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Abstract—Containers share the kernel with the host OS, which
has implications for the network stack. Achieving connectivity
between containers exclusively in software is unsuitable for
reliable, low-latency applications. While extensive research has
been conducted on virtual machines processing real-time traf-
fic with hardware support, the impact of network latencies
in containerized environments has received comparatively less
attention. This paper analyzes throughput and network latencies
in container topologies on a single host featuring single-root
input/output virtualization, Linux Containers, and commercial
off-the-shelf hardware. Using a state-of-the-art timestamping
methodology, we measure latencies with a resolution of 1.25 µs
without introducing delay by the measurement methodology
itself. We evaluate a single flow in a line topology with up
to 64 containers. The experiments demonstrate that pinning
interrupt request handlers to non-uniform memory access nodes
increases throughput and decreases latencies. Furthermore, we
identify dTLB misses, rescheduling interrupts, and soft interrupt
floods as critical challenges as they cause spikes in latencies,
and isolation is impossible. This paper contributes findings to
minimize bottlenecks and limitations for real-time container
applications.

Index Terms—low latency, container, lxc, virtualization, numa,
single-root input/output virtualization, nfv

I. INTRODUCTION

Virtualization is a powerful tool that enables resource shar-
ing and on-demand provisioning. Testing and verifying in
isolated environments mitigates potential issues at later stages
of the development process. For instance, Internet of Things
manufacturers may seek to ensure their new mesh protocol
can scale while maintaining latency assurances. Similarly,
a researcher in high-performance computing validates their
network stack before utilizing expensive resources.

Manually wiring hardware for deployments may be feasible
for small systems without on-demand requirements. When
the scale of the system increases, the complexity of setup
and maintenance grows, and human error becomes more
likely. Network virtualization and resource sharing are ways
to minimize costs and errors by enabling the automation of
setup and provisioning procedures.

Virtual machines (VMs) provide comprehensive isolation
by virtualizing a complete operating system (OS), including
the kernel. The hypervisor, a software layer, offers controlled
access and abstracted interfaces for VMs to access physical
resources. Due to this nature, VMs are heavy-weight and
require more resources than non-virtualized systems. In con-
trast, containers leverage kernel-level features to establish an

isolated sandbox at process level and share the kernel with the
host OS as lightweight alternative.

Wiedner et al. [1] demonstrated that virtual, software-based
networking, as used in the network emulator Mininet, cannot
achieve stable, low latencies due to the unpredictable nature
of virtual networking. By utilizing containers with physical
networking equipment, we can leverage the benefits of low
overhead virtualization and low latencies. This paper analyzes
throughput and latencies by creating networking topologies on
a single host featuring single-root input/output virtualization
(SR-IOV), Linux containers (LXC), and commercial off-the-
shelf (COTS) hardware. We evaluate a single-flow-line topol-
ogy to identify bottlenecks.

The main contributions of this paper are:
1) pinning interrupt request handlers (IRQs) to non-uniform

memory access (NUMA) nodes increases throughput
and decreases latencies,

2) insight into bottlenecks and limitations: dTLB misses,
rescheduling interrupts, and soft interrupt floods,

3) recommendation for the usage of containers and VMs
including recommondations towards the technical use of
CPU core pinning.

The remaining paper is structured as follows: Sections II
and III introduces the state-of-the-art and methodology. Sec-
tion IV evaluate and discuss the acquired data. In Section V,
we recommend scenarios in which containers are an efficient
replacement for VMs and provide reproducibility information
in Section VI. Section VII outlines limitations and Section VIII
concludes the paper.

II. BACKGROUND AND RELATED WORK

This section provides a comprehensive overview of back-
ground information and related work focusing on containers,
SR-IOV, and the Linux network stack.

A. Virtualization Techniques

This work utilizes LXC due to its minimalistic and
lightweight approach compared to other solutions. LXC per-
forms marginally better than Docker, as shown by Mora-
bito et al. [2], but lacks convenience features.

