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Abstract—Many peer-to-peer systems and blockchain plat-
forms rely on underlying communication services, such as
GossipSub, which typically operate with default configuration
settings. A set of parameters defines these settings, and cur-
rently, there is limited understanding of how varying these
parameters affects the overall service. This work proposes
a methodology based on Causal AI Discovery to assess the
importance of individual parameters on target indicators for
the specific case of a popular p2p communication platform.
We explore methods to identify factors that influence overall
performance and instantiate them for the concrete case of the
XRPL blockchain.

Index Terms—causal analysis, causal discovery, pubsub sys-
tems, gossipsub, xrpl, network configuration

I. INTRODUCTION

GossipSub [1] is the state-of-the-art in message prop-
agation on blockchains. Built upon a publisher/subscriber
(pubsub) model and using gossiping to reach distant nodes.
GossipSub relies heavily on how its mesh is constructed, with
the aim of scaling pubsub dissemination without excessive
bandwidth or peer overload. The construction of the mesh
depends on parameters that can be tuned according to the
characteristics and performance of the network. Originally
implemented for use in the Interplanetary File System (IPFS)
and Ethereum, GossipSub has been shown to be a reliable and
safe alternative for message dissemination on unstructured
p2p networks.

In previous works [2] [3] we explored the integration of
GossipSub into the XRP Ledger (XRPL) as a dissemination
method to reduce message overhead and increase network
scalability. The XRPL is a blockchain that uses an alternative
type of consensus that largely differs from the traditional
Proof-of-Work (PoW), using a quorum of voters instead of
computational proofs. The XRP Ledger Consensus Protocol
(XRP LCP) [4] behaves as a pubsub system, with each node
in the network subscribing to trusted lists of peers. However,
there are no deeper studies on how GossipSub behaves and
how can it be tuned for integration in networks different from
those for which it was originally designed.

In this work, we provide a deeper analysis of GossipSub
using causal AI discovery methods to find causal relation-
ships between GossipSub mesh parameters, events in the
network, and performance metrics, such as message over-
head, using the concrete case of the XRPL as an underlying
system. We seek to answer the question of How can causal

analysis be applied as a tool to aid in the parameterization
of GossipSub?

The remainder of the paper is organized as follows: Section
II presents the tools and usage of causal analysis. Then,
Section III gives some background on the XRPL blockchain
and its consensus protocol. In Section IV we present our
methodology, and we show its results in Section V. Finally,
Section VI concludes the paper.

II. RELATED WORK

Causal analysis is a tool used in several domains, such
as social sciences, biology, and medical sciences. It is not a
new concept but has gained traction in recent years. To our
knowledge, there is currently no work that addresses causal
analysis for studying the parameterization of networks; how-
ever, the use of causal analysis to study network performance
is not completely new; Hours et al. [5] present the first study
to make the case for the use of graphical causal methods
to analyze network performance. The work focuses on data
collected from an emulated TCP network, by measuring FTP
traffic, and on subsequent measurements obtained from a
single FTP server connected to the Internet.

This study used the Tetrad [6] suite, concluding that
constraint-based algorithms generated more informative
graphs based on knowledge of the TCP domain. The partic-
ular constraint-based algorithm used to subsequently predict
network performance was the PC algorithm [7]. However,
at the time of the study, Tetrad assumed either normality or
linearity on the data distribution. In our work, we considered
four classes of discovery algorithms, including gradient-
based ones that were not yet available at the time of the
Hours et al. study.

III. BACKGROUND

A. GossipSub

GossipSub [1] has originally been proposed as a solution
for the dissemination of blocks and transactions on FileCoin
and Ethereum 2.0. The tool is distributed as an extensi-
ble component inside libp2p [8]. Pubsub systems, as the
name suggests, have two primary entities: publishers and
subscribers. Messages are published on topics, and entities
can subscribe to these topics to receive messages.

We can abstract GossipSub as being formed by two over-
lays, the first being a full-message overlay and the second a
gossip layer where metadata is disseminated to serve as a set
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reconciliation phase to achieve distant or poorly connected
nodes.

