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Abstract—In cellular networks, the rapid increase in traffic
demand needs to be met by additional equipment, but the
resulting increase in power consumption significantly impacts
CO2 emissions. The impact on power consumption is partic-
ularly substantial due to the large number of base stations
(BSs). As a result, power consumption needs to be reduced by
temporarily suspending BSs with low traffic usage through BS
sleep management. On the other hand, the effect of BS sleep
on communication quality also needs to be considered. This
paper proposes a new antenna sleep management framework
to reduce power consumption while maintaining communication
quality that deals with sleep on an antenna-by-antenna basis. The
framework uses a two-stage deep reinforcement learning (DRL)
approach that incorporates the concept of safe DRL to ensure
that users’ throughput is above the target value. Results indicate
that for the sleep management problem of multiple antennas
within a single BS, constraint violations on throughput were
reduced from approximately 0 to 1.7 percent while achieving
a constant power reduction close to the optimum value.

Index Terms—antenna sleep management, quality of service
(QoS), power reduction, safe reinforcement learning

I. INTRODUCTION

Cellular networks provide various communication services
involving vast amounts of data, and this demand is expected to
increase. In response to the demand, cellular carriers must ex-
pand the network systems’ capacity and ensure communication
quality by installing additional base stations (BSs). However,
the accompanying increase in power consumption has raised
concerns about environmental impacts, such as increased CO2
emissions [1]. In particular, due to their widespread deploy-
ment, the power consumption of BSs contributes significantly
to the power consumption of the overall communication sys-
tem [2], [3]. Thus, cellular carriers must avoid wasting power
by putting BSs to sleep or switching them off when traffic
usage is low while installing many BSs. In summary, reducing
power consumption while ensuring communication quality to
reduce CO2 emissions is desirable.

BSs must be put to sleep or switched off, considering cov-
erage and quality of service (QoS) metrics (e.g., throughput,
delay, packet loss rate). If coverage is not ensured, connectivity
is impossible, not to mention QoS. Concerning QoS, in par-
ticular, throughput is essential for providing adequate quality
application services. Thus, ensuring coverage and throughput
is especially critical for cellular carriers.

To ensure coverage, antenna (band) sleep management is
employed, where the management is applied only to some
antennas. Cellular carriers generally operate antennas across

multiple frequency bands. They operate coverage antennas
to avoid coverage holes and ensure connectivity and also
operate capacity antennas to enhance network capacity. The
coverage provided by these antennas overlaps, so coverage is
ensured by only targeting the capacity antennas for control.
This operation limits the potential gains in power reduction
through sleep management but is essential for cellular carriers,
as it prioritizes maintaining connectivity.

When user equipment (UE) previously connected to an
antenna that is put to sleep re-establishes connection with
another active antenna, the user’s throughput potentially de-
grades. This degradation occurs when the UEs reconnect to
an antenna with a high utilization rate. The lack of resource
blocks (RBs) prevents the UE’s throughput from achieving the
target value preset by the carrier. In such a case, the carrier
must reactivate the sleeping antennas to maintain the target
throughput. Implementing this response incurs manual costs,
so a sleep policy needs to be established that considers the
impact on throughput. However, setting appropriate policies
for antennas used in many locations under various conditions
takes time and effort.

To reduce CO2 emissions, we propose an antenna sleep
management method that reduces power consumption while
maintaining the carriers’ target throughput. Adopting a deep
reinforcement learning (DRL) approach automatically sets the
appropriate sleep policy for the antennas efficiently under
various usage conditions. To prevent the UEs’ throughput
from being below the carrier’s preset target value, we refer
to the previous research on safe deep reinforcement learning
(safe DRL) [4]. Our proposed method includes a two-stage
DRL approach. In the first stage, the first DRL agent aims to
reduce power consumption and improve average throughput,
and in the second stage, employing the safety DRL concept,
the second DRL agent minimizes constraint violations while
respecting the outputs of the previous agent. We evaluate the
proposed method’s performance for the sleep management
problem of multiple antennas within a single BS.

The remainder of this paper is organized as follows. Section
II reviews related works. We describe the formulation of the
throughput-constrained BS sleep management problem and the
idea of our proposed two-stage DRL algorithm in Section III.
In Section IV, we evaluate the performance of the proposed
approach by implementing the simulation for the management
scenario of multiple antennas within a single BS. Finally, we
conclude this paper and mention future work in Section V.
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II. RELATED WORKS

This section first reviews studies on sleep management
of BSs, highlighting work on the trade-off between power
consumption and communication quality (e.g., delay, data rate)
and then studies on the application of safe DRL.

