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Abstract—Due to their increasing aggressiveness, recent con-
gestion control algorithms (CCAs) can starve vanilla TCP flows in
their shared router queues. Unfortunately, existing router-based
solutions cannot prevent this starvation.

In this paper, we introduce a per-CCA queue isolation where
incoming flows first undergo CCA classification, and then are
mapped to isolated queues based on their classified CCA. We
provide a fundamental analysis for this per-CCA isolation, and
present two models for its performance. Then, in evaluations,
we show how this per-CCA isolation clearly outperforms buffer
sharing, and how our advanced model can accurately represent
its performance. We further show how we can increase fairness
by optimizing the queue service rates.

I. INTRODUCTION

CCA starvation. Public cloud providers face increasing un-
fairness between the congestion control algorithms (CCAs)
in their network. The main reason is that cloud users can
relatively easily change the CCA that runs in their virtual
machines. Therefore, users increasingly implement aggressive
CCAs that can be strongly unfair to competing vanilla TCP
flows. For example, even a single BBR flow can quickly
take over a large portion of a shared queue and nearly starve
competing Reno and CUBIC flows [1]–[5]. In addition, users
can leverage cloud-based TCP-split proxies to make these
CCAs even more aggressive [6]–[8]. It is an arms race. The
resulting CCA starvation is becoming a significant issue to
cloud providers, because users pay for good network perfor-
mance and can readily migrate to cloud competitors when their
flows get starved [9].

Avoiding CCA starvation. To protect vanilla CCAs from
aggressive ones, a naive approach for cloud providers would
be to apply one of the many fair-queueing [10], [11] and/or
admission-control related algorithms [12], [13]. However, as
explained by Cebinae [14], fair-queueing algorithms cannot
meet the hardware requirements of routers in public clouds
with large numbers of flows, and admission-control algorithms
typically drop overflow packets, thus arbitrarily hurting non-
loss-based CCAs.

Instead, Cebinae [14] attempts to achieve reasonable fair-
ness by slightly reducing the rates of a few heavy hitters. How-
ever, in practice, since Cebinae does not know the feedback
mechanisms of the heavy-hitter CCAs, it always knocks them
down with a triple combination of losses, latency, and ECN
bits, potentially yielding large oscillations and starvation.

CCA-family queueing. Several recent papers introduce a
promising approach that dedicates distinct queues to different
CCA families. P4air [15] was apparently the first to map all

(a) Shared buffer
(b) Per-CCA queues
with ideal classification

(c) Per-CCA queues with
real-life classification

Fig. 1. Buffer shared by several CCAs: (a) Typical FIFO shared buffer.
(b) Following an ideal CCA classification, each CCA is mapped into a
different queue. (c) In real life, some flows may be misclassified.

flows that belong to the same CCA family into a distinct
queue: e.g., a queue for loss-based CCAs, and another one for
delay-based CCAs. This helps increase fairness, as P4air does
not put together CCAs with different mechanisms. However,
P4air can still map two loss-based CCAs with significantly
different aggressiveness into the same loss-based queue, and
therefore can still experience CCA-based starvation within a
CCA family. The P4air approach seems to gain traction, as
recently Confucius [16] and P4CCI [17] also rely on such a
queue-based isolation for different CCA classes. For example,
Confucius groups together flows based on their expected
queue occupancy. However, it can group together CCAs with
different feedback mechanisms, and therefore may still exhibit
significant unfairness within a CCA class.

Online CCA classification. Independently of the above meth-
ods to avoid CCA starvation, the popularization of strong
machine learning (ML) tools has enabled the recent emer-
gence of an online CCA classification field. While past CCA
classification algorithms were mostly offline and often needed
to monitor the ACKs as well [18]–[22], recent algorithms
such as DeePCCI [23] and Dragonfly [24] enable online CCA
classification without monitoring the reverse path.