Felter et al. [3] showed that a Docker container, a con-
tainerized environment that provides separation between dif-
ferent applications, outperforms KVM-based VMs in MySQL
throughput. According to them, compute and memory access
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Table I
SUMMARY OF I/O PERFORMANCE CHARACTERISTICS OF VIRTUALIZATION

IN THE STATE-OF-THE-ART

Technique Sources Latency Throughput

KVM VM [3]–[6] ✓ ✓✓✓
Docker [2], [3] ✓✓ ✓✓
LXC [2], [4]–[6] ✓✓✓ ✓✓✓

are nearly overhead-free, while OS interactions and I/O cause
overhead. Sharma et al. [4] came to similar conclusions. They
found LXC to be 2% slower than bare metal across multiple
benchmarks. Moreover, they measured VMs to be 3% slower
than LXC, although the performance in I/O-bound processes
was inferior. For example, disk latency was eight times higher
in VMs than in LXC. Bessera et al. [5] confirmed the as-
sessment. Furthermore, Sharma et al. [4] revealed that LXC,
compared to VMs, is more susceptible to noisy neighbors or
adversarial workloads, leading to resource deprivation for co-
located containers. These findings indicate that in I/O-bound
and memory-intensive workloads, containers outperform VMs.
The performance characteristics are summarized in Table I.

B. Single-Root Input/Output Virtualization

SR-IOV is an extension to the PCI specification, enabling
physical devices to present multiple lightweight virtual func-
tions (VFs) to the PCIe bus and the OS. The device’s physical
function (PF) serves as a fully-featured PCI function for
management and configuration. A VF has separate send and
receive queues and shares the underlying physical resources.
It can interrupt independently from other VFs and the PF,
resulting in minimal overhead, near line-rate throughput, and
low network latency, as shown by numerous studies [7]–[9].

Dong et al. [10] demonstrated that SR-IOV significantly
reduces CPU utilization and achieves line-rate throughput scal-
ing nearly perfectly with up to 60 VMs. Liu [8] benchmarked
SR-IOV against bare metal and virtio—a virtual network
device. Compared to bare metal, SR-IOV exhibited slightly
higher network latencies caused by interrupt virtualization.
Virtio performed roughly 5 times worse than SR-IOV, indicat-
ing that this technique is not suitable for real-time applications.

Before SR-IOV was introduced on COTS hardware, achiev-
ing low-latency networking required passing a physical device
through to a VM. However, this approach is not scalable due
to limited PCIe lanes. As expected, passthrough offers lower
network latencies than SR-IOV by bypassing the logic required
to pass a frame to the correct VF [7].

C. Network Stack of the Linux Kernel

When a network interface card (NIC) receives a packet, it
is transferred via direct memory access (DMA) from the PCIe
bus into the main memory. A DMA descriptor determines the
main memory location in the receive (RX) queue, a ring buffer
holding pointers to physical memory [11]. Packet loss may
occur if processing is not quick enough, i.e., during packet

bursts, causing the hardware to overwrite data in the ring
buffer.

Whenever data is copied into the main memory, the NIC
raises a hardware IRQ [12]. The CPU core handling the IRQ
can be configured with affinities; otherwise, the OS scheduler
decides. The NIC cannot raise another hardware IRQ until
the current one is cleared. Hence, work in the hardware IRQ
handler is kept to a minimum. The driver schedules a software
IRQ (softirq) to process the packets further and clear the
hardware IRQ, allowing the NIC to raise another one. Data
are copied and processed layer by layer further until they can
be consumed by the application or forwarded.

Modern NICs can have multiple receive (RX) and transmit
(TX) queues. Incoming packets are distributed using Receive
Side Scaling (RSS). RSS calculates a hash based on header
information to determine the processing queue [13]. Therefore,
packets of a flow are handled in the same queue to avoid out-
of-order processing. Each queue has its own hardware IRQ,
and the driver can the merge them.

With an increasing amount of arriving packets, more time
has to be spent handling interrupts. As a mitigation, the
Linux kernel implements busy polling, a form of interrupt
coalescence, with the New API (NAPI). After reaching a
certain threshold of packets per second, the driver switches
into poll mode and turns off hardware IRQs [14]. A separate
thread periodically polls the RX queue for new packets.
NAPI significantly lowers the network latencies and increases
throughput on busy systems, as shown by Salim et al. [15].

Beifuß et al. [16] created a model to predict latencies
introduced by the Linux kernel and drivers and compared
it against measurements. They observed that the interrupt
rate decreased as the packet rate increased, indicating the
successful transition to NAPI.