A. BS Sleep Management

Various BS sleep management techniques have been pro-
posed to reduce power consumption [3], [5]–[18], and these
techniques are actively employed in actual network operations
due to their ease of software implementation. The fundamental
concept is to temporarily put to sleep or switch off BSs with
low traffic utilization. Three survey papers [3], [5], [6] summa-
rize these techniques from different perspectives: [3] focuses
on energy efficiency metrics and traffic model assumptions,
[5] covers sleep management in 5G environments with new
wireless technologies, and [6] comprehensively surveys sleep
management for energy efficiency in 5G systems, including in
combination with other techniques.

This section presents studies dealing with trade-offs between
power consumption and QoS. Dalal et al. [7] examined sleep
management and power matching for a single BS, considering
the balance between total power consumption and average
delay. They theoretically analyzed how to optimize parameters
within specific sleep schemes. Wu et al. [8] addressed the
on/off switching problem in a macro-cell system with many
small cells to minimize power consumption by using ana-
lytically calculated data rates as constraints. They proposed
a distributed algorithm by sharing information among small
cells. Wang and Zheng [9] theoretically analyzed the average
power and delay distribution using the traffic queue model con-
cerning typical wake-up schemes. Guo et al. [10] investigated
the switching problem associated with advanced sleep modes
(ASM), which have different depths and can progressively
switch off more circuitry depending on such time length.
They developed a closed-form expression to determine the
appropriate parameter settings for ASM operation, meeting the
required average delay constraints. Although these theoretical
studies rely on stochastic models, the traffic handled in actual
operations is more complex and does not always behave
model-dependently. Thus, these methods may not achieve the
expected performance levels in complex real-world environ-
ments.

In contrast, many studies have proposed data-driven DRL
approaches, which do not require model assumptions. These
approaches are applied by formulating the BS sleep problem
as a Markov decision process (MDP) problem. Liu et al.
[11] improved the DQN algorithm by adding Action-Wise
Experience Replay and Adaptive Reward Scaling to enable
dynamic control for non-stationary traffic. Ye and Zhang
[12] proposed a deep deterministic policy gradient (DDPG)-
based approach that includes traffic load prediction, focusing
on power consumption, average delay, and mode switching
costs. Recently, several studies on ASM management using
the DRL approach have discussed the relationship between
delay and power consumption [13]–[15]. Salem et al. [13]

used Q-learning, and Lin et al. [14] solved the BS sleep
management problem simultaneously with user association by
introducing tandem learning. Malta [15] discussed the trade-
off between energy reduction and QoS using SARSA by using
5G primary use case requirements. Other advanced works
address BS sleep management to optimize power consumption
and delay [16]–[18]. Li et al. [16] proposed a transfer Actor-
Critic learning framework to enhance strategies by leveraging
learned knowledge from historical periods. Wu et al. [17]
focused on traffic prediction using a convolutional neural
network (CNN) and long short-term memory (LSTM) while
dealing with DDPG-based sleep management. Additionally,
Abubakar et al. [18] introduced an improved Actor-Critic DRL
for ultra-dense networks able to handle large discrete action
spaces. These DRL-based BS sleep management methods
considering trade-offs with QoS [16], [11], [12] minimize costs
by using an objective function that is the weighted sum of
total power consumption and average delay. However, they do
not guarantee QoS (delay) as a constraint. Even if throughput
replaces delay in these approaches, while they may reduce
power consumption and minimize throughput degradation,
they do not ensure a certain throughput level. Moreover, these
methods focus only on average QoS, not on whether each
user’s QoS is sufficient.

B. Safe DRL

In real-world applications of DRL, safe DRL, which con-
siders risks from the agent’s actions, has been widely studied
[19]. Safe DRL is often modeled as a constrained MDP
(CMDP), where the agent maximizes rewards while satisfying
safety constraints. One study introduced a safety layer that
analytically solves an action correction formulation per each
state [4]. The safety layer is directly added to the policy
network of DRL to never violate constraints during learning.
We refer to this safety layer concept to satisfy the constraint
that the users’ throughput is above the target value in the
antenna sleep management problem.

