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Abstract—This research presents a novel method for predicting
service degradation (SD) in computer networks by leveraging
early flow features. Our approach focuses on the observable
(O) segments of network flows, particularly analyzing Packet
Inter-Arrival Time (PIAT) values and other derived metrics, to
infer the behavior of non-observable (NO) segments. Through
a preliminary evaluation, we identify an optimal O/NO split
threshold of 10 observed delay samples, balancing prediction
accuracy and resource utilization. Evaluating models including
Logistic Regression, XGBoost, and Multi-Layer Perceptron, we
find XGBoost outperforms others, achieving an F1-score of 0.74,
balanced accuracy of 0.84, and AUROC of 0.97. Our findings
highlight the effectiveness of incorporating early flow features
and the potential of our method to offer a practical solution for
monitoring network traffic in resource-constrained environments.

Index Terms—Service degradation detection, Intra-flow analy-
sis, Early flow features, Hardware offloading, Predictive modeling

I. INTRODUCTION

In the era of relentless digitization, residential networks
are fundamental to digital activities, from streaming videos
to real-time gaming. As the demand for uninterrupted, high-
quality digital experiences grows, so does the need for resilient
networks that can consistently meet these expectations [1], [2].
However, service degradation (SD), characterized by reduced
network performance, poses a significant challenge. Factors
like network congestion, inefficient data routing, or external
interferences can lead to increased latency, buffering, or even
outages [3]. Therefore, effective SD management is crucial for
seamless digital experiences.

Research on SD detection has evolved over nearly two
decades, exploring various metrics and methods. Early work
analyzed round-trip time deviations to predict Internet SDs [4].
Subsequent studies have utilized end-to-end delay and loss
measurements to assess network quality [5] and developed
real-time packet loss monitoring systems [6]. Machine learning
approaches have also been explored; for example, deep neural
networks have been used to predict throughput and flow
duration in campus networks [7], highlighting their potential
in SD prediction.

Latency has been identified as a crucial SD indicator,
particularly in applications like video streaming and cloud
gaming [8], [9]. In cloud computing environments, methods

to detect inter-VM interference and estimate performance
degradation using multi-variable regression models have been
proposed [10]. Additionally, controlled SD strategies have
been introduced to manage network overloads, balancing ser-
vice quality and resource utilization [11], [12].

Our research builds on these insights by focusing on SD
detection in residential LAN environments, where network
devices often have limited computational capabilities [13].
These devices typically use a dual-path architecture: a fast path
for rapid hardware-based forwarding and a slow path for CPU-
based processing [13]–[15]. Once specific criteria, like the
completion of a TCP handshake, are met, flows transition from
the CPU (slow path) to hardware (fast path), reducing the CPU
workload but limiting detailed, packet-level monitoring [15].
Consequently, flows are split into observable (O) and non-
observable (NO) segments, presenting a challenge in detecting
SD events in the NO segments after offloading to hardware
accelerators.

To address this challenge, we propose leveraging early
flow features from the O segments to predict the status
of the NO segments, thereby identifying potential SD in
residential networks. Our approach, termed intra-flow service
degradation detection, uses early flow characteristics, such as
Packet Inter-Arrival Time (PIAT), to gain insights into network
performance. We evaluate various models, including Logistic
Regression, XGBoost, and Multi-Layer Perceptron (MLP), to
determine their effectiveness in predicting SD events from the
O segments. Results show that XGBoost, with an O/NO split
threshold of 10 observed delays, offers the best performance—
achieving an F1-score of 0.74, balanced accuracy of 0.84, and
AUROC of 0.97—balancing prediction accuracy with resource
utilization.

Our main contributions in this paper are as follows:

• A novel approach for predicting SD in network flows
using early flow features to infer behavior in NO parts.

• Introduction and evaluation of intra-flow SD detection,
leveraging information within a flow for prediction in
resource-constrained environments.

• Identification of an optimal O/NO split threshold, balanc-
ing prediction accuracy and practical implementation in
network devices with hardware offloading.
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Fig. 1: Visual representation of network traffic flow showing
the vertical separation between WAN and LAN delays.

The rest of this paper is organized as follows: Section II
presents our method to identify SD events. Section III eval-
uates the predictive power of O parts of network flows in a
binary classification setting. Section IV concludes the paper.

II. METHODOLOGY

A. Vertical Separation of Delays

Network flow packets can be categorized into LAN and
WAN directions, with PIATs measured for each. PIAT quanti-
fies the time interval between the arrivals of two consecutive
packets within a network flow at the flow meter. We derive
LAN-side delays (and jitter) from this metric that serve as
foundational metrics of our methodology [16]. The concept
of vertical separation focuses on isolating LAN-side delays
to accurately assess local network conditions, avoiding vari-
ability from WAN influences. Fig. 1 illustrates this separation,
representing packet directionality as arrows and showing LAN
PIATs in blue and WAN delays in orange.

Assuming that delays caused by local endpoints are negligi-
ble compared to those induced by broader network conditions
and that the response to the last packet in a burst is instan-
taneous (a condition typically met with TCP traffic) the LAN
PIATs marked with a thick blue border in Fig. 1 correspond
to the latency introduced by traversing the LAN, thus defining
the LAN-side delays that we use in our analysis.

B. Horizontal Separation of Flows

Flows in a network can be split into Observable (O) and
Non-observable (NO) segments based on a threshold θ, which
defines the number of packets monitored by the software layer
before offloading to hardware. If a flow’s packet count p is:

State of Flow =

{
Observable if p ≤ θ

Non-observable if p > θ

For ||fi|| ≤ θ, all packets are observed; for ||fi|| > θ,
the flow is divided into Op = {p1, . . . , pθ} (observed) and
NOp = {pθ+1, . . . , p||fi||} (unobserved). This horizontal
separation, visualized in Fig. 2, highlights the point where a
flow transitions from software to hardware processing, marked
by the threshold θ.

Fig. 2: Illustration of the horizontal separation of a network
flow into O and NO segments.

Fig. 3: An SD event in a flow with a MSL of 2.

C. Refining Observability of LAN Delays

The θ parameter does not ensure a consistent number of
observable LAN delays due to the exclusion of WAN delays
and the occurrence of packet bursts. To refine the focus on
LAN delays, we introduce a threshold m specific to LAN
delays. The O part of the flow consists of LAN delays up to
m, while delays beyond this are considered non-observable. If
a flow has fewer delays than m, it is fully observable.

D. Heuristic Detection of Service Degradation Events

With refined observability, SD events can be detected using
a heuristic based on latency and jitter behavior over time [16].
Different application types have unique requirements for ex-
treme delay and jitter occurrences, defined by a Minimum
Sequence Length (MSL) of such events. An SD event begins
with an extreme delay and jitter followed by a sequence of
extreme delays. Fig. 3 shows an SD event with MSL of 2.

E. Handling Split SD Events

SD events can span the O and NO parts of flows, requiring
careful handling to maintain detection accuracy. Three scenar-
ios arise during horizontal separation:

• The SD event is entirely within the O part (SDend <
Oend).

• The SD event is entirely within the NO part (SDstart >
Oend).

• The SD event splits between O and NO parts (SDstart <
Oend and SDend > Oend).
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Fig. 4: Illustration of a split SD event in a flow.

In the last case, in order to preserve potentially crucial
information we chose to keep these events by splitting them
in two. Fig. 4 illustrates this scenario.

However, this process makes these split events indistin-
guishable from apparent SD events that are shorter than MSL
(i.e. they do not develop into real SD events) and either cross
the O/NO boundary or end right at the end of the O part.
Such a split is depicted in Fig. 5. Aiming for consistency, we
marked these the same way as real split SD events.

Fig. 5: Illustration of a potential split SD event.

To analyze the splits, we calculate the split SD ratio as:

fsplit SD ratio =
f|partial SD event|

fMSL
,

where f is a flow. This ratio helps quantify how close a partial
event is to meeting the SD event criteria.