D. Network Performance with Containers

Xavier et al. [17] showed that networking within LXC
with network namespaces achieves the highest throughput and
lowest latencies out of selected network isolation mechanisms,
including Xen and OpenVZ. While Linux-VServer performed
identically to bare metal, it provided less isolation due to only
sorting frames based on an identifier.

Ara et al. [18] evaluated the performance of software
switches by using LXC on the sending and receiving side.
They compared kernel networking with VPP and SR-IOV,
concluding that SR-IOV excels the others in throughput.
Software solutions outperformed SR-IOV on a single host for
latency, while SR-IOV exhibited lower latency in multi-host
scenarios. However, their latency measurement was limited to
mean values.

Rathore et al. [19] compared the performance of KVM
and LXC containers as virtual routers. They benchmarked
up to 8 concurrent VMs or containers regarding latency and
throughput with SR-IOV and kernel networking. Although
LXC achieves higher packet rates and slightly lower laten-
cies than KVM, they advise against using containers; kernel
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networking is less isolated, and limiting CPU utilization spent
on the network stack per container is impossible.

Based on our findings in the state-of-the-art literature, the
analysis of low-latency packet processing within containers
just started with unanswered questions such as concurrent
behavior, hardware influences, and real-world applications.
This gap leads to further analysis of the effect of containers
on traffic with low-latency requirements. In this paper, we es-
pecially analyze containers’ concurrent behavior and latency’s
corresponding influence.

III. MEASUREMENT METHODOLOGY AND SETUP

The network performance of containers is evaluated with
three hosts: timestamping, load generation (LoadGen), and the
device under test (DuT) running containers. Figure 1 depicts
the setup derived from [1]. Using separate hosts eliminates
the influence of the measurement process itself on the results;
latencies are measured precisely and accurately.

LoadGen DuT

Timestamper

▶
◀

▶
◀

▶
◀

▲ ▲

Figure 1. Experiment setup based on HVNet [1]

A. Overview

The LoadGen generates 64B sized UDP datagrams using
MoonGen [20], a high-performance packet generator. The
machine has an Intel Xeon Silver 4116, 192 GB RAM with
a dual-port Intel 82599ES 10-Gigabit SFP+ NIC connected to
the DuT via optical fibers.

The DuT hosts LXC topologies on Debian 10 with real-
time (RT) patches. According to Gallenmüller et al. [21], an
RT kernel is preferable over others when cores are shared.
The DuT features an AMD EPYC 7551P, 128 GB RAM, and
two interconnected dual-port Intel X710 10Gbe SFP+ NICs.
One port on each NIC is connected to the ingress and egress
of the LoadGen. We use LXC 4.0.6, packaged by Debian 11.
Datagrams arrive at the ingress, are processed by the container
topology, and are returned to the LoadGen.

The Timestamper is connected to the ingress and egress
with passive optical terminal access points, introducing twice
the same constant delay that is not visible in the latency
calculations. Each packet carries a unique identifier, allowing
the correlation of packets to calculate the exact latency through
the topology. The calculations are performed by the MoonSniff
framework [20]. This methodology allows gathering latency
without inducing latency through the measurement process.
The Timestamper is equipped with an AMD EPYC 7542,
512 GB RAM, and an Intel E810-XXVDA4 25-Gigabit NIC
flashed to 10Gbit/s providing 1.25 ns precision [22].

B. Optimizations

Several optimizations are applied to the OS, kernel of the
DuT, and the containers. Related work [23], [24] suggested

turning off energy-saving features, read-copy updates, and
activating poll mode when a core is idle. By turning off
logging, which lowers CPU usage, the latency for some
packets can be lowered. Moreover, configuring IRQ affinity
for core 0 steers interrupts to core 0, which is not processing
packets. Furthermore, simultaneous multithreading is disabled,
as it does not aid in handling interrupts [13]. Finally, the
performance governor is set for all cores to prevent the CPU
from scaling down its frequency.

The containers in the experiments have no additional appli-
cation running; the kernel and network namespaces accomplish
all packet processing. Each container controls an array of
libraries, encompassing journaling, a DHCP client, an SSH
server, and a dbus daemon, all of which demand CPU time.
Limiting all containers’ user and system slices to CPU core 0
reduces work unrelated to processing IRQ handlers.

C. Arbitrary Flow Injection

Simulating networking scenarios includes user-defined
flows on arbitrary ingress and egress points. This objective
can be accomplished by following the instructions by Wied-
ner et al. [1]. Their methodology involves SR-IOV on the
ingress and egress interface of the DuT (cf. Figure 2) and
passing a tuple of VF to each VM. When the ingress NIC
receives frames, the frames are associated with the MAC
address to the VF. Consequently, the NIC sets the upper bound
for the number of nodes and logical connections supported to
the maximum amount of VFs the NIC can provide, in our case
up to 64 nodes with one connection per node.

D. Network Topologies on a Single Host

NIC1 on NUMA #1 NIC2 NUMA #3

ingress port1 port2 egress

0 1 2 0 1 0 1 0 1 2

LXC 0 LXC 1 LXC 2

in 0 eg in 0 1 eg in 0 eg

Figure 2. Overview of 3 hosts in line with SR-IOV on all NICs

To create virtual network topologies with real hardware, the
remaining two ports of our Intel X710 NICs are connected via
a DAC cable. For a logical connection between two nodes,
we create one VF on each of the NICs and assign the same
VLAN tag to them. We use policy routing, a feature of
the Linux kernel [14], to route packets based on the UDP
destination port. This setup ensures a packet is transmitted
over the physical wire, introducing delay due to propagation
and serialization on ingress and egress.

Figure 2 depicts how a logical line topology with length
three is reflected by the physical hardware after combining the
approach for flow injection in Section III-C and the setup with
two interconnected NICs. Each container receives an ingress
(in) and egress (eg) VF from the respective physical NIC. Two
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lines with the same color indicate a logical connection between
two containers and are tagged with a VLAN ID. For instance,
LXC0 and LXC1 are connected with the VF0 on port1 and
VF0 on port2. Any packet between the two containers is
sent over the physical wire.

VFs from port1 and port2 are assigned to containers in
a best-effort manner, resulting in assignments where memory
must be copied between NUMA nodes. For example in Fig-
ure 2, a flow with the hops 0-1-2 has to cross NUMA nodes
once to copy the packets into the egress on node 3.

IV. EVALUATION

This section presents our evaluation of container in a line-
topology. We begin by discussing the maximum achievable
packet rate and highlight the bottlenecks. Subsequently, we
evaluate the network latencies and discuss the results.

A. Packet Rate
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Figure 3. Packet loss at packet rate for line topologies with per node pinning

We restrict the number of RX and TX queues to one per
interface, as additional queues yield minimal benefits for one
flow [13]. To precisely measure the packet rate and loss, we
increase the packet rate over time constantly and count the
number of packets sent and received. We measure packet
loss for 20 s per rate before increasing the rate by roughly
1 kpkts/s. Figure 3 depicts the packet loss with per-node IRQ
pinning. By pinning IRQs to all cores of the NUMA node
the NIC belongs to, memory copies across NUMA nodes are
minimized.

An interesting pattern emerges for long lines where a single
core handles multiple IRQs. Before packet loss increases
linearly with the packet rate, packet loss can be observed
for some rates. For example, with 64 hosts packet loss oc-
curs in the interval 17.3 kpkts/s to 50 kpkts/s, but between
50 kpkts/s to 55 kpkts/s, no loss occurs. This is caused by
a combination of rescheduling interrupts and soft interrupt
flood handling. Between 17.3 kpkts/s to 50 kpkts/s IRQs are
processed regularly. Due to the load balancing mechanism, the
IRQs are rescheduled to a different core causing a spike in
latency and packet loss occurs. Suo et al. [25] confirms that
when CPU utilization is imbalanced, the kernel reschedules
IRQs to other cores, causing rescheduling interrupts. The
mechanism for dealing with soft interrupt floods explains
that the stable packet rate before increases linearly [26].
The system is overloaded when it spends more than 2ms

for ten repeats processing soft interrupts. The kernel process
ksoftirqd/n is scheduled to clear the remaining soft in-
terrupts. Due to ksoftirqd/n running with a non-real-time
scheduling policy, it can be preempted by other processes [27]
unlike the IRQ handlers running with a real-time scheduling
policy and high priority. Additionally, the ksoftirqd/n
processes all remaining softirqs of any kind, which can re-
sult in higher, less predictable latencies for network softirqs.
Although no packets are lost, the latency becomes increas-
ingly unpredictable due to the non-real-time scheduling policy,
larger polling intervals, and scheduling latency. Conversely, the
highest packet rates are in direct conflict with latency.
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Figure 4. Packet rate, dTLB misses for lines with and without IRQ pinning

In the following, we relate the maximum achieved packet
rate before packet loss occurs to the corresponding data
translation lookaside buffer (dTLB) misses. Two variants are
analyzed: pinning IRQs to all cores of the NIC’s NUMA node
(pin) or letting the scheduler decide (no pin). We allow the
kernel to schedule IRQs on all cores except the first one; as it
is already handling other interrupts from irqaffinity=0.
To gather the data, we sample active IRQ threads for 10 s
with linux-perf while the DuT is processing packets. The
data presented in Figure 4 reveals that a higher packet rate is
achieved by pinning IRQ threads to the correct NUMA nodes.

NUMA locality explains why lines with an even number
of nodes achieve, in general, higher packet rates than uneven
ones. The DuT, equipped with the first generation AMD
EPYC, has 4 NUMA nodes. Ingress is attached to node 1,
while egress is attached to node 3 as depicted by Figure 2.
When using an uneven amount of containers, the IRQ handler
of the egress must copy memory from node 1 to node 3. The
delay added by the PCIe bus remains constant in both cases;
using an even amount of containers bypasses the memory copy
crossing NUMA domains at the final node in the line. In line
with our data, Emmerich et al. [11] measured a penalty of
20% on the packet rate for inadequate NUMA assignment.

With more nodes, the packet rate drops noticeably due to
a higher number of dTLB cache misses, especially with 64
containers, with around 13% dTLB misses. If a mapping
between a physical and virtual page is absent in the dTLB,
an expensive page walk stalls the current cycle due to mul-
tiple slow memory accesses. Two factors contribute to the
increasing dTLB pressure: the high packet rate and, with more
than 8 containers, overcommitment of cores handling IRQs.
When utilizing 16 containers, the packet rate is measured
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at 173 kpkts/s, which is less than half of the rate achieved
with 8 containers (477 kpkts/s) with per-node IRQ pinning.
This performance degradation stems from each core processing
effectively two IRQ handlers and inefficient scheduling.

None of the lines can saturate the maximum line rate of
10Gbit/s divided by the number of used VFs per NIC. For
example, a line with 64 containers with per node pinning
can achieve throughput of 31Mbit/s while the line rate
per VF is at 10Gbit/s

63 = 159Mbit/s. Although SR-IOV
incurs overhead, the OS and hardware bottleneck dominate
the physical limitations.

B. Latency
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Figure 5. HDR diagrams of line lengths, max. packet rate; no IRQ pinning
(top) and per node IRQ pin (bottom)

First, we measure with the maximum achievable packet rates
as retrieved in Figure 4 to stress the system while avoiding
overload, which would harm latency [21], [27]. Second, a
packet rate of 17.3 kpkts/s as it is below the maximum packet
rate for lines up to 64. Each experiment is repeated a minimum
of three times, and the run with the highest worst-case latency
is selected, remaining data can be accessed as described in
Section VI. High-dynamic-range (HDR) diagrams visualize
the latency distribution by highlighting the impact of outliers
in a dataset with logarithmic scales on both axes.

Figure 5 shows the latency distribution of a line topology
with selected lengths without IRQ pinning in the top diagram,
and in the bottom with per NUMA node IRQ pinning at
the respective maximum packet rate. Due to varying packet
rates and our Intel X710 NICs batching aggressively on lower
packet rates [21], the latencies in the two HDR diagrams are
not comparable. Without IRQ pinning, the tail latency is less
predictable, exhibiting frequent spikes. For example, at the
99.9th percentile, a line with four nodes outperforms a line
with two nodes. Furthermore, past the 99.99th percentile, a
sharp increase in latency is observed for four nodes, indicating
that an interrupt was scheduled on the same core as the IRQ
handler. When comparing the two HDR diagrams, it is evident
that IRQ pinning reduces latency and improves predictability.