Per-CCA queueing. P4air, Confucius and P4CCI create a
queue isolation between CCA classes, but may exhibit unfair-
ness within classes. In this paper, we naturally ask whether
router vendors could provide full per-CCA queueing.

Fig. 1 illustrates our idea. First, Fig. 1(a) shows how today,
a shared FIFO queue combines all flows. Instead, Fig. 1(b)
illustrates per-CCA queue isolation: after going through a
CCA classifier, packets of each flow are placed in an isolated
queue that corresponds to their flow CCA. Assume at first
for simplicity that buffers are split equally, and that each
queue is served proportionally to its number of flows. Then
flows with vanilla CCAs are guaranteed service and can avoid
starvation from aggressive CCAs, which are restricted to their
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own queues. For instance, by staying in their own (blue)
swimming lane, BBR flows are prevented from interfering with
Reno and CUBIC flows.

The benefits of this per-CCA queueing idea are clear.
(1) The isolation would enable cloud users to use the CCA that
best fits their application, without hurting other users. (2) It
would enable routers to apply the best feedback mechanism
(ECN, INT, etc.) to each CCA. (3) It would also enable CCA
developers to design CCAs that better fit applications, and
that only need to be fair to themselves, without a mandate
to be TCP-friendly [5]. In short, it could develop into a new
queueing discipline and unleash novel CCA developments.

On the other hand, the per-CCA isolation idea needs to
solve countless implementation problems to be practical, e.g.,
(1) the CCA classifier should provide a classification after
a few RTTs, even when starting to examine a flow in the
middle; (2) it should automatically learn to classify CCAs,
without a need to define CCA protocols manually; (3) it should
do so while only locally examining the packets at the router
buffer, without their ACKs and without communicating with
the end-points; (4) it should be accurate enough to get a good
queue isolation; (5) it should classify dozens of CCAs; (6) for
scalability, the queueing algorithm should be able to separate
elephants to classify urgently, and mice that can stay in some
unclassified queue; (7) it should deal with re-classifications;
(8) it should deal with unknown CCAs on which it has not
trained; (9) it may need to further classify the same CCA
into distinct effective CCAs based on its RTT or on its tuned
parameters; (10) it should be able to approximate the number
of flows per queue for a fair service rate; (11) it should
remember classifier decisions; etc.

Some of these problems are already addressed in the lit-
erature. For instance, the DeePCCI and Dragonfly classifiers
address the first 3 problems [23], [24]. The 10th problem of ef-
ficiently estimating the number of flows is largely solved [25].
The 11th problem can be solved with a simple hash table.

Building on the fast-growing machine-learning literature,
classifiers get quickly better. We can soon expect them to
reach a strong accuracy. Motivated by these recent advances,
the goal of this paper is to consider the 4th problem: how
accurate should a classifier be to provide a good queue
isolation? Fig. 1(c) illustrates a significant problem of the
per-CCA isolation idea: misclassifications. Some BBR flows
may be classified as Reno or CUBIC, and will be mapped to
the wrong queues. Like sharks in a pool of fish, even a few
BBR flows in the wrong queues may cause unfairness again.
Our goal is to fundamentally study how accurate the CCA
classifier needs to be in order to counteract the imbalance in
aggressiveness between the different CCAs. For instance, if
a current classifier reaches an accuracy of 0.8, does it help,
or should it be at least 0.999 to be helpful? We want to
provide fundamental guidelines for cloud providers on the
needed classifier accuracy, not to design another classifier.

Contributions. This paper makes several contributions. (1) It
introduces per-CCA queueing, and discusses the many hurdles

on the way to practicality. (2) It focuses on the fundamental
classifier accuracy needed to obtain good isolation between
CCAs. To do so, it discovers an intrinsic property of current
and future classifiers: the misclassification probability for a
CCA i is expected to fall as the inverse square root of its
aggressiveness. For example, a CCA that is 4× more aggres-
sive than Reno is expected to have half of its misclassification
rate. (3) Based on this property, the paper introduces two
models for the performance of per-CCA queueing, and shows
that the advanced model provides a tight fit. (4) The evalua-
tions demonstrate how per-CCA queueing clearly outperforms
buffer sharing. For instance, with equal numbers of Reno,
CUBIC and BBR flows, buffer sharing only provides 11.9% of
the fair bandwidth share to the most vulnerable CCA (Reno).
Per-CCA queueing provides 50% for a classifier accuracy of
F1 = 0.83, and 80% for F1 = 0.95. (5) This outperformance
also holds with real classifier accuracy values from DeePCCI
and Dragonfly [23], [24]. In fact, their current accuracy is
already sufficient to strongly increase the bandwidth share
provided to vulnerable CCAs. (6) The unfairness between
CCAs can be further decreased by optimizing the per-CCA
queue service rates. (7) Finally, evaluations show that our
models extend to per-CCA-class queueing, as in P4air [15],
Confucius [16] and P4CCI [17].

II. PERFORMANCE MODEL AND ANALYSIS

A. Classifier assumptions

We study the fundamental performance limits of a classifier-
based per-CCA queue isolation. Our goal is to determine the
impact of this classifier’s accuracy on the system fairness
among the CCAs. We make two simplifying assumptions to
focus on the intrinsic impact of the classifier accuracy, while
setting aside for now the system’s implementation details.

Classifier training in a shared buffer. The CCA classifier
trains once offline with K ≥ 2 CCAs in a dumbbell topology
with a shared-buffer bottleneck router. Each CCA is used by
the same number of flows (e.g., 50 flows per CCA).

No classifier delay. We assume that the classifier can im-
mediately classify a flow when it enters the system, and do
not study the impact of delaying the classification. All future
packets of this flow are classified in the same way.

B. Classification error

We want to provide a general model for the classification
error of current and future CCA classifiers.

Classification probability. Given that a flow has CCA i ∈
{1, . . . ,K}, let qij denote the conditional probability that it
is classified as having CCA j ∈ {1, . . . ,K}. qij satisfies

K∑
j=1

qij = 1, ∀i ∈ {1, . . . ,K} . (1)

In a perfect classifier, qii = 1 and qij = 0 for any j ̸= i.

Classification error bound. We leverage the theory of mul-
ticlass learnability [26]–[29]. We assume that during training,
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the CCA classifier has encountered ni sample packets for
each CCA i. We can then use the Natarajan dimension, which
characterizes the complexity of learning a set of functions, and
generalizes the well-known Vapnik-Chervonenkis dimension
from two-class to multiclass functions [26]. It establishes the
following upper bound on the misclassification error, which
can also be seen as an application of Hoeffding’s inequal-
ity [28]:

∃λ > 0,∀i,∀j ̸= i, qij ≤
λ

√
ni

. (2)

In other words, the more training samples ni we get for
CCA i, the better we can classify it. This bound on the
misclassification error provides two interesting contributions.
First, it falls like the square root of the number of samples.
Second, it is independent of j, which can be counter-intuitive:
e.g., the bound on the probability of misclassifying BBR as
Reno only depends on the number of BBR samples we have
seen, not on the number of Reno samples.
Classification error model. In the remainder of the paper,
we want a simple exact model for the multiclass classification
error. To do so, we will assume that this error falls with the
number of samples in the same way as its upper bound, i.e.,
that there exists some β with 0 < β < λ that satisfies:

∀i,∀j ̸= i, qij =
β

√
ni

. (3)

Combining Eq. (1) and Eq. (3) yields the following formula
for the correct classification probability of CCA i:

qii = 1−
∑
j ̸=i

qij = 1− (K − 1) · β
√
ni

, ∀i. (4)

Training model. We now need to model how many packet
samples the CCA classifier sees during its training. We assume
that during training, we send the same number of flows for
each CCA. However, a more aggressive flow will send many
more packets per flow, and therefore will obtain more samples.
Thus, the number of samples is related to the aggressiveness
of the CCA. Let n denote the total number of packets seen
during the training:

n =

K∑
i=1

ni. (5)

Then we define the aggressiveness factor gi of CCA i as the
ratio of the bandwidth of a flow with CCA i to its fair share.

gi =
ni

n/K
. (6)

Combining with Eq. (3), we obtain the following proposition:

Proposition 1 (misclassification probability). The probabil-
ity of misclassifying a flow with CCA i as CCA j ̸= i is:

qij =
β
√
K/n

√
gi

∀i,∀j ̸= i. (7)

Proposition 1 states that the misclassification error for CCA
i is inversely related to the square root of its aggressiveness.

This formula can be seen as a key result that characterizes
multi-class CCA classifiers, and is core to our understanding
of per-CCA queueing with imprecise classification.

We saw in Fig. 1(c) that flows of aggressive CCAs could be
misclassified and sent to the queues of less aggressive ones.
An interesting observation about Eq. (7) is that we would
expect a more aggressive CCA like BBR to experience less
misclassification errors than a vanilla CCA like Reno. The
more aggressive a CCA is, the less misclassified it can be,
and therefore the less likely it is to be sent to the wrong
queue. Therefore, this works in favor of per-CCA queueing:
Sharks are less likely to be wrongly sent to the pool of fish.
Of course, on the other hand, vanilla CCAs are more likely
to be misclassified, and therefore fish are more likely to be
wrongly sent to the pool of sharks.

C. Flow distribution with any CCA arrivals

Flow distribution A. Let aij denote the probability that
an arbitrary flow arriving at the buffer uses CCA i and is
classified as CCA j. It satisfies

∑
i,j aij = 1. Let A denote

the associated matrix [aij ]ij of all such probabilities.

Goal: model A given F1. We want to study the impact of the
accuracy of the classifier on the fairness of our system. To do
so, we classically quantify the performance of the multiclass
CCA classifier using its F1 score, a measure of its accuracy
that is defined as the harmonic mean of its precision and its
recall. F1 is in [0, 1], and equals 1 for a perfect classifier. The
following theorem states that A is a function of F1.

Theorem 1 (flow distribution). (i) The flow distribution
matrix A can be expressed as a function of F1.
(ii) The percentage of flows with CCA i and misclassified as
CCA j ̸= i is a strictly-decreasing linear function of F1, and
it equals 0 when F1 = 1.

Proof: (i) Case 1: equal number of flows. We start with
the homogeneous case where each CCA has an equal number
of flows. In this case, we denote aij by a′ij and A by A′.

Since 1/K th of all flows belong to each CCA, for all
i,

∑K
j=1 a

′
ij = 1

K . By Bayes’ rule, the probability that an
arbitrary flow uses CCA i and is classified as CCA j is the
product of the probability 1/K that it uses CCA i, by the
conditional probability qij that it is classified as CCA j given
that it uses CCA i. Therefore,

a′ij =
1

K
· qij ∀i, j. (8)

Let γ = β√
Kn

. Combining with the misclassification model

of Eq. (7), we obtain a′ij = 1
K · β

√
K/n

√
gi

= γ√
gi

for all i and

all j ̸= i. Likewise, for all i, since
∑K

j=1 a
′
ij = 1

K , we get
a′ii =

1
K − (K − 1) γ√

gi
. Combining both equations,

A′ =


1
K

− (K−1)γ√
g1

γ√
g1

.. γ√
g1

γ√
g2

1
K

− (K−1)γ√
g2

.. γ√
g2

: : : :
γ√
gK

γ√
gK

.. 1
K

− (K−1)γ√
gK

. (9)
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F1 is the sum of the diagonal values of A, thus

F1 = 1− (K − 1)γ

K∑
i=1

1
√
gi
. (10)

We can verify that if the number n of training samples goes
to infinity, then γ = β

K
√
n

goes to zero, and F1 converges to
one. Also, from Eq. (10), we can get γ as a function of F1:

γ =
1− F1

(K − 1)
∑K

i=1
1√
gi

. (11)

Combining this formula with Eq. (9) yields:

A′ =
1− F1

(K − 1) ·
∑K

i=1
1√
gi

·


α11(F1)

1√
g1

.. 1√
g1

1√
g2

α22(F1) .. 1√
g2

: : : :
1√
gK

1√
gK

.. αKK(F1)

,

(12)

where αii(F1) =
(K−1)

∑K
i=1

1√
gi

K(1−F1)
− K−1√

gi
.

Case 2: general case. We now extend the model to the general
case. Let Ni denote the number of incoming flows that belong
to CCA i, and N =

∑
i Ni denote the total number of flows.

By Bayes’ rule, aij is the product of the probability Ni

N
that an arbitrary flow belongs to CCA i, by the conditional
misclassification probability qij . Combining with Eq. (8),

aij =
Ni

N
·K · a′ij . (13)

Namely, the flow-distribution probability matrix A is the same
as its homogeneous equivalent A′ but with rescaled rows.
(ii) By Eq. (11), when F1 increases, γ strictly decreases
(linearly in F1). Thus by Eq. (9) (homogeneous case) and
Eq. (13) (general case), any misclassification element in row
i also strictly decreases (because K > 1). For F1 = 1, γ = 0
and A′ is reduced to its diagonal.

D. Simple model

In per-CCA queueing, we now introduce a first simple
model of the packet rate of CCA i arriving at queue j. We
use the facts that: (1) This rate is the product of the number
of flows using CCA i in queue j by their expected packet
rate. (2) This number of flows using CCA i in queue j
is proportional to aij by definition. (3) The packet rate of
each flow is proportional to its aggressiveness, because the
aggressiveness of each flow is the ratio of its packet rate by
its fair share. Finally, (4) we approximate the aggressiveness
of each flow in each queue as equal to its aggressiveness gi
during training. Thus, the packet rate of CCA i arriving at
queue j is proportional to giaij . Let pij denote the probability
of packets in queue j to use CCA i. By Bayes’ rule, we get:

pij =
giaij∑
i giaij

. (14)

Assume that each queue j is serviced at rate cj (e.g., pro-
portionally to its number of flows). Then the total throughput
Thri obtained by CCA i across all queues is:

Thri =

K∑
j=1

pij · cj . (15)

E. Advanced aggressiveness model

The simple model above only captures approximately the
final fairness, because it uses a single measure of aggressive-
ness that is obtained during the training, when flows from
all CCAs share the same buffer. We want a more precise
model to (1) reliably use it as a sub-routine in the experimental
optimizations (Sec. III-F), and (2) obtain more intuition. We
build this model in a heuristic manner by running offline
simulations that examine the CCA interactions. Thus, this
advanced model trades off an increased precision against a
more heuristic approach.

Relative aggressiveness. In this advanced model, for each
CCA pair (i, j) out of the K(K − 1)/2 possible ones, we
model how CCAs i and j behave when they are alone in a
shared buffer. To do so, we vary the number of flows from i
and j to model a buffer dominated by either of the CCAs.
Then, we denote the relative aggressiveness gij(xi) as the
ratio of the average throughput of a flow of CCA i by that of
CCA j, assuming that a proportion xi of all flows belongs to
CCA i. We model gij(xi) by first plotting the ratio of their
throughputs in log scale as a function of their number of flows,
and then using a minimum mean-squares estimator. We get
gij(xi) = w · emxi , for some constants w and m.

Advanced model. We now want to model the aggressiveness
gi(k) of a flow with CCA i in queue k, i.e., the ratio of its rate
to the average flow rate in queue k. Intuitively, this ratio is the
relative aggressiveness against an average flow in the queue.
We model it as a weighted average relative aggressiveness,
where the weight of each CCA j is its proportion xk

j of all
flows in queue k. Putting it all together,

gi(k) =

K∑
j=1

xk
j gij(x

k
i ). (16)

Finally, we plug this aggressiveness in Eq. (14) to get the
probability distribution of packets in each queue.

F. Model limitations

We introduce the simple and advanced models to evaluate
how accurate the classifiers should be in order to reach a rea-
sonable fairness among CCAs. The models are not needed to
implement per-CCA queueing, only to get intuition. However,
they also have several limitations:

Topology-dependent. If some evaluation settings change (e.g.,
link speeds, buffer sizes, RTTs, flow arrivals and departures,
etc.), then we need to obtain new models for the new settings.

Classifier assumptions. We made simplifying assumptions to
obtain the models, and they may need to change based on
classifier implementation details.

Theory. We used multiclass learnability theory to characterize
the bounds and trends of classifier accuracy as we scale the
number of samples. The exact accuracy of current and future
classifiers may vary.
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III. EVALUATIONS

A. Settings

Topology. To evaluate our aggressiveness models, we use
Mininet emulation with iPerf3 traffic generation. We deploy
N = 150 hosts (with one flow each) in a dumbbell-like
topology. Each host sends a long-lasting flow to a single server
through two consecutive switches. All hosts are connected to
the first switch by one 1 Gbps link with a delay of 10 ms.
The two switches are then connected by a bottleneck link of
capacity C = 1.5Gbps. The egress bottleneck buffer size at
the output of the first switch is C·RTT√

N
= 460 packets, using

RTT = 40ms [30]. Then, the second switch is connected to
the server by a final link of delay 10 ms. We run all simulations
for 60 sec.
Buffer policy. We consider two modes for the buffer:

• Buffer sharing, with a shared buffer for all CCAs.
• Per-CCA queueing, with K isolated queues that statically

share the buffer.
With per-CCA queueing, packets go through three stages at
the switch: (1) Classification, assigning them to a given queue;
(2) Buffering; (3) Service. For the classification, we first run
a classifier offline on each flow to map it to a given CCA,
and therefore to a given queue. If we want to simulate a given
conditional probability qij (Eq. (1)), then we randomly classify
each flow that uses CCA i as using CCA j by drawing a
conditional probability qij . Next, online, we map the packets
of each flow depending on their 5-tuple. In practice, due to
the topology, we use the IP source address. Once classified,
packets are buffered in one of the K queues, depending
on their classified CCA. Finally, we service each queue by
dividing the total link capacity proportionally to the number
of mapped flows to this queue.
CCAs. We evaluate the same CCAs as those of the DeePCCI
and Dragonfly classifiers: Reno, CUBIC and BBR [23], [24].
Starvation avoidance metric. We quantify the CCA starvation
avoidance by measuring the percentage of bandwidth that the
most vulnerable CCA gets out of its fair share. To do so, for
each CCA, we measure the average throughput obtained by all
of its flows, which reflects the expected throughput for a flow
belonging to this CCA. We then normalize by the fair share,
which is the average of all such average CCA throughputs. The
result is between 0 and 1, with a 0 value for starvation and
1 for full fairness. Thus, the normalized minimum throughput
MinThr is

MinThr =
mini avgThri
fairShare

, (17)

where avgThri denotes the average throughput for flows of
CCA i.

B. Equal number of flows per CCA

Starvation results. We start with a simple case, with 50 flows
per CCA. Fig. 2 illustrates the achieved CCA starvation avoid-
ance by plotting the normalized CCA minimum throughput as
a function of the classifier accuracy F1. First, the blue line

Fig. 2. Equal number of flows per CCA: Normalized minimum CCA
throughput as a function of classifier accuracy F1.

for a shared buffer shows that there is little protection for
vanilla CCAs from the aggressive BBR, as the least aggressive
CCA (Reno) only gets 11.9% of its bandwidth fair share.
On the other hand, the red line for per-CCA queueing shows
that it improves the fairness and reduces the starvation. This
holds even for a relatively low F1, i.e., even when many BBR
flows can enter the queues of Reno and CUBIC. To cross a
throughput threshold of 0.5 for the vulnerable CCA, we need
F1 = 0.83, a high but reasonable classifier accuracy [23], [24].

Model results. Fig. 2 also presents the results of our two
models. The dotted yellow line with the first simple model
shows that it indeed captures the general tendency of per-CCA
queueing (red line), growing monotonously until it reaches a
result of 1 for an ideal F1 = 1. However, it can get far from
the exact result. For instance, with F1 = 0.83, it predicts a
normalized minimum throughput of 0.66 while the exact result
is 0.5. The dashed purple line shows the advanced model. It
appears as extremely accurate.

C. Different number of flows per CCA

Few sharks. We consider the general case with a different
number of flows for each CCA. We start by testing the case of
many vulnerable flows and a few aggressive ones. We assume
that 130 flows use Reno, 10 CUBIC, and 10 BBR. Fig. 3(a)
shows how the most vulnerable CCA (Reno) only gets 10.4%
of its fair share in a shared buffer. Per-CCA queueing doubles
its share for F1 = 0.55, and its share further increases with
F1. Moreover, the advanced model obtains very close results.

Many sharks. We now assume that 10 flows use Reno, 10
CUBIC, and 130 BBR. Fig. 3(b) illustrates how the most
vulnerable CCA now gets 22% of its fair share with a
shared buffer, a higher figure than in the previous examples.
This is due to the fact that many BBR flows compete with
each other, and therefore BBR flows cannot get too large
and too aggressive. In per-CCA queueing, many BBR flows
are misclassified and sent to the Reno and CUBIC queues,
decreasing the isolation. Therefore, per-CCA queueing now
needs a higher F1 to reach an elbow and start increasing
towards 1. To get a throughput of 0.5, it needs F1 = 0.95.
The advanced model obtains again very close results.
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(a) Few aggressive flows. (b) Many aggressive flows.

Fig. 3. Different number of flows per CCA.

TABLE I. Used F1 scores from DeePCCI [23] and Dragonfly [24].

DeePCCI Dragonfly

Duration[s] Reno CUBIC BBR Reno CUBIC BBR

1 0.666 0.5833 0.95 0.798 0.8733 0.91
5 0.84 0.8125 0.975 0.88 0.94 0.945
10 0.875 0.875 0.9875 0.93 0.935 0.95

(a) DeePCCI [23] CCA classifier. (b) Dragonfly [24] CCA classifier.

Fig. 4. Fairness given F1 accuracy of real CCA classifiers.

D. Evaluating classifiers from the literature

Until now, we assumed that the classifier satisfies our mul-
ticlass classification model, with the classification error fol-
lowing the inverse-square-root of the aggressiveness (Eq. (7)).
In this part only, we want to evaluate the impact of using the
real F1 values of two different classifiers from the literature:
DeePCCI [23] and Dragonfly [24].

Setup. We use 50 hosts per CCA. We further use the F1

scores achieved by DeePCCI and Dragonfly (Table I) for
a network with Reno, CUBIC, and BBR flows, while the
classifier interval durations for classification are 1, 5, and 10
seconds. These values are taken from their respective papers.

Results. Fig. 4(a) and Fig. 4(b) show how the fair share
of the most vulnerable flow varies as a function of the
sampling interval of the classifiers. Per-CCA queueing clearly
outperforms the shared buffer. The advanced model captures
the performance quite accurately.

E. Modeling per-CCA-class queueing

We now examine per-CCA-class queueing, as in P4air [15].

Setup. We use 50 hosts per CCA. However, we merge the
Reno and CUBIC queues into a single queue, using two queues

Fig. 5. Per-CCA-class queues. Fig. 6. Optimizing service rates.

instead of three. The merged queue includes all flows classified
as Reno or CUBIC, including misclassified BBR flows.

Results. Fig. 5 shows that per-CCA-class queueing reduces
starvation. For instance, with F1 = 0.6, the most vulnerable
CCA gets 21.7% of its fair share of the throughput, which
nearly doubles the 11.9% in the shared buffer. However, per-
CCA-class queueing presents a fundamental issue: With an
ideal classification (F1 = 1), it only reaches a min throughput
of 0.88, and cannot obtain a full fairness among CCAs. This is
because Reno and CUBIC share the same queue, and they have
a slightly different aggressiveness. Thus, it is fundamentally
weaker than per-CCA queueing (Fig. 2). This weakness is
expected to significantly grow when more dissimilar CCAs are
grouped together (e.g., grouping BBR and Reno in the same
queue would lead to Reno getting crushed). Last, our advanced
model closely approximates per-CCA-class queueing.

F. Leveraging the advanced model to optimize fairness

Since the advanced model closely captures the fairness of
per-CCA queueing, we can leverage it to optimize the fairness.
In particular, until now, we assumed that we service all queues
with a rate proportional to their number of mapped flows. But
the aggressiveness of BBR hurts the expected throughput of
the Reno and CUBIC flows. If we provide a higher service
rate to the Reno and CUBIC queues, we can counteract this
aggressiveness and increase the expected throughput of the
more vulnerable flows. We want to fundamentally analyze how
much we can improve by varying the service rates.

Setup. We run a theoretical optimization using the advanced
model (in Matlab, not Mininet). We assume the same number
of flows for each CCA. We adjust the service rate of each
queue to maximize the fair share of the most vulnerable CCA
in the advanced model.

Results. Fig. 6 shows how the throughput of the most vul-
nerable CCA exceeds the previous results. For instance, for
F1 = 0.6, the most vulnerable CCA gets 46% of its fair
share, exceeding the 26% that it obtains in unoptimized per-
CCA queueing, and more than doubling the shared-buffer
throughput. One of the most surprising results in the figure
is that it is even possible to reach the CCA fair share despite
an imperfect classification, starting from F1 = 0.88.
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Fig. 7. (BBR, Reno) advanced aggressiveness.

G. Deep dive into the aggressiveness models

For completeness, we describe how we determined the
parameters for the aggressiveness models.

Simple model. We evaluate the training-mode aggressiveness
gi from Eq. (6). This aggressiveness determines how many
samples the classifier can see for each CCA, and therefore
how efficiently it classifies this CCA. We assign 50 hosts to
each CCA, and run the evaluation with a shared buffer (sharing
mode). We repeat the evaluation 30 times.

The resulting average and median aggressiveness are almost
the same. We obtain:

• gReno = 0.1158,
• gCUBIC = 0.1365, and
• gBBR = 2.7477.

In other words, BBR flows capture 91.6% of the bandwidth,
while leaving the remainder to the other flows. BBR is 23.7
times more aggressive than Reno and 20 times more aggressive
than CUBIC.

Advanced model. We measure the relative aggressiveness of
each CCA i vs. CCA j. We define 100 hosts per CCA, and
repeat each evaluation 5 times using a shared buffer. We obtain
the following three relative-aggressiveness models:

• gBBR,Reno(x) = 28.7 · e−1.17x,
• gBBR,CUBIC(x) = 33.2 · e−1.15x, and
• gCUBIC,Reno(x) = 0.99 · e0.38x.
For example, Fig. 7 plots the ratio of the average throughput

of BBR flows to that of Reno flows, as a function of the
percentage of BBR flows. As previously shown in the liter-
ature [1], [31], when the percentage of BBR flows increases
in a shared buffer, BBR becomes less aggressive. We can see
that BBR’s relative aggressiveness vs. Reno decreases about
linearly in logarithmic scale, from 28.7 to 8.9.
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