The construction of the GossipSub mesh is given by a
set of parameters [8] that control both the full-message and
the gossip overlay. The primary parameters are the so-called
d-values. From those, only one – Dlazy – is not linked to
the full-message overlay. In this work, we focus on the full-
message overlay, choosing the message overhead metric as a
target for causal analysis.

D is the target value of how many peers a node should
connect to per subscribed topic. This value can be relaxed
based on the network conditions according to a minimum
and a maximum, Dlo and Dhi. Forming a new connection
is called a graft and a deliberate disconnection is called a
prune. Both Dlo and Dhi can trigger these two events. When
the number of peers to which a given node is connected
increases above Dhi for a given topic, a series of prune events
are triggered. The node not only prunes enough nodes to
satisfy Dhi but also keeps only a Dout number of outbound
connections per topic. The node then grafts connections to
keep the number of peers above Dlo, choosing Dscore high-
scored peers and connecting to the rest randomly.

B. The XRP Ledger Consensus Protocol

The XRPL was one of the first blockchains to be released,
presenting a novelty type of consensus that differs from the
traditional PoW [4]. The XRP LCP uses quorum-based voting
over several rounds to validate new ledger versions. Each
network validator has a list of trusted nodes called a Unique
Nodes List (UNL). Any node can claim to be a validator,
able to propose new ledger versions; however, not all nodes
are trusted by the network.

The nodes take into account the position of the peers
present in their UNLs to adjust their ledger proposals and
validate new ledger versions. In this way, we can call the
XRPL an inherently pubsub system, abstracting UNLs as
topics in which validators declare their trust by subscribing.
In previous work, we explored the pubsub [2] characteristics
of the XRP LCP, suggesting its integration with GossipSub to
broadcast proposals and validations with the goal of reducing
message overhead and increasing network scalability.

IV. METHODOLOGY

A. Steps of the Causal Analysis

To better understand the steps used in the methodology
of this work, we use the Ladder of Causation, an abstract
concept introduced by Judea Pearl [9] in which a ladder
represents levels of relationships between the dimensions of
the scenario being analyzed. The first step of the ladder is
called Association, and is where we observe the behavior
of the system from the perspective of how one variable
changes another. To find relationships, we used the two
previous studies conducted on GossipSub over the XRPL [2]
[3]. The first focuses on employing GossipSub to mitigate
message overhead on the XRPL, using different types of
topic arrangements on the GossipSub level. The second is

a multidimensional analysis of the parameters used to build
the GossipSub mesh, focusing on the correlation between the
dimensions formed by the parameters and the measurement
of events and metrics of performance. These works helped
us hypothesize relationships between the parameters and the
resulting behavior of the network.

The second step of the ladder is the intervention, and it
is where we make changes to the parameterization of the
system to understand how a variable can affect another. In this
phase, we conducted randomized experiments using a testnet
of 24 nodes running instances of Flexi-pipe [2], an agnostic
tool that allows us to plug different dissemination techniques
into the XRPL validator. We use GossipSub to propagate
proposals, randomly selecting 44 sets of parameters1 using
three structures of topics.

Structure 1 uses one global topic to disseminate valida-
tions, with all nodes publishing on this topic and all nodes
also subscribed to this topic. In the context of the XRPL,
this structure is similar to how the Mainnet is currently
implemented, with a unique UNL to guarantee safety and
liveness [4], also similar to how Ethereum disseminates
blocks [1]. Structure 2 has 24 topics of size 1, with each
node subscribed to 16 nodes on average, with a maximum
of 18 and a minimum of 15 subscriptions, abstracting each
node as a topic. The last structure, 3, uses eight predefined
topics, each node subscribed to 1 topic, the smallest topic
having 16 nodes and the largest 18 nodes. The last two
structures have been previously studied [2] [3] as ways to
improve the message overhead through enhancing the pubsub
characteristics of GossipSub.