F. Intra-Flow Service Degradation Detection

Accurate SD detection in resource-constrained edge devices
requires leveraging the observable (O) flow segments to infer
the state of the non-observable (NO) segments. We propose
an intra-flow service degradation detection method that uses
early flow features from the O part to predict SD events in the
NO part. Fig. 6 illustrates this approach.

The goal is to perform a binary classification using the
O segment data to predict SD presence in the NO segment,
offering a solution tailored to the limitations of edge devices
that cannot continuously monitor entire flows.

Fig. 6: Intra-flow SD detection.

III. PRELIMINARY EVALUATION AND PERFORMANCE
ANALYSIS

We assess the potential of the O parts of flows to predict
SD events in the NO parts using binary classification models
to determine SD event presence or absence in the NO part.

A. Dataset

We use the dataset from [16], [17], which consists of TCP
network flows from five consecutive days in a university
dormitory network. The dataset includes:

• Aggregated flow features and packet-level characteristics
for the first 255 packets of each flow.

• LAN delay and jitter values extracted using vertical
separation (Section II-A).

• Marked SD events with application-specific MSL thresh-
olds.

The analysis focuses on flows measured at Location 2 for
result transferability.

B. Data Preparation

Data from Monday to Wednesday was used for training, and
Thursday to Friday for testing. Only flows with an O/NO split
were included. Input features include:

• Statistical measures (min, max, median, mean, std) of
delays and jitters in the O part.

• Individual delay and jitter values, SD event counts, and
attributes of the longest SD event in the O part.

• Application, category, location, connection type, and
fsplit SD ratio.

We performed one-hot encoding on categorical variables
and used Standard Scaler for scaling. Table I summarizes the
input sizes and feature counts for different O/NO splits.

C. Experimental Design and Evaluation Metrics

We evaluated the following models:
• Baseline predictors (null, all-true, random),
• Heuristic models (SD-Based Predictor, Split SD Metric-

Based Predictor),
• Machine learning models (Logistic Regression, XGBoost,

Multi-Layer Perceptron (MLP)).
Grid Search and 5-fold cross-validation were used to op-

timize model parameters. Performance was evaluated using
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TABLE I: Train and Test Sizes with Input Feature Counts for Different O/NO Splits

O/NO Split Train Size Test Size Input Feature Count

5 905,407 flows 507,359 flows 141 features (including 6 app. cat. names, 101 app. name, 9 location, 2 connection type OH encoded features)
10 264,183 flows 154,021 flows 140 features (including 6 app. cat. names, 90 app. name, 9 location, 2 connection type OH encoded features)
15 168,463 flows 99,290 flows 144 features (including 6 app. cat. names, 84 app. name, 9 location, 2 connection type OH encoded features)
20 122,814 flows 73,043 flows 152 features (including 6 app. cat. names, 82 app. name, 9 location, 2 connection type OH encoded features)
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Fig. 7: Performance at different O/NO split thresholds.

metrics: precision, recall, F1-score, specificity, NPV, accuracy,
and balanced accuracy.

D. Classification Performance

Fig. 7 shows the achieved results for the selected O/NO
threshold splits. Fig. 7a compares the classification metrics,
while Fig. 7b depicts the Receiver Operating Characteristic
(ROC) curves and corresponding areas under the curves (AU-
ROC).

1) Overall Performance: All trained models significantly
outperformed the random, all-true, and all-null predictors.
The null predictor achieved over 95% accuracy but only
0.5 balanced accuracy, reflecting a high prevalence of flows
without SD events in the NO part.

All models at every threshold showed excellent specificity,
NPV, and accuracy (over 95%, many approaching 100%), indi-
cating their effectiveness in correctly classifying flows without
SD in the NO part. This suggests consistent behavior for flows
with no SD events in the O part, nor split SDs, as evidenced
by high TNR and NPV values. The high accuracy reflects the
data imbalance toward these types of flows. However, models
struggled to correctly identify flows with non-observable SDs,
where these events were less frequent.

2) Model Comparison: Heuristic models (SD Based Pre-
dictor and Split SD Heuristic) showed moderate effectiveness
with similar prediction results across all thresholds. They
achieved the highest recall and balanced accuracy (50% and
72% at threshold 5, and around 0.8 and over 0.85 at higher
thresholds). However, they underperformed in precision and

F1-score compared to other models, indicating that while many
flows with non-observable SD events have SD in their O parts,
many flows with SD in the O part or guessed split SD events
do not develop SD in the NO part.

The sophisticated models (Logistic Regression, XGBoost,
and MLP) had much higher precision but lower recall, es-
pecially at threshold 5. For instance, XGBoost reached 66%
precision (over 72% for the others) but had a recall of only
19%, and just 9% for Logistic Regression and MLP. This
resulted in low F1-scores (30% for XGBoost and about half for
the others) and balanced accuracy around 55-60%, suggesting
that lower thresholds do not provide enough information to
predict the more volatile behavior in the NO part effectively.

3) Impact of O/NO Split Threshold: At the O/NO split
threshold of 10, prediction metrics were more balanced for
all models. The heuristics maintained high recall (78%) and
balanced accuracy (86%) but had limited improvement in
precision (under 45%). The sophisticated models achieved
more balanced results, with all metrics above 64%. XGBoost
and MLP had a recall of 69% and balanced accuracy of 84%,
with XGBoost achieving over 80% precision and the highest
F1-score (74%).

Beyond threshold 10, splits of 15 and 20 showed only
marginal gains. XGBoost reached 85% precision and a 77%
F1-score, but further increases led to minor or even decreased
improvements, likely due to fewer flows being considered.
This indicates that higher thresholds offer no significant ad-
vantages.
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4) ROC Curve Analysis: The ROC curves show similar
behavior to the patterns identified earlier. The simple heuristics
demonstrate clear inferiority to the other models, even at
the O/NO split threshold of 5 (with AUROC scores of 72%
compared to over 87% for the other models). The superior
robustness of the XGBoost model is evident at every threshold,
exceeding 0.9 in AUROC at the O/NO split of 5, reaching 0.97
by threshold 10 and 0.98 by 15.

Logistic Regression and MLP exhibit similar patterns with
highly correlated ROC curves and nearly identical AUROC
values. The lack of significant improvement beyond threshold
10 is also evident in this figure.

5) Summary of Findings: All models outperformed the
baseline predictors, underscoring the effectiveness of our ap-
proach. The XGBoost model offered the best balance between
high precision, recall, and balanced accuracy, making it the
most suitable for predicting non-observable SD events. Thresh-
old 10 emerged as the optimal O/NO split point, offering a
strong trade-off between predictive performance and compu-
tational efficiency. Lower thresholds, like 5, lacked sufficient
information for reliable predictions, while higher thresholds,
such as 15 and 20, provided only marginal improvements,
leading to diminishing returns.

6) Limitations: Our study, while promising, has certain
limitations. The analysis was conducted on a specific network
environment, and further validation in diverse settings would
enhance the generalizability of our findings. The accuracy
of predictions may vary depending on the nature of the
flow and the specific characteristics of SD events. While
our model performs well in predicting the presence of SD
events, predicting their exact characteristics (such as duration
or severity) remains a challenge. Additionally, the method’s
effectiveness is influenced by the choice of the O/NO split
threshold and the features selected for analysis. Despite these
limitations, our intra-flow SD detection approach offers a novel
and resource-efficient method for maintaining network quality
in challenging environments.

IV. CONCLUSION

This paper introduced a novel method for predicting ser-
vice degradation (SD) in networks by leveraging early flow
features, particularly packet inter-arrival times and related
metrics, from the observable (O) segments to infer the behavior
in non-observable (NO) segments. We identified an optimal
O/NO split threshold of 10 observed delays, which provides a
balance between prediction accuracy and resource efficiency.

Our results showed that the XGBoost model performed best,
achieving an F1-score of 0.74, a balanced accuracy of 0.84, and
an AUROC of 0.97. These findings underscore the potential of
using early flow features for effective SD detection in resource-
constrained environments. Future work will explore the exten-
sion of this approach to detect other network anomalies and

validate the model across different network environments and
traffic types to enhance its robustness and applicability.
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