
Optimizing Data Center Network Performance: A
Comprehensive Analysis of Speed Testing, Caching,

and Network Coding in Software Defined
Networking

Souryendu Das1∗, Jacob Adamson2∗, Aaron Lee2∗, Vedant Vaideswar2∗, Stavros Kalafatis3∗
∗Electrical and Computer Engineering, Texas A&M University, College Station, USA

Email: souryendu@gmail.com, adamson1872@tamu.edu, aaron1145@tamu.edu,
vedant vaideswar@tamu.edu, skalafatis-tamu@tamu.edu

Abstract—This study explores the application of Software
Defined Networking (SDN) to optimize data center network
performance by employing a series of innovative techniques
tested within a Mininet-emulated dumbbell network topology.
We precisely assess network behavior under different proto-
cols and configurations, including IPerf3 in both Cubic and
Bottleneck Bandwidth and Round-trip propagation time (BBR)
modes, as well as UDPST (User Datagram Protocol Speed
Test). Results highlight IPerf3 in BBR mode as superior in
stability and performance. Additionally, we investigate various
caching architectures—singular, split, and multi-cache—with
multi-cache configurations demonstrating the best performance
in terms of capacity and access time. Furthermore, network
coding strategies like XOR coding and Random Packet Spraying
(RPS) are analyzed for their effectiveness in reducing packet
loss and retransmissions, with RPS showing a notable decrease
in retransmission rates. Collectively, these insights contribute
significantly to SDN implementations aimed at enhancing the
operational efficiency of data centers.

Index Terms—Software Defined Networking, Data Center
Networks, Mininet Emulation, Network Performance, Speed
Testing, Caching Architectures, Network Coding, XOR Coding,
Random Packet Spraying, Data Transmission.

I. INTRODUCTION

As data-intensive applications and services increase in
today’s network landscape, traditional network infrastructures
are increasingly challenged by high data volumes and the
dynamic nature of modern computing environments [21],
[24]. This scenario is particularly evident in data centers,
where efficient data routing and load balancing are critical
to avoiding performance bottlenecks and managing operational
costs effectively [19], [22]. Software Defined Networking
(SDN) has emerged as a transformative approach in this
context, decoupling the control plane from the data plane to
offer a more flexible and centralized management system [25].
This paradigm shift facilitates rapid adjustments to network
configurations and seamless integration of services, effectively
addressing the limitations of traditional networks [23], [26].

Our research leverages the Mininet emulator to investigate
how SDN can enhance data center operations through inno-
vative caching and network coding strategies, testing these

strategies in various cross-traffic scenarios to evaluate different
network speed testing methodologies (TCP Cubic, TCP BBR,
and OB-UDPST) under multiple bottleneck conditions [11],
[18]. This approach aims to improve overall network perfor-
mance by optimizing data transmissions between hosts within
a controlled, emulated environment [2], [9].

Despite the advantages of SDN, efficiently managing high-
speed data traffic remains a significant challenge [30]. This
research not only explores these challenges but also proposes
solutions tailored for data center network optimizations [7],
[8]. We focus on the design, implementation, and evaluation
of an SDN solution crafted explicitly for a dumbbell network
topology, a model that effectively represents common network
scenarios with bottleneck issues [3], [4]. The study develops
custom caching architectures for packet transmissions between
network switches and implements diverse network coding
schemes to reduce latency and enhance throughput [10], [12].

Moreover, SDN controllers play a crucial role in managing
network resources efficiently, where advanced algorithms help
distribute traffic dynamically, enhancing the robustness and
responsiveness of network infrastructures [13]–[16]. Techniques
such as load balancing, congestion control, and data flow
prioritization are critical in achieving these goals, especially in
environments characterized by heavy data exchange and real
time processing requirements [17], [20].

Network tools and switches, although increasingly sophis-
ticated, still face challenges related to hardware limitations
and the need for integration with legacy systems. Studies
have shown that strategic placement of SDN controllers and
the adoption of intelligent routing protocols can significantly
mitigate these issues, providing more stable and efficient
network operations [1], [5], [6], [27].

This work is intended to contribute valuable insights into
network performance optimizations, which are particularly
useful for further research and practical applications. While our
solutions are designed for a dumbbell network topology, they
offer foundational strategies that could be adapted for broader
network configurations [28]. The findings from this project
will provide a significant reference point for future researchers

2024 20th International Conference on Network and Service Management (CNSM)

978-3-903176-66-9 ©2024 IFIP



seeking to optimize network configurations effectively.
However, the use of Mininet as an emulation tool comes

with inherent limitations that must be considered:

• Scalability of Emulated Network: Mininet runs on a
single host machine, which restricts the size and complex-
ity of the network that can be emulated. Consequently,
larger topologies may suffer from reduced performance
due to resource constraints [27].

• Physical Network Conditions: Mininet does not sim-
ulate physical characteristics and environmental factors,
such as interference and signal degradation, which can
significantly impact real-world network performance [19],
[20].

II. SYSTEM MODEL

Figure 1: Dumbbell Network Topology with SDN Controller.

We employ a Mininet-based dumbbell network topology
managed by an SDN controller (c0), connecting four hosts
(h1, h2, h3, h4) through two switches (s1, s2), as shown
in Figure 1. This topology facilitates precise control and
monitoring of traffic flows and is essential for testing network
coding, caching strategies, and speed testing under various
conditions. Our research aims to address specifically network
traffic that is congested within a bottleneck; that is, we are
using the dumbbell topology due to its inherent design, which
provides this bottleneck while not introducing other network
complexities. The goal is to explore how traffic congestion
within a bottleneck scenario can be optimized using different
strategies, including Caching and Custom Network Coding. By
running tests using this potential form of optimization through
the bottleneck, the worst-case scenario for network traffic can
be navigated. The dumbbell topology is used instead of others,
such as FatTree and BCube because we are explicitly analyzing
the effects of caching and custom network coding under
bottleneck and highly congested scenarios. By investigating
the effects of caching and custom network coding under such
conditions, we can see how well these techniques perform
under high-stress situations. This will allow us to see potential
insights into how similar techniques would perform within
other topologies.

A. Overview

Our architecture comprises three components addressing
specific performance aspects within the dumbbell topology,
which includes speed testing, caching architectures, and net-
work coding strategies.

B. Justification for Using Dumbbell Topology

Dumbbell topologies, characterized by their single bottleneck
between two sets of hosts, effectively represent scenarios with
bandwidth constraints, making them ideal for studying network
congestion and throughput dynamics. Studies such as Xu et
al. [3] and Jain and Routhier [4] underscore the utility of
this topology for network research, validating our choice for
experimental studies.

C. Cross-Traffic Testing

We explore the impact of cross-traffic, which consists of
background data flows that do not interact with the primary traf-
fic but may influence network performance due to congestion.
Various scenarios, including different traffic types and network
conditions, are tested to evaluate performance comprehensively.

1) Testing Scenarios: Initial tests are conducted without
cross-traffic to establish baseline performance metrics for each
component. Subsequent tests introduce cross-traffic in various
forms—single bursts, periodic bursts, and continuous large
data transfers—to assess the resilience and adaptability of the
network setups.

D. Details

1) Network Speed Test Metrics: We examine the efficacy
of Iperf3 in Cubic and BBR modes and UDPST in measuring
network performance, focusing on their response to cross-traffic.
TCP-based tests (Cubic and BBR) provide robustness against
packet loss, while UDPST offers faster data transfer at the risk
of increased packet loss.

2) Network Coding and Custom Packet Configurations:
Advanced network coding techniques like XOR coding and
Random Packet Spraying (RPS) are evaluated for their ability
to enhance data transmission reliability and efficiency. We
also explore the use of multiple links and packet pipelining to
mitigate congestion and improve throughput.

3) Packet Caching Architectures: The caching component
uses LRFU caching strategies to optimize data retrieval. This
is critical for reducing latency and managing data efficiently
across the network. Various caching architectures—singular,
split, and multi-cache—are tested to determine the optimal
configuration that balances cache capacity and access time.

E. Experiment Automation and Traffic Simulation

Our experiments are automated using Bash and Python
scripts to generate synthetic traffic patterns, simulating real-
world traffic scenarios. This automation ensures reproducibility
and reliability in our experimental outcomes.

This model allows us to thoroughly assess the performance
implications of different network configurations and strategies,
providing a comprehensive analysis of potential improvements
in data center network operations.

2024 20th International Conference on Network and Service Management (CNSM)



III. SPEED TESTING COMPONENT

A. Speed Testing Introduction

This component evaluates IPerf3 in both Cubic and BBR
modes and UDPST to compare their performance under various
network conditions. IPerf3 is a Transmission Control Protocol
(TCP)-based tool that is standard for network speed tests, where
Cubic is the default congestion control mode, and BBR is used
to optimize bandwidth and minimize latency. UDPST, utilizing
UDP, offers faster data transmission with a risk of increased
packet loss. We assess the effects of different bandwidths,
latencies, and packet drop rates, along with cross-traffic impacts
on these technologies. The purpose of using IPerf3 in cubic
and BBR mode is because IPerf3 is a widely accepted standard
for speed testing. The newer BBR mode allows for faster
transmission of data and is more reliable than the Cubic mode
[33]. The decision to use both BBR and Cubic will enable us
to compare the effects of switching between the two IPerf3
modes. The introduction of UDPST into speed testing is done
to test how a UDP-based architecture could compare under
different scenarios of speed testing done with varying types of
cross-traffic. IPerf3 uses TCP to transmit, while UDPST uses
UDP to communicate. The reason for doing this study is to
find out if it is possible to replace TCP with UDP for speed
testing due to UDP’s several advantages, such as low overhead
and speed compared to TCP. Furthermore, the current HTTP
3.0 is based on QUIC, which is based on UDP.

B. Speed Testing Details

Speed tests between hosts 1 and 3 in our dumbbell topology
involve IPerf3 and UDPST operations, with an IPerf3 server
on host three and clients on host 1. Cross-traffic from host 2
to 4 introduces potential bottlenecks, as depicted in Fig. 2.

Figure 2: Speed Testing Network Traffic Flow

1,008 tests were conducted, each varying in bandwidth,
latency, and packet drop, to establish a performance baseline
and examine the influence of cross-traffic. Test conditions
included no cross-traffic, single and multiple packet bursts, and
file transfer scenarios, with each test lasting 30 seconds.

The cross-traffic scenarios tested were:
• Single-Packet Periodic: A 256-byte packet sent periodi-

cally.

• Multi-Packet Periodic: Multiple 256-byte packets sent
periodically.

• Burst-Packet: Randomly sized packets sent periodically.
• Single-File Periodic: A 256-kb file sent periodically.
• Multi-File Periodic: Several 256-kb files sent periodically.
• Burst-File: A single 500 MB file sent mid-test.

Data from each test was captured and analyzed to determine
the instantaneous bitrate, enhancing our understanding of each
speed test framework’s performance under simulated network
stress.

C. Speed Testing Results

Results across various test scenarios demonstrated that BBR
mode in IPerf3 consistently outperforms others, particularly
under high latency and packet drop conditions. UDPST, while
offering higher throughput, showed reduced stability with
increased packet loss.

Figure 3: Speed Tests without Latency and Packet Drop

Figure 4: Speed Tests with Latency and Packet Drop

Further testing with cross-traffic scenarios revealed signifi-
cant findings:

Overall, IPerf3’s BBR mode proved to be the most stable
across all tested scenarios, highlighting its suitability for high-
demand network environments. UDPST showed resilience in
less congested scenarios but struggled with stability during
intensive cross-traffic tests. This evaluation confirms the robust-
ness of TCP BBR for ensuring reliable network performance

2024 20th International Conference on Network and Service Management (CNSM)



Figure 5: Single-Packet Periodic Cross-Traffic Tests

Figure 6: Single-Packet Periodic Cross-Traffic with Latency and
Packet Drop

and underscores the tradeoffs between TCP and UDP protocols
in terms of throughput and reliability.

IV. CACHING COMPONENT

A. Caching Introduction

This component evaluates various caching strategies within
a dumbbell network topology to optimize data retrieval, reduce
latency, and improve overall performance.

B. Caching Architectures: Considerations and Tradeoffs

Caching significantly speeds up data retrieval and reduces
latency but introduces challenges such as increased cost,
complexity, and resource demands. Advanced caching sys-
tems like multi-cache architectures incur higher costs and
management complexity but offer better scalability compared
to simpler single-cache setups. However, scalability comes with
its challenges, such as the risk of under or over-provisioning,
which can negatively impact performance. Additionally, caching
can lead to data staleness, particularly in dynamic environments,
potentially degrading the data’s relevance and accuracy.

C. Caching Strategies

The component was tested on a primary path (h1 → s1 →
s2 → h3) in a dumbbell topology. Traffic consisted of queries
from h1 to h3, with responses including data from an SQLite

Figure 7: Multi-Packet Periodic Cross-Traffic Tests

Figure 8: Burst-Packet Periodic Cross-Traffic Tests

database. This setup allowed us to analyze the effectiveness of
caching strategies in handling realistic network traffic.

a) LRFU Caching Scheme: We implemented an LRFU
caching scheme, which integrates the principles of LRU and
LFU. This scheme adjusts to changing access patterns by
dynamically balancing between recency and frequency of
access:

1) Cache Loading: New entries are added until the cache
fills, each initialized with a count of 1.

2) Cache Hit: Hits increase the count of the entry by a
predefined factor D, reinