origin with one or more keys.
Whenever the origin returned a response after changing
data, the keys to be invalidated were attached. A proxy
observing invalidation keys purged associated local en-
tries and forwarded the list to the other proxies.

CWC The APIs used advanced and mutable CWC according
to Section IV, implemented with Automerge [14]. Our
proxies automatically derived REST APIs with the meta-
data provided during the upgrade. The origin forwarded
changes on data objects to all affected CRDTs, effec-
tively updating cached objects on the proxies through
Automerge’s inherent synchronization protocol.

C. Example Scenarios

The experiments are initiated load generators acting as
clients according to the state machines in Fig. 4. As soon as
a client finished the last action of the scenario, it immediately
repeated the state machine, as if it was a new client.

In the flight scenario, clients attempt to book a seat on a
flight by first requesting a list of 100 possible flights. The
client then randomly selects one flight and requests a list of
100 bookable seats for that flight. Each seat has an attribute
indicating its availability. If an API caching strategy is being
evaluated, both lists are cached. Subsequently, a client attempts
to book a random available seat. The booking transaction is
assumed to be complex and handled solely by the origin. If
a flight is fully booked, the origin removes it from the list of
possible flights and creates a new empty one. While caching
can enhance performance, it is important for a client to have
up-to-date information to avoid attempting to book an already
taken seat. The scenario is write-heavy due to each client
attempting to book a seat.

In the forum scenario, clients initially requests the list of 100
possible forums, then selects a random forum and retrieve the
latest 100 messages. Both read requests are cached if an API
caching strategy is evaluated. Then, there is a 20% chance
that a client posts a new random message. Mutable CWC is
used for the post because adding a new entry to an existing
list is a simple CRUD operation. The main challenge of this

2024 20th International Conference on Network and Service Management (CNSM)

1. retrieve a list of 100 possible flights [cacheable]
GET /flightsAPI call:

2. get the seating plan for a randomly chosen flight,
identified by id [cacheable]

GET /flights/<id>API call:

3. book a random unclaimed seat
POST /flights/<id>/book/<seat>API call:

Complex logic, has to be forwarded to the origin

(a) Write-heavy Flight Scenario (clients booking a seat on a random flight)

1. get a list of the 100 possible forums [cacheable]
GET /forumsAPI call:

2. select a random forum (by id) and retrieve the 100 latest
messages [cacheable]

GET /forums/<id>API call:

3. post a 25B random message [mutable CWC]
POST /forums/<id>
{ message: "abcdef. . ." }API call:

Simple operation, could be automatically applied to a CRDT

[20% chance]

[else]

(b) Read-heavy Forum Scenario (clients read and some post messages)

Figure 4. The example scenarios we use to compare the API caching strategies
described as state machines.

scenario is to enable real-time communication between clients,
ensuring they always see the latest messages.

D. Evaluated Metrics

Both latency and throughput are important for client-server
applications. In our experiment, we measured throughput as
the number of HTTP requests served per second and latency
as the time it takes for the client to send an API request
and receive a response. To better compare the strategies,
we aggregated each request’s latency per time frame and
differentiated between read and write requests. Incorporating
Web proxies into a client-server deployment can improve
performance by increasing throughput and reducing latency,
but it can lead to consistency issues. To analyze these effects,
we need additional metrics such as the staleness ratio, cache-
hit ratio, and the client-observable inconsistency window. The
staleness ratio indicates the portion of requests answered with
outdated data, which can occur even with no caching if content
is updated during transmission. The cache-hit ratio reveals the
portion of requests that a Web proxy could directly serve from
its cache. Both are widely used metrics and have been used
already in 1997 by [15]. A newer metric, the client-observable
inconsistency window, measures the “time between the commit
timestamp and the latest possible read of the previous version
for systems that do not expose dirty reads” [23].

0

100

200

300

400

T
hr

ou
gh

pu
t
[r
eq

u
es
ts
\s
]

CWC TTL (5min)
Nocache Invalidations

(a) Flight Scenario

0 20 40 60 80 100

0

200

400

600

800

System Load [concurrent load generators]

T
hr

ou
gh

pu
t
[r
eq

u
es
ts
\s
]

(b) Forum Scenario

Figure 5. Successful requests per second over time. Every 1min a new load
generator was started, increasing the system load. Subplots share their x-axis.

VI. EVALUATION

To evaluate CWC, we used a simple CDN deployment
simulated on a single server equipped with two AMD EPYC
7601 32-Core processors (128 logical cores) and 1TB of
RAM and we pinned the origin, Web proxies, and clients
to separate cores to minimize a CPU scheduling bias. In the
experiments, we started with a single load generator and then
added a new one every minute up to 100. The load generators
continuously made client requests according to the specified
scenario. We ensured that there were no cache evictions due
to full storage. Additionally, we used an in-memory dictionary
as the data source to simulate fast computation. If we can
demonstrate the benefits of using a caching approach for such
a basic origin server, we can infer that real-world applications
with longer processing times (due to complex logic, dedicated
databases, etc.) benefit even more.

A. Application Performance: Throughput and Latency

A general metric that reveals the scalability of a system
is throughput. A higher value means more clients can be
served at the same time. We measured the number of HTTP
requests completed per second for both scenarios in Fig. 5.
The results reveal that CWC and TTL-based approaches
provide the best throughput, followed by an invalidation-
based approach. Interestingly, for a few concurrent clients,
CWC outperformed the throughput of TTL-based caching by
19% for 20 concurrent clients in the flight scenario, as the
content was actively pushed to proxies, resulting in faster
request handling. However, the CRDT synchronization on the
origin became a bottleneck under higher system load, allowing
TTL-based caching to surpass CWC. Despite this, CWC’s
throughput never dropped below that of invalidation-based

2024 20th International Conference on Network and Service Management (CNSM)

Table I
SUMMARY OF THE SIMULATION RESULTS

Scenario Caching req/s mean mean mean inc. staleness cache-hit
Strategy read lat. write lat. window ratio ratio

Flights

CRDT 252.3 91ms 404ms 701ms 6.5% 97.5%
Invalid. 200.7 107ms 215ms 1 194ms 60.8% 79.5%
TTL 281.1 79ms 213ms 5min 98.3% 99.3%
Nocache 148.6 335ms 331ms 3ms 6.0% 0.0%

Forums

CRDT 527.3 95ms 190ms 1 949ms 26.0% 100.0%
Invalid. 437.7 106ms 326ms 3 685ms 16.8% 81.2%
TTL 512.1 85ms 306ms 5min 49.3% 99.6%
Nocache 270.0 185ms 371ms 1ms 0.6% 0.0%

Note: Abbreviated are requests per second, read/write latency, and client-
observable inconsistency window.

caching. Performance is poorest without caching. Generally,
the flight scenario has a lower throughput than the forum
scenario because it is more write-heavy. CWC challenges
the throughput possible with TTL-based approaches while
providing the advantage of fast cache consistency.

The latency of read and write requests over time offers
an additional perspective on the application’s performance.
Fig. 6 displays the median read and write latency per minute.
It is evident that all three API caching approaches result in
similar performance enhancements for read requests compared
to no caching, and the increasing load over time has minimal
impact. In the absence of caching, the origin becomes the
performance bottleneck, leading to a noticeable degradation in
latency, particularly in the write-heavy flight scenario. A very
different picture is revealed when analyzing the median write
latency. In the flight scenario, the origin handles every write;
consequently, performance is directly dependent on the origin
load. Here, the invalidation-based and TTL-based approaches
excel as they reduce the number of read requests without
significantly impacting the write latency. CWC showed the
poorest write performance due to the additional CRDT syn-
chronization costs. However, the forum scenario demonstrated
the biggest advantage of CWC, enabling Web proxies to
directly process and respond to simple write requests, resulting
in significantly lower latency than any other approach.

B. Cache Effectiveness

We previously discussed the benefits of caching REST APIs,
but we did not evaluate the quality of the cached data. To
address this, we look at additional caching metrics in Table I.
It is important to note that the different application behaviors
mean that the absolute measured numbers should only be
compared within the same scenario.

The table reveals that TTL-based caching offered one of
the best performance results with its 99% cache-hit ratio.
However, the 5-minute inconsistency window and 98% stale-
ness ratio make this option impractical for fast-changing APIs
requiring up-to-date information. Advanced CWC offered the
best performance after TTL-based caching, with a 10% lower
throughput and 15% higher read latency. Despite this, it still
resulted in a 26% higher throughput and 15% lower read

latency than invalidation-based caching. However, CWC had
around twice the write latency of TTL and invalidation-based
caching in the flight scenario due to CRDT synchronization
overhead. In the forum scenario, mutable CWC outperformed
all other caching strategies because it was the only option
that accelerated write requests. Compared to the second-best
strategy, TTL-based caching, mutable CWC could reduce the
mean write latency by 38%. However, the eventually consistent
nature of the mutable CRDTs led to a higher staleness ratio
(26%) compared to invalidation-based caching (17%) and no
caching (1%). Interestingly, even without caching some re-
sponses were stale due to content changed during transmission.

VII. DISCUSSION

This work proposes adding new data-aware functionality to
existing Web proxies and we want to discuss some aspects.

a) Intended Scenarios: We do not think all REST API
endpoints should adopt CWC because it adds complexity
to the origin code and its maintainability. However, it can
greatly benefit performance-critical endpoints. The basic and
advanced level of CWC can be a valuable tool for developers
to enhance the performance and scalability of read-only API
endpoints where the chance of stale content should be low. If
stale content is not a problem, TTL-based caching could be
easier to realize. The applicability of mutable CWC is more
limited as Web proxies cannot be aware of the application-
specific semantic of concrete REST APIs. Hence, Web proxies
can only perform basic mutations on the data, such as the
CRUD operations (e.g., inserting an entry into a list or up-
dating an attribute). If these mutations are sufficient, mutable
CWC can be a powerful tool to increase API performance.

b) CDNs in the Role of Information Brokers: We think
that the enhancement of the current state of REST API caching
is reliant on Web proxies becoming more powerful. At their
core, REST APIs provide views on a data source, but the
actual requests and responses are secondary. Proxies could
significantly improve functionality by proxying the actual data
(objects and relations) and not only requests and responses.
This concept aligns with Information-Centric Networking
(ICN) [24] principles. However, instead of proposing a new
Internet Protocol we argue that already widely used standards
like JSON:API and technologies like CRDTs can enable some
of the advantages proposed by ICN. Application developers
actively choose and configure a CDN; hence, they are in
control of the functionality and can orchestrate the CDN to
become brokers of their application data beyond being simple
request-forwarders.

c) Transparent CWC: CRDTs were primarily designed
for clients, e.g., to enable collaborative editing [7]. Web
proxies could provide clients with direct access to the end-
point CRDTs, but this adds new challenges such as security
concerns. Web application clients are typically untrusted, and
ensuring the integrity of changes made to CRDTs can be
complex. While it might be possible to define permissions on
CRDTs, this approach increases system complexity and has

2024 20th International Conference on Network and Service Management (CNSM)

CWC Invalidations TTL (5min) Nocache

0 50 100

0

200

400

600

800

Experiment Duration [min]

M
ed

ia
n

L
at

en
cy

[m
s]

(a) Read Requests - Flights

0 50 100

Experiment Duration [min]

(b) Read Requests - Forums

0 50 100

Experiment Duration [min]

(c) Write Request - Flights

0 50 100

Experiment Duration [min]

(d) Write Request - Forums

Figure 6. Median Latency per Minute. Every 1min an additional client was started, increasing the system load.

debugging challenges. To minimize changes to existing sys-
tems and ensure the focus of the paper on caching challenges,
we have kept the CRDT mechanism transparent to the client.

VIII. CONCLUSION

This work introduces CWC as a new method for distributing
REST API data to Web proxies. We outline the require-
ments for achieving this on three levels: basic, advanced,
and mutable. We evaluated the approach with a simple CDN
deployment and two example applications (a flight booking
service and a forum) in a Mininet simulation. Compared with
no caching and state-of-the-art CDN caching strategies, we
found that while TTL-based approaches can achieve better per-
formance, they are not suited for the dynamic nature of REST
APIs due to large inconsistency windows. Invalidation-based
strategies where the origin actively purges outdated content
from proxies can enable REST API caching. However, our
approach outperformed this strategy as new content is automat-
ically pushed to relevant proxies. While CWC demonstrated
low read latency, it can come at the cost of higher write latency
under high system load due to the overhead of the CRDT
synchronization. However, mutable CWC outperformed every
other strategy due to the acceleration of write requests.

Our work demonstrates how Web application performance
can be enhanced by expanding the functionality of Web
proxies and transitioning from simple HTTP request handling
to more data-aware approaches. We argue that the existing
semantics of JSON CRDTs and standards like JSON:API
are sufficient to enable advanced data-aware proxies—the
foundation of CWC for REST APIs.

We showed that CWC significantly benefits Web API per-
formance in scenarios where it is vital to provide up-to-date
information. In the future, CWC can help create specialized
CDNs that focuses on the dynamic nature of Web APIs.

REFERENCES

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox,
“Caching Proxies: Limitations and Potentials,” in Int. Web Conference
(WWW), 1995.

[2] A. Bestavros, “Demand-based Document Dissemination for the
World-Wide Web,” Boston University, Tech. Rep., 1995.

[3] P. Cao and C. Liu, “Maintaining strong cache consistency in the World
Wide Web,” in IEEE Trans. Comput., 1998.

[4] A. Iyengar and J. Challenger, “Improving Web Server Performance
by Caching Dynamic Data,” in USENIX Symposium on Internet
Technologies and Systems (USITS 97), USENIX Association, 1997.

[5] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, Uni. of California, 2000.

[6] Y. Katz et al. “JSON:API,” Accessed: Jun. 24, 2024. [Online].
Available: https://jsonapi.org/format/1.1/.

[7] M. Kleppmann and A. R. Beresford, “A Conflict-Free Replicated
JSON Datatype,” in IEEE Trans. Parallel Distrib. Syst., 2017.

[8] M. Basalla, J. Schneider, M. Luksik, R. Jaakonmäki, and J. Vom
Brocke, “On Latency of E-Commerce Platforms,” Journal of Orga-
nizational Computing and Electronic Commerce, 2021.

[9] M. Sosnowski, R. von Seck, F. Wiedner, and G. Carle. “CRDT Web
Caching: Additional Material. ”[Online]. Available: https : / / tumi8 .
github.io/crdt-web-caching/.

[10] M. Fowler, Patterns of Enterprise Application Architecture. Pearson
Education, 2012.

[11] R. T. Fielding, M. Nottingham, and J. Reschke, HTTP Caching, RFC
9111, 2022.

[12] F. Gessert, “Low latency for cloud data management,” Ph.D. disser-
tation, University of Hamburg, 2018.

[13] B. Spang. “Building a Fast and Reliable Purging System,” Accessed:
Jun. 17, 2024. [Online]. Available: https : / / www. fastly. com / blog /
building-fast-and-reliable-purging-system.

[14] Automerge contributors. “Automerge CRDT,” Accessed: Jun. 17,
2024. [Online]. Available: https://automerge.org/.

[15] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm,
“Enhancing the Web’s Infrastructure: From Caching to Replication,”
IEEE Internet Comput., 1997.

[16] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and R. Tewari,
“Scalable consistency maintenance in content distribution networks
using cooperative leases,” IEEE Trans. Knowl. Data Eng., 2003.

[17] B. Abolhassani, J. Tadrous, A. Eryilmaz, and S. Yüksel, “Opti-
mal Push and Pull-Based Edge Caching For Dynamic Content,”
IEEE/ACM Trans. Netw., 2024.

[18] W. Wingerath et al., “Speed Kit: A Polyglot & GDPR-Compliant Ap-
proach For Caching Personalized Content,” in Proc. Int. Conference
on Data Engineering (ICDE), 2020.

[19] M. Wan, A. Jönsson, and C. Wang, “Web user clustering and
Web prefetching using Random Indexing with weight functions,”
Knowledge and Information Systems, 2011.

[20] Mininet Project Contributors. “Mininet,” Accessed: Jun. 17, 2024.
[Online]. Available: https://mininet.org/.

[21] G. Martinez, J. A. Hernandez, P. Reviriego, and P. Reinheimer,
“Round Trip Time (RTT) Delay in the Internet: Analysis and Trends,”
IEEE Network, 2023.

[22] O. Victor Babasanmi and J. Chavula, “Measuring Cloud Latency in
Africa,” in International Conference on Cloud Networking, 2022.

[23] D. Bermbach, “Benchmarking Eventually Consistent Distributed Stor-
age Systems,” Ph.D. dissertation, KIT Scientific Publishing, 2014.

[24] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A Survey of Information-Centric Networking,” IEEE Commun.
Mag., 2012.

2024 20th International Conference on Network and Service Management (CNSM)