Furthermore, some studies on application of safe DRL
are reviewed. Li et al. [20] solved the charging scheduling
problem for electric vehicles (EVs) using safe DRL. They
formulated the problem as a CMDP and solved it using a
method based on constraint policy optimization (CPO) under
randomly varying EV arrival/departure times and electricity
prices, with the constraint ensuring charging met the target
by departure. For communication-related problems, Suzuki
and Harada [21] solved the dynamic virtual network (VN)
allocation problem using a multi-agent DRL approach with
objective and safe agents. They minimized total maximum link
and server utilization while ensuring link and server capacities
were not exceeded. Liu et al. [22] solved the end-to-end
resource orchestration problem for network slicing in a mobile
network, handling performance and system capacity con-
straints using the Lagrangian relaxation method and mapping
to safe actions. Although constraints need to be considered in
various applications, to the best of our knowledge, no studies
have highlighted the importance of safety control in the context
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of conducting BS sleep management or assessing the carriers’
risk that sufficient throughput is not maintained.

C. Contributions

There are challenges to antenna sleep management that
reduce power consumption while maintaining the carriers’
target throughput. This subsection summarizes the key points
addressed in this paper.

• First, we adopt data-driven DRL approaches that do not
assume a specific traffic model to make it applicable
to real-world operations. This allows for data-driven,
dynamic, and autonomous control.

• Previous approaches that do not treat QoS as a constraint
cannot guarantee users a certain level of communication
quality preset by the carriers. Moreover, these methods
do not focus on each user’s QoS in the control outcomes.
Thus, we propose a safe antenna sleep management that
minimizes violations with the constraint that the QoS, i.e.,
the throughput, is above the target value. Furthermore, we
focus on each user’s QoS in the control outcomes and
evaluate the degree of throughput constraint violation.

• Existing studies do not address safe DRL in antenna
sleep management or assess the risk of carriers not
maintaining sufficient throughput. In the context of BS
sleep management, due to the difficulty of predicting
BS utilization, we apply a novel safe DRL methodology
that uses a two-stage DRL approach instead of existing
safe DRL techniques. We find that safe DRL works
appropriately against the constraint that the throughput
in sleep management achieves a target value.

• Finally, we propose a novel antenna management frame-
work based on a two-stage DRL approach. This frame-
work can reduce total power consumption while maintain-
ing the target throughput set by carriers as constraints.

III. THROUGHPUT-CONSTRAINED AND POWER-SAVING
ANTENNA SLEEP MANAGEMENT METHODOLOGY

We propose a two-stage DRL approach-based antenna man-
agement method that reduces total power consumption while
maintaining the target throughput set by carriers as constraints.
The overall architecture of the two-stage DRL approach is
shown in Fig. 1. In the first stage DRL, similar to an existing
approach [16], the DRL agent explores a policy that maximizes
total power reduction and average throughput. In the second
stage DRL, by introducing the concept of a safety layer [4]
and relaxing the constraints, the DRL agent explores a policy
that modifies the original actions into safe actions.

A. System Model and Problem Formulation

Before describing the proposed method for safe antenna
sleep management, we define a system to be controlled. We
consider a system with multiple antennas providing cellular
network communication, where it is assumed that antennas
can be put to sleep on a per-antenna basis. Let B be the set
of all antennas, where Bc (∈ B) represents the antennas to
be controlled. The total number of antennas is represented by

State 
- Antennas’ utilization rates 
- Current states (active/sleep)

Constraint cost 
- Constraint violation for 

target throughput 
- Similarity between 

original and safe actions

Original 
action 

Active/Sleep

Safe 
action 

  Active/Sleep

Environment 

Reward-optimizing 
policy (trained) Safe modification 

policy

1st stage DRL agent 2nd stage DRL agent

Multiple antennas 
within base station 

User equipments 

Fig. 1. Architecture of safe antenna sleep management framework with two-
stage reinforcement learning approach.

|B|, and the number of antennas to be controlled is denoted
by |Bc|. Note that the antennas to be controlled correspond to
those for additional capacity, while the others are for coverage.

Let x
(t)
i ∈ {0, 1} (i ∈ B) be the active/sleep state of

the i-th antenna at time t (1 indicates active, 0 indicates
sleep), and we define the state of all antennas B as xt =

[x
(t)
1 , x

(t)
2 , · · · , x(t)

|B|].The traffic utilization, such as the RB

utilization rate, of the i-th antenna at time t is ρ
(t)
i and that of

all antennas as ρt = [ρ
(t)
1 , ρ

(t)
2 , · · · , ρ(t)|B|], where the utilization

rate of the antenna in sleep mode is zero.
We use the general power consumption model for BSs

consisting of constant power and adaptive power proportional
to BS’s utilization, adopted in other studies, including [16],
for the power consumption of the antennas. The total power
consumed by all antennas at time t is represented as follows.