We still miss the third step of the ladder: counterfactual.
This phase requires us to push the system into behaving
in ways that have not previously been observed. This is
done by hypothetical or simulated interventions [10]. Those
interventions are different from the ones described previously,
in a way that they are not interventions done in the system,
but in model-scenarios created in the two previous steps.
In this work, we focus on the first two steps, leaving the
counterfactual analysis as the next stage, considering that a
poorly adjusted model negatively impacts the simulation of
interventions.

B. Generating Causal Graphs from Observational Data

We used observational data and domain knowledge to gen-
erate a causal graph for GossipSub, considering parameters
related to mesh construction and targeting one measurement
related to scalability and performance: messageOverhead. We
used the findings of a previous study [3] on the correlation be-
tween the GossipSub mesh parameters and the performance
of the system to identify the parameters that were correlated
with the target measurement. We then created the causal
graph, showed in Figure 1, to express only the relationships
that impact the target, namely most of the parameters related
to the full-message overlay. Considering that most of the

1The list of parameters set is available at https://github.com/FlavScheidt/
causalGossipSub/blob/main/Datasets/parameters.csv
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parameters that impact messageOverhead are defined per
topic, we added two variables related to the number of
topics and topic size, respectively topics and topicSize. In
this scenario, the parameters are D, Dlo, Dhi, Dout, Topics
and TopicSize.

Fig. 1. Causal graph generated with observational data

D determines the optimal number of connections per topic
in the full-message overlay and is more likely to impact the
number of grafts and prunes. It can also lead to changes in the
number of messagesReceived; regarding messageOverhead,
D affects the number of replicas a node gets, forwarded by
their direct peers. Dhi influences the prune of connections,
as it sets the limit for the number of connections per topic.
During a prune, only Dout connections from high-scoring
peers are retained, and new connections are then grafted
to satisfy Dlo. Thus, prune events typically trigger graft
events, which are also related to Dlo. The number of topics
also impacts messagesReceived and messageOverhead, as
each d-value is specified per topic. The topicSize influences
the total number of messagesReceived, directly affecting the
messageOverhead.

C. Generating Causal Graphs from Interventional Data
Moving to the second step of the ladder, we performed

interventions in the system to analyze the impact of changes
in parameters on the target measurement. The interven-
tions were carried out using a cluster with 24 nodes that
formed a private XRPL testnet using three different topic
structures, as explained in Section IV-A. For each set in
each structure, we performed three tests of 30 minutes,
ignoring faulty executions. We consider faulty the executions
in which the number of events recorded is below a z-score
of 0, 15 ∗ standard deviation. Data were collected from the
GossipSub event tracer and events were grouped by 5-second
increments.

We used the gCastle [11] package to perform causal dis-
covery in the dataset obtained2. gCastle is a Python toolbox
for learning causal structures, implementing 19 algorithms
from different categories, and also providing evaluation met-
rics for the generated graphs. From the algorithms provided,

2Code and graphs available at https://github.com/FlavScheidt/
causalGossipSub/tree/main/1 Discovery

we chose 3: PC [7] [6], LiNGAM [12], and NOTEARS [13].
We chose these algorithms to test the different categories
of causal discovery: constraint-based (PC), function-based
(LiNGAM), and gradient-based (NOTEARS).

PC has the advantage of being the only algorithm imple-
mented in gCastle that accepts the input of prior knowledge
in the causal discovery in the form of required and forbidden
edges. We applied three variants of PC: classical [14], parallel
[15] and stable [16], inputting prior knowledge in the form
of forbidden edges, preventing the algorithm from trying to
find relationships between the parameters and in a reverse
causal way, meaning that we prevent the creation of edges
from metrics resulting in parameters.

LinGaM and NOTEARS do not accept prior knowledge;
both found relationships between parameters that are true
from a correlational point of view, considering that some
d-values are constrained by the value of D. LinGaM also
found spurious relationships between topicSize and topics.
We pruned these edges for subsequent evaluations as they
are not truly causal relationships. The algorithms did not
find any reverse causal connection; that is, in NOTEARS
and LinGaM, the parameters always cause the metrics and
not vice versa. We used three variations of NOTEARS: pure
NOTEARS, LowRank [17] and GOLEM [18] and two of
LinGaM: ICA [19] and Direct [20].