While the lower percentiles exhibit similar values, with IRQ
pinning showing slightly lower latencies, the tail latency di-
verges past the 99.9th percentile. For instance, the tail-latency
of a four-nodes-line is at 7400 µs without and 678 µs with IRQ
pinning. With more than 8 nodes, the effect of cores processing
more than one IRQ handler becomes apparent. Even at the
median, the latency of a 16-nodes-line with 1094 µs diverges
from the linearity of an 8-nodes-line at 335 µs.

0 50 90 99 99.9 99.99 99.999 99.9999
100

101

102

103

104

Percentiles [%]

L
at

en
cy

[µ
s]

core pin 8 4
node pin 2 1

Figure 6. HDR diagram of line lengths, max. packet rate, node vs. core pin

To further investigate the impact of IRQ pinning, Figure 6
compares the tail latency of IRQ pinning per NUMA node and
core. When pinning each IRQ handler to a single CPU core
located on the same NUMA node, we are limited by the AMD
EPYC 7551P to lines of length 8. Seven cores are necessary
for the VFs on port1 and port2 (cf. Figure 2), and one core
is required each for the ingress and egress. In scenarios where
the amount of containers in a chain is less than the number
of per-NUMA available CPU cores, per core IRQ pinning
demonstrates stable, lower tail latencies. While up to the 99th

percentile, the latency is identical, rare rescheduling interrupts
cause the tail latency to diverge when pinning IRQ handlers
per NUMA node. A significant improvement at percentiles
past the 99.9th can be observed for 8 nodes. When comparing
lengths one and two, 99.99% of the recorded events are
relatively close, with diverging tail latency past the 99.99th

percentile. For only one container, the kernel forwards packets
between two NICs; however, for two containers, all four ports
of both NICs are processing packets with SR-IOV, introducing
additional delay. Concluding, IRQ pinning per core is strictly
superior to per NUMA node.
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Figure 7. HDR diagram of line lengths, 17.3 kpkts/s

The latency distribution for a packet rate of 17.3 kpkts/s
is shown in Figure 7. Most events occur between 100 µs to
1000 µs with latency increasing with number of nodes. NIC
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Figure 8. 5000 worst-case latencies, 17.3 kpkts/s, per-node IRQ pin

batching does not inhibit comparability, as the same packet
rate is used for all measurements. There is no significant
difference between the two variants. Between the 90th and
99th percentile, the latency of a 64-nodes-line is higher
without IRQ pinning, converging with higher percentiles.

Most noteworthy are the large spikes in latency that occur
infrequently for both variants. For example, with node pinning,
a significant spike in latency to 5.2ms for 4 nodes and 60ms
for 64 nodes can be observed. Experiments with the maximum
packet rate as shown in Figure 5 do not exhibit such spikes.
To further investigate this phenomenon, we display the 5000
worst-case latencies over time for lines with outliers and node
pinning in Figure 8. One spike can be found at 38 s for 4
nodes caused by a rescheduling interrupt. The same applies
to the spikes displayed for 64 nodes. The kernel scheduler
balances processes across all available cores resulting in more
rescheduling opportunities for a higher number of containers
and therefore IRQs. We did not consistently observe these
spikes in the remaining runs of the experiment for 1-32 nodes.
For example, the other five repeats with four nodes did not
show a spike, with 64 nodes it occurred consistently in all
repeats. Although the container system with IRQ pinning
achieved a nearly loss-free maximum rate of 64 kpkts/s, when
lowering the rate to 17.3 kpkts/s occasionally packet loss
occurs as shown in Figure 3. As Figure 8 displays, 64-nodes-
lines are more prone to rescheduling interrupts. Each core is
overcommitted by almost 8 times, leading to increasing dTLB
misses and worsening tail latency past the 90th percentile. This
shows that the networking subsystem has no threading bottle-
necks and can be used in multiple containers simultaneously.

We recorded higher latency than related work [6] for a single
host. While we measured 49 µs at the median, they measured
13 µs. This disparity can be attributed to their use of PCI
passthrough of ingress and egress, whereas we choose SR-
IOV for flow injection. Furthermore, for their measurement,
they used a simple tc-based forwarder, which copies packets
on layer two between interfaces, bypassing the complexity of
kernel processing with routing policies.

In summary, we found that pinning IRQs to cores rewards
lower tail latencies than per NUMA node. In scenarios where
more containers are deployed in a line than CPU cores per
NUMA node are available, overcommitting cores is an option
when the packet rate is low. For higher packet rates, dTLB
misses degrade the system performance, and interrupts can
cause more likely spikes for higher rates.

V. RECOMMENDATIONS

Containers are a more performative alternative to VMs for
non-critical applications with relaxed real-time requirements.
We observed lower latencies for containers than VMs. How-
ever, hardware choices must be carefully considered as NUMA
locality significantly impacts the system’s performance with
the upper bound set by the NIC’s associated NUMA node’s
CPU cores. Latencies are most stable when pinning IRQs to
dedicated cores, followed by pinning IRQs to the NUMA node
of the NIC as the second-best option with latency spikes due
to rescheduling interrupts.

We cannot recommend using multiple containers for ap-
plications with hard real-time requirements. Our experiments
demonstrated that containers cannot fulfill the strictest 5G
URLLC requirement of 0.5ms with the kernel networking
stack. It is impossible to sufficiently isolate CPU cores from
the kernel to avoid interrupts, confirming the assessment by
Gallenmüller et al. [28].

VI. REPRODUCIBILITY

To reproduce our results, we provide scripts, raw data, and
all figures, including repeats, that are not in the paper due to
space constraints at our accompanying website1.

VII. LIMITATIONS

Hardware availability limited our experiments to a single
setup. Future work includes experiments on monolithic Intel
CPUs and AMD CPUs with faster interconnects.

In our examination, we focused on packet forwarding at the
kernel level, as introducing a more complex application would
introduce extra latency due to transferring memory to user
space. Moreover, additional delays would be introduced when
using cores from another NUMA node. This issue primarily
affects lightweight applications with notable networking de-
lays. We focused on a single flow and line topology scenario,
whereas future work should include more complex, multi-flow
scenarios as performed for VMs by Wiedner et. al. [1].

VIII. CONCLUSION

Our work demonstrated that containers are a viable alterna-
tive to VMs for real-time networking when using the flexible
kernel networking stack. Our results show that reducing the
impact of concurrent containers on each other is possible when
using careful optimizations. Network emulators can benefit
from containers’ flexibility and scalability while maintaining
low latencies. Various solutions implementing containers like
Containernet already exist. However, they typically rely on
kernel-based virtual networking, negatively impacting tail la-
tencies [1]. Using real hardware and scaling with SR-IOV
significantly improves latency. We have demonstrated that our
container approach can achieve stable, low latencies.

In this work, we measured the packet rate of containers
in a line topology with varying lengths of up to 64 nodes.
NUMA locality is crucial for achieving high packet rates,

1https://tumi8.github.io/applicability-hwsupported-containers
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so we recommend pinning IRQ handlers to CPU cores on
the NIC’s NUMA node. We identified rescheduling interrupts
as a significant factor for higher tail latencies. They can be
mitigated by pinning IRQ handlers to the respective CPU cores
the NIC is attached to limiting the line length to the number of
available cores on the NIC’s NUMA node. When using long
lines with 64 nodes, dTLB misses increase to around 12%,
degrading the packet rate and tail latency.

We found that pinning IRQs to the NUMA node is necessary
to achieve a stable packet rate without packet loss, as the
scheduler is unaware of the NUMA topology. This shows
that optimizing the pinning of IRQs is technical important to
plan ahead to achieve the lowest stable latencies on arbitrary
line lengths. Furthermore, this optimizations enhance real-
world applications with a reduced network-induced latency
and provide more possibilities to use processing applications
within the boundaries of latency requirements.

In the future, we plan to evaluate user-space networking,
such as DPDK, in concurrent containers. Previous work [6]
suggests containers with DPDK can achieve lower latencies
than with kernel networking reducing the kernels impact.
By using DPDK, packets are processed in user space so
that additional isolation with cgroups is possible to mitigate
interrupts. Additionally, we intend to evaluate how different
kernels and schedulers affect the tail latency. Moreover, the
potential impact of newer Linux kernel versions on latencies
must be analyzed. More complex topologies, more complex
real world applications, and a flow setup to analyze the
influence of different paths per flow is part of our future work.
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