Ptotal(t) =
∑
i∈B

x
(t)
i

[
(1− αi)Pi + αiρ

(t)
i Pi

]
, (1)

where αi ∈ (0, 1) is the constant power consumption per-
centage for the i-th antenna, and Pi is the maximum power
consumption of the i-th antenna when it is fully utilized.

Let N be the set of UEs in the coverage area provided by
antennas B. The throughput of the n-th UE at time t is denoted
as q

(t)
n and the condition we aim to satisfy is shown below,

q(t)n ≥ q∗n (∀n ∈ N ), (2)

where the throughput values for all UEs are above their
respective target values q∗n (n ∈ N ). Note that it is assumed
that each UE can achieve the target value if the antennas
provide sufficient capacity. In other words, the assumption is
that RB and power allocations appropriately work to ensure
that each UE’s throughput achieves its target value.

We explain the problem formulation and present the power
reduction rate and average throughput as the components of
the objective function. Defining the power consumption at time
t when all antennas are in an active state as P̃ (t), the power
reduction rate at time t, denoted as Pr(t), is defined as Pr(t) =
1−Ptotal/P̃ (t). It equals zero when all antennas are in an active
state. The average throughput at time t is denoted as Q(t) and
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is given by Q(t) =
∑

n∈N q
(t)
n . The problem to be solved is

as follows,

max
xt

w1Pr(t) + (1− w1)Q(t) (3)

s.t. q(t)n ≥ q∗n, ∀n ∈ N ,

where w1 represents the weight parameter indicating the im-
portance of the power reduction rate and average throughput.
The original problem (3) is divided into two MDP problems:
M1 and M2. Then, these problems are solved using a DRL
methodology as a two-stage DRL approach.

B. The First Stage: Reward-Optimizing Problem

The problem in the first stage denoted as M1, optimizes
the power reduction rate and average throughput. It is defined
as an MDP with a 5-tuple (S,A, P,R, γ), where S is the set
of states; A is the set of actions; P : S × A × S → [0, 1] is
the transition probability function; R : S ×A×S → R is the
reward function; γ is a discount factor.

State S: The state at time t is defined as st = (ρt,xt−1),
containing two types of information: the utilization of all
antennas and the active/sleep states of all antennas before
control execution.

Action A: The original action executed at time t after
observing the state is defined as at = {a(t)i |i ∈ Bc, a

(t)
i ∈

{0, 1}}. This means if the i-th antenna is an active state,
a
(t)
i = 1; if it is a sleep state, a(t)i = 0.
Reward R: The reward function R(st, at) is denoted as rt,

which is formulated as rt = w1Pr(st) + (1− w1)Q(st). The
objective is to explore a policy π that maximizes the total
discounted return,

max
π

Eτ∼π

[∑
t∈T

γtrt

]
, (4)

where T denotes the entire control time and τ represents
the trajectory of states and actions over T . E(∗) denotes the
expected value, and in this problem, it calculates the expected
value of discounted rewards obtained through the trajectory
under policy π. Moreover, the transition probability denoted
as P , is influenced by the randomness of UEs reconnecting
when the active/sleep state of the antennas changes. In this
real-world scenario, the transition probabilities are considered
unknown.

C. The Second Stage: Safe Modification Problem

In the second stage, the agent explores a policy that modifies
the original actions into safe actions, where it minimizes
constraint violations and the similarity between the actions
to be exploited by the second DRL and the original actions
received from the first agent. Minimizing constraint violations
is intended to reduce the number of users having throughput
under the target values, and minimizing the similarity is
designed to respect the outputs of the previous agent.

The problem in the second stage denoted as M2 modifies
the original actions into safe actions. It is defined as another
MDP with (S ′,A′, P ′, C, γ′), where S ′ is the set of states;

A′ is the set of actions; P ′ : S ′ × A′ × S ′ → [0, 1] is the
transition probability function; C : S ′ × A′ × S ′ → R is the
cost function; γ′ is a discount factor.

State S ′: The state at time t is represented as s′t =
(st, at) = (ρ(t),x(t), at), which includes the action outputted
by the first stage DRL, in addition to the same information as
the state st.

Action A′: The safe action at time t is defined as a′t =

{a′(t)i |i ∈ Bc, a
′(t)
i ∈ {0, 1}}. This is the same notation as the

original action in the first stage.
Cost C: The cost function C(s′t, a

′
t) = C(st, at, a

′
t) is

denoted as ct. This cost consists of two components. The
first is the cost for constraint violations, and the second is
the cost indicating the similarity between the action a from
the previous stage and the safe action a′ to be outputted. The
cost is formulated as

ct = w2Cv(s
′
t, a

′
t) + (1− w2)Cs(at, a

′
t), (5)

where w2 represents the weight parameter that indicates the
magnitude of the costs associated with constraint violations
and the similarity. The objective is to explore a policy π′,

min
π′

Eτ ′∼π′

[∑
t∈T

γ′tct

]
. (6)

The two costs are explained in detail below. The cost for
constraint violation is denoted as Cv , which is expressed as
follows,

Cv(s
′
t, a

′
t) = tanh(η|Nv|). (7)

Here, |Nv| represents the number of UEs that violate the
constraint of not achieving their respective target throughput
as follows,

|Nv| =
∑
n∈N

I [qn(t) < q∗n] , (8)

and η represents the scaling parameter of the hyperbolic
tangent function. The reason for using a smooth (differen-
tiable) function, not a step function for the cost function, is
to make learning easier. The cost indicating the similarity
between at and a′t is denoted as Cs, which is represented
using the difference in the number of active antennas, denoted
as ∆t =

∑
i∈Bc

(a
′(t)
i − a

(t)
i ), as follows.

Cs(at, a
′
t) =


exp(∆t)− 1

exp(|Bc|)− 1
∆t ≥ 0

1 ∆t < 0
. (9)

This function is adjusted to take values between 0 and 1. In
the case of a constraint violation, the safe action a′t requires
more active antennas than the original action at. Thus, when
reducing antennas, that is ∆t < 0, the cost is set to 1,
whereas when increasing antennas, that is ∆t ≥ 0, a function
that exponentially increases is used to minimize constraint
violations while adding as few antennas as possible.
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Algorithm 1 Training Procedure of Two-Stage DRL
1: Initialize first policy networks πθ, replay buffer D
2: for each episode do
3: Initialize state st from the environment
4: for each step do
5: Sample action at ∼ πθ(st)
6: Take action at, observe new state st+1, reward rt
7: Store transition (st, at, rt, st+1) in replay buffer D
8: if D is sufficiently large then
9: Sample a batch from D

10: Update first policy network πθ

11: end training first policy network πθ

12: Initialize second policy network π′
ϕ, replay buffer D′

13: for each episode do
14: Initialize state st from the environment
15: for each step do
16: Get greedy action at = πθ(st)
17: s′t = (st, at)
18: Sample safe action a′t ∼ π′

ϕ(s
′
t)

19: Take safe action a′t, observe new state st+1

20: Calculate ct using (5) based on s′t, a
′
t

21: Get greedy action at+1 = πθ(st+1)
22: s′t+1 = (st+1, at+1)
23: Store transition (s′t, a

′
,ct, s

′
t+1) in replay buffer D′

24: if D′ is sufficiently large then
25: Sample a batch from D′

26: Update second policy network π′
ϕ

27: end training second policy network π′
ϕ

28: return πθ, π
′
ϕ

D. Training Procedure and Computational Cost

The parameters of the deep neural networks for the policies
π and π′ are denoted by θ and ϕ, respectively, with the
networks represented as πθ(st) and π′

ϕ(s
′
t). The first policy

network, πθ(st), is trained, and subsequently, the second pol-
icy network, πϕ(s

′
t), is trained using the first trained network,

πθ(st), as described in Algorithm 1.
The two-stage approach involves two DRL processes, ap-

proximately doubling the training time compared to a single
DRL. However, once the training phase is completed, the in-
ference time itself is very short, making the approach feasible
for near real-time applications.

IV. NUMERICAL ANALYSIS

This section evaluates our proposed method by solving the
sleep management problem for multiple antennas within a
single BS. This evaluation aims to clarify whether our method
can reduce power consumption while ensuring throughput
by minimizing constraint violations to values close to zero,
compared to baseline methods. Furthermore, we evaluate the
performance of the proposed method by using different weight
parameters in the cost function from (5) and discuss how to set
this parameter to achieve an appropriate trade-off that reduces
power consumption and constraint violations.

−500 −250 0 250 500 750 1000

Fig. 2. The covered area of the antennas within a single base station in the
simulation.

A. Simulation Settings and Conditions

We describe the simulation settings and conditions for the
sleep management problem of multiple antennas within a
single BS. These are three-sector antennas facing the same
direction, with overlapping coverage areas depicted as sector-
shaped regions shown in Fig. 2. The black triangular plot
represents the BS, including all antennas. There is one cover-
age antenna and |Bc| capacity antennas. The coverage antenna
operates on the 800 MHz band and covers an area with a
radius of 1000 meters. The capacity antennas operate at the
1.5 GHz band, each covering an area with a radius of 900
meters. The x-shaped cross and circle plots each represent a
single UE: those with the blue x-shaped cross plots are always
served by the coverage antenna, while those with the magenta
circle plots are served by either the coverage antenna or one
of the capacity antennas. In this scenario, it is assumed that
the coverage antenna has a broader coverage area, and each
capacity antenna is assigned a unique frequency within the 1.5
GHz band, preventing signal interference among them.

The number of UEs, described as N , is generated in
accordance with a uniform distribution U(Nmin, Nmax), and
each UE is randomly located within the coverage area in each
episode. Note that each episode contains several control steps
and that the number and position of UEs do not change in each
step. The throughput of a UE is calculated using Shannon’s
capacity, which represents the maximum achievable data rate
for a channel under specified bandwidth and signal-to-noise
ratio (SNR) conditions.

qn = B log(1 + SNR). (10)

To calculate the SNR, we use the free-space path loss (FSPL)
model, which accounts for distance attenuation effects on
signal strength as described in [23], and includes thermal
noise for a single RB band. Here, B represents the channel
bandwidth in hertz, corresponding to the number of allocated
RBs. This formula assumes a noise-limited channel with no
interference.

The operational maximum power consumption Pi (∀i ∈ B)
for each antenna is set at 100 Watts, αi = 0.4 (∀i ∈ B),
and the antennas are 30 meters high. The range of these
values was determined by referring to existing studies [16],
[17]; however, whereas those studies used the BS basis, we
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TABLE I
SYSTEM PARAMETERS

Parameters Value
Pi, ∀i ∈ B 100 [W]
αi, ∀i ∈ B 0.4

Frequency band of
coverage / capacity antenna(s) 800 [MHz] / 1.5 [GHz]

Covered area’s radius of
coverage / capacity antenna(s) 1000 [m] / 900 [m]

BS hight 30 [m]
Number of each antenna’s RBs 100

Total transmission power
of each antenna 0.1 [W]

FSPL 20 log10(d) + 20 log10(f)
+20 log10(4π/c) [dB]

Noise -121.45 [dBm]
w1, w2 0.7, 0.7

η 0.5

TABLE II
HYPERPARAMETERS FOR SAC-DISCRETE

Hyperparameters Value
Layers 3 fully connected layers

Hidden size 256
Discount factor γ, γ′ 0.9

Batch size 256
Replay buffer size 100,000

Learning rate 0.0003
Soft update parameter 0.01

Target entropy 0.98× (− log(1/|Bc|))
Episodes 20,000

Steps 20

determined our values considering the antenna basis. Each
antenna is configured with 20 MHz bandwidth, that is 100
RBs, and the total transmission power of each antenna is set
to 0.1 Watts. The other parameters for the objectives are set
to w1 = w2 = 0.7 and η = 0.5. These system parameters are
summarized in Table I.

We use the Soft Actor-Critic for discrete action algorithm
(SAC-Discrete) [24] for both stages of the two-stage DRL
process, as it enhances exploration diversity by maximizing
policy entropy, leading to improved learning stability and
performance in complex environments. The critic networks are
trained using the techniques of double Q-learning [25] and soft
target updates. The policy network and the two critic networks
each consist of three linear layers. The first two layers use
the Rectified Linear Units (ReLU) activation function. The
policy network employs a softmax function for the final layer,
whereas the critic networks use no activation function. The
hyperparameters for SAC-Discrete training are summarized in
Table II.

The evaluation process conducts K episodes, with each
episode consisting of a single step varying the number of
UEs and their location. In each episode, the single-step
control is executed, and the outcomes are evaluated. The
evaluation conditions are set with the number of antennas
to be controlled, |Bc|, at 2, 3, and 4. The target through-
put is set to the same value for all UEs. It is denoted

as q∗, and the uniform distribution of UEs, U(Nmin, Nmax),
are described as pairs {q∗, U(Nmin, Nmax)}, and the condi-
tions are set to {1Mbps, U(5, 300)}, {3Mbps, U(5, 150)}, and
{5Mbps, U(5, 100)}. The maximum number of UEs for each
target throughput is different because each antenna has a
fixed bandwidth, i.e., the number of RBs. Thus, increasing
the target throughput reduces the number of UEs that can be
accommodated. The simulation is conducted on a server with
an NVIDIA A100 GPU and Xeon Gold 6326 CPU.

B. Performance Metrics

We evaluate our proposed method using four performance
metrics. These are described below. Note that in this evalua-
tion, the metrics omit time t as a variable since each episode
consists of a single step.

The first metric is the proportion of episodes with constraint
violations across K, denoted as VK . An episode with a
constraint violation means at least one UE whose throughput
does not meet the target value. The second metric is the
average power consumption rate, denoted as ⟨Pc⟩K , calcu-
lated by averaging the power consumption rates from each
K episode. The power consumption rate, denoted as Pc, is
formulated as Pc = 1 − Pr(t) = Ptotal(t)/P̃ (t). This metric
can be reduced as the number of antennas increases in this
evaluation setting. Since the power consumption values in
the real environment depend on the specifications of each
machine that makes up the BSs, we focus on understand-
ing the impact in terms of percentages rather than absolute
values. The third metric is ⟨Q⟩K , calculated by using the
average throughput for UEs, Q(t), in each episode and then
averaging these values across K episodes. The last metric is
denoted as ⟨∆q⟩K , which is represented by calculating the
standard deviation of the UE throughputs in each episode as
∆q =

√
1

|N |
∑

i∈N (q
(t)
i −Q(t))2, and then averaging these

values across K episodes.

C. Baseline Methods

We compare four other methods with our proposed method
(described as ”SafeRO”).

All Active (AA): This method does not execute sleep man-
agement, i.e., it operates all antennas in an active state.

Reward-Optimizing policy (RO): This is the control by
the reward-optimizing agent in the first stage of SafeRO,
which does not consider throughput constraints. The same
hyperparameters as those used in SafeRO are employed.

RO + Manual Operation (RO+MO): After executing con-
trol with RO, if there are any constraint violations, that is,
if the throughput for any UE is below the target value, the
operation to increase the number of active antennas by one is
performed.

Exhaustive Search (ES): By conducting an exhaustive
search, this method executes the action that maximizes the
reward among those actions that result in zero constraint
violations. This method shows the optimal solutions. Note that
this involves exploring by executing all actions, which is not
feasible in actual control.
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Fig. 3. Results of the comparative evaluation under the conditions that |Bc| = 2, 3, 4, and the target throughput set to 1, 3, and 5 [Mbps].

D. Comparative Evaluation Results and Discussion

The evaluation results from 1000 episodes with varying
numbers of UEs and their location are represented in Fig. 3.
The evaluations are conducted for nine combinations of con-
ditions, with |Bc| = 2, 3, 4 antennas and target throughputs of
1, 3, and 5 Mbps, respectively. The results are analyzed using
the four metrics.

First, the results for the proportion of episodes with con-
straint violations, V1000, and the average power consumption
rate, ⟨Pc⟩1000, are presented in the first and second rows in
Fig. 3. For AA, as all antennas are active, naturally, V1000 is
0, and ⟨Pc⟩1000 is 1. In contrast, ES selects actions that result
in zero constraint violations and then optimizes for reward;
hence, V1000 is 0, and ⟨Pc⟩1000 represents the optimal min-
imum power consumption achievable without any violations.
Since RO prioritizes power reduction, ⟨Pc⟩1000 is the lowest
rate, which indicates that RO reduces power more effectively
than AA. On the other hand, V1000 is the highest due to
reducing power too much. The total number of RBs decreases

when the number of active antennas is reduced for power
saving. Hence, the throughput of more than 20 to 60 percent
of UEs is below the target value, depending on the conditions.
RO+MO adds one more active antenna if there is a constraint
violation from the results of control by RO. Although RO+MO
consumes more power than RO, that is, ⟨Pc⟩1000 increase, it
partially improves the violation episodes, i.e., V1000 is reduced.
However, V1000 is still about 20 percent, which indicates that
more than two active antennas need to be added for some
episodes of the RO results. Furthermore, the number of lacking
RBs is higher when the target throughput is 5 Mbps than when
it is 1 Mbps, as more RBs must be allocated to the UEs. Thus,
the higher the target throughput, the smaller the difference
between V1000 for RO and RO+MO. In other words, the higher
the target the throughput, the smaller the improvement in
V1000 when one active antenna is added. SafeRO has fewer
violation episodes than RO and RO+MO, with V1000 around 0
to 1.7 percent in all conditions. As for the power consumption,
SafeRO is almost always close to the optimal value for ES,
although in some cases, it consumes slightly more power than
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Fig. 4. Results of the parameter analysis for w2 under the conditions that |Bc| = 2, 3, 4, and the target throughput set to 1, 3, and 5 [Mbps].

ES. This result indicates that SafeRO appropriately increased
the active antennas in the violation episode on the basis of the
results of the first stage, RO. Although this increases the power
consumption, the fact that it is close to the optimal value of
the ES indicates that SafeRO appropriately controls without
consuming power unnecessarily.

Second, the third and fourth rows in Fig. 3 present the
results for the K-episode average of the mean throughput,
⟨Q⟩1000, and the K-episode average of the standard deviation
of throughput, ⟨∆q⟩1000. The ⟨Q⟩1000 and ⟨∆q⟩1000 results
are almost identical for AA, SafeRO, and ES. This slight
difference is due to the different associations between the UE
and the antenna in the evaluation environment of each method.
The throughput changes when the association between the UE
and the antenna changes because the frequency bands of the
coverage and capacity antenna differ. For RO, ⟨Q⟩1000 has
the lowest value, and ⟨∆q⟩1000 has the highest value. This
corresponds to the high number of violating episodes and
results from RO prioritizing power reduction. Moreover, this
result indicates that more than a certain number of UEs with
constraint violations are included in the violation episodes. RO
prioritizes power reduction without considering constraints,
so only in RO are some conditions where even the average
value of mean throughput, ⟨Q⟩1000, does not achieve the target
throughput. Similarly, but not as much as RO, RO+MO has
a slightly lower ⟨Q⟩1000 and a higher ⟨∆q⟩1000 because it
includes a certain number of UEs with constraint violations.
The results of ⟨Q⟩1000 are approximately 2, 4, and 6 Mbps
when the target throughput is 1, 3, and 5 Mbps. The reason
for this is that in the setting of the network environment treated
in this simulation, there is an average capacity of about 2 Mbps
for the allocations of a single RB.

All SafeRO results are close to the ES results, which indi-
cate optimal values. This suggests that the proposed SafeRO
has been appropriately trained and executed with control rules

in accordance with our intentions to reduce power consump-
tion while avoiding the constraint violations that the UEs’
throughput is below the target value. The proposed method
also significantly reduces constraint violations compared to
RO, which is a constraint-insensitive method based on existing
research. This indicates that the constraints were adhered to
during the second stage DRL. On the other hand, the power
consumption was comparable to that of ES, which indicates
that the proposed method not only satisfied the constraints but
also considered solutions that contributed to the reduction in
power consumption obtained by the first stage DRL.

E. Parameter Analysis

We compare the proposed methods using different w2, a
crucial parameter defining the weight of adherence to through-
put constraint; the larger it is, the stricter the decision on the
constraint. RO and ES are used as benchmarks. Our models are
trained with w2 set to 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.
Note that w2 is set to 0.7 in the previous section IV-D.

Figure 4 shows the evaluation results of 1000 episodes with
varying numbers of UEs and their location, using the same
nine evaluation conditions and two critical evaluation metrics
(V1000 and ⟨Pc⟩1000) as in the comparative evaluation. For
each evaluation metric, a smaller w2 of safeRO tends to bring
the results closer to RO, while a larger w2 tends to reduce
constraint violations more. Figure 4 shows that when the
number of controlled antennas is two, the number of violating
episodes approaches zero at w2 above 0.5, whereas when the
number of controlled antennas is four, the number of violating
episodes is almost zero with w2 of 0.3. This indicates that w2

needs to be set larger when there are fewer target antennas
than when there are more. This is because the cost of adding
one antenna is higher when the number of controlled antennas
is small due to the design of the cost of similarity, as shown in
Fig. 5. The results are similar in most conditions when w2 is
more significant than 0.5. However, under conditions with four
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Fig. 5. The cost indicating the similarity between the original action and the
modified safe action in the number of controlled antennas set to 2, 3, and 4.

controlled antennas and a target throughput of 5 Mbps, w2 of
0.3 is optimal, and above 0.5, the power consumption is larger
than in the ES. Thus, set w2 needs to be set appropriately
in accordance with the number of controlled antennas and
conditions when using the proposed method.

V. CONCLUSION

This paper proposed an antenna sleep management method
that reduces power consumption while maintaining the target
throughput, aiming to reduce CO2 emissions. Our method uses
a two-stage deep reinforcement learning (DRL) approach to
automatically search for and implement the appropriate rules.
Comparative evaluations showed that our method significantly
reduced throughput constraint violations and minimized power
consumption compared to baseline methods. Parameter anal-
ysis of the cost function weights clarified the relationship
between the number of controlled antennas and the parameters,
and the setting of the parameters was discussed. We need
to evaluate the proposed method over more extended control
periods in environments with varying traffic utilization, and
to extend the method to scenarios involving multiple base
stations (BSs). The practical applicability of our approach
also needs to be further examined by evaluating the time
required for training and control execution, as well as through
simulations that closely resemble real-world deployments or
in actual environments.
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