D. Generating Graphical Causal Models

The previous sections described how to obtain an SCM
in the form of a causal DAG, we now go one step further
and assign causal mechanisms for each one of the variables
in the model to generate a Graphical Causal Model (GCM).
This assignment is made by assuming a distribution for the
variables based on a correlation matrix. We used a Python li-
brary for causal analysis called DoWhy [21] to automatically
assign causal mechanisms to our models. DoWhy assigned
discrete distribution to all non-root nodes, and additive noise
model to all variables in the model.

V. EVALUATION

A. Refuting Causal Graphs

Table I shows the first evaluation metrics, obtained by
gCastle for the graphs generated by each method. How-
ever, these evaluation metrics are generated on the basis
of the underlying truth, which is represented by the causal
graph generated during the observation phase (Figure 1).
The metrics in Table I then give us the distance between
the model generated with observational data using domain
knowledge and the model generated by interventional data
using discovery algorithms.

The metrics in Table I are only sufficient to evaluate
the effectiveness of the discovery algorithms if we assume
that the graph generated using observational data is true in
representing the causal relationships of the system. At this
point, we do not know whether the observational graph is
consistent with the interventional data. This question cannot
yet be answered directly. However, we have tools to refute
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TABLE I
GCASTLE EVALUATION OF DISCOVERY ALGORITHMS

Precision Recall F1
PC Classical 0.42 0.69 0.52
PC Stable 0.42 0.69 0.52
PC Parallel 0.42 0.69 0.52
Direct LinGaM 0.31 0.38 0.34
ICA LinGaM 0.43 0.53 0.48
NOTEARS 0.41 0.53 0.46
NOTEARS LowRank 0.21 0.38 0.27
NOTEARS GOLEM 0.2 0.23 0.21

a certain causal graph if it does not satisfy some conditional
independence statements on its nodes called Local Markov
Conditions (LMCs) [22]. We again use DoWhy to refute
the generated graphs. DoWhy provides tools to abstract
the causal reasoning process, making it more accessible to
non-experts. One of the key features of the package is the
ability to evaluate models, providing an overview of different
metrics that provide information on the performance of the
causal model [23].

DoWhy can perform independence tests on separate sets
of variables, but given the size and amount of graphs we
wish to evaluate, we chose to use another tool from the
package: graph falsification3 [24]. The falsification tool gives
the summary of the number of LMC violations, expressed
by the p-value. This summary represents the comparison
between the number of LMC violations against randomly
generated graphs.

We do not refute the graph; instead, we use the p-values as
a baseline for the evaluation of the causal discovery methods
in Section V; the p-value for LMC being 0.1. This does
not mean that the graph is a perfect representation of the
system but implies that the graph is better than 90% of
the randomly generated graphs. To evaluate the performance
and fitness of the causal models generated by observational
and interventional data, we first generated the falsification
summaries for the SCMs, shown in Table II.

TABLE II
FALSIFICATION SUMMARY OF DISCOVERY ALGORITHMS

LMC LMC Violations LMC Violations Rate
Observational 0.10 23/52 0.44
PC Classical 0.65 21/45 0.47
PC Stable 0.20 18/45 0.40
PC Parallel 0.35 22/45 0.49
D LinGaM 0.05 31/68 0.46
ICA LinGaM 0 29/64 0.45
NOTEARS 0.10 29/66 0.44
NT LowRank 0.05 37/64 0.42
NT GOLEM 0.05 42/78 0.54

DoWhy uses a threshold of 0.05 for the LMC p-value to
refute graphs. By this estimation, only Direct LinGaM, ICA
LinGaM, NOTEARS LowRank, and NOTEARS GOLEM
would not be rejected. However, this threshold can be ar-
bitrary in a real-world scenario, and so we do not assume

3Code and evaluation reports available at https://github.com/FlavScheidt/
causalGossipSub/tree/main/2 ModelEvaluation

any threshold to refute graphs, using the LMC p-value as a
comparison metric, instead. We can see that ICA LinGaM has
the ideal LMC p-value but still shows LMC violations, with
PC Stable having the lowest rate of violations. We consider
these violations to be present because of latent variables, that
is, variables that cannot be observed but have a greater impact
than some observed variable [5].

B. Performance Evaluation

DoWhy can also evaluate GCMs to verify how well the
models perform, if the assumption of the addictive noise
model is correct, and how well the GCM captures the joint
distribution of the observed data [23]. We chose two metrics
in our evaluation, shown in Table III. First, we look at the
overall average KL-divergence (KL-Div in the table) between
the generated and the observed distributions, the lower the
KL-divergence, the better the model fits the observed data
distribution. The second metric is obtained by non-root node,
evaluating the accuracy of the causal mechanisms expressed
in the model, and is measured by the normalized Continuous
Ranked Probability Score (CRPS); the closer this value is to
zero, the better the precision of the causal mechanism for
that given node.

It is important to note that the results for LinGaM and
NOTEARS – including all variations – had bigger KL-
divergences before the pruning of the edges that repre-
sented relationships between the parameters. The values were
around 7 before pruning and then decreased to around 3.7 to
2.5 afterward. We suppressed this analysis from this work for
the sake of brevity, but it shows once again the importance
of domain knowledge in the modeling of causal structures.

From the metrics represented in Table III, we can see
that NOTEARS LowRank and GOLEM have the smallest
KL-divergence. However, both models ended up excluding
graft and prune events, which may indicate that these events
have little to no effect on messageOverhead. GOLEM has
a high CRPS for messageReceived, making LowRank a
better candidate. Nonetheless, we need to consider that both
algorithms have low F1 scores (Table I) when considering
the domain knowledge model. So we turn our attention to
the LinGaM variations and pure NOTEARS.

From Table II, ICA LinGaM showed to better fit the data,
and also showed decent KL-divergence while having good or
very good CRPS for the non-root nodes, however showing a
worst CRPS for messageOverhead compared Direct LinGaM
and NOTEARS. Between those last two, NOTEARS showed
a lower CRPS for the target measurement, keeping a KL-
Divergence close to ICA LinGaM and an acceptable F1
score. Therefore, using the evaluation tools and domain
knowledge, NOTEARS generated a suitable causal model for
the proposed scenario.

VI. DISCUSSION & PERSPECTIVES

In this work, we presented an analysis of causal AI dis-
covery methods to find graphical causal models that represent
the relationship between the parameters and the performance
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TABLE III
DOWHY EVALUATION

CRPS
KL-Div graft prune messageReceived messageOverhead

Observational 4.88 0.14 0.88 0.35 0.18
PC Classical 5.06 0.15 0.06 0.11 0.35
PC Stable 5.07 0.15 0.06 0.11 0.35
PC Parallel 5.07 0.15 0.06 0.11 0.35
Direct LinGaM 3.78 0.25 - 0.35 0.13
ICA LinGaM 3.61 0.25 - 0.37 0.18
NOTEARS 3.62 0.25 - 0.37 0.13
NOTEARS LowRank 2.50 - - 0.33 0.13
NOTEARS GOLEM 2.51 - - 0.35 0.14

of a pubsub-based network. We aim to address how causal
analysis can assist in parameterizing networks, specifically
GossipSub, to disseminate ledger proposals over the XRP
Ledger.

The first two steps of causal analysis are the most challeng-
ing ones; being where we discover causal relations by looking
at observational and/or interventional data. This work focused
on this discovery by applying three categories of algorithms
– constraint-based, function-based, and gradient-based – in
contrast to a pure domain knowledge-based approach over
observational data.

Gradient-based and function-based models had better ac-
curacy and higher simplicity. This is given not only by the
accuracy metrics acquired but also by the proximity between
the graphs generated by NOTEARS and the model generated
using observational data and domain knowledge.

This work sets a foundation upon which we can better
understand the mechanisms of cause and effect that the
GossipSub mesh parameters have over network performance.
Future work can be focused on causal inference and climb
to the third step of the causation ladder, the counterfactual.
A good model can give us the tools necessary to better
parameterize the network for maximum performance without
the need for extensive experimentation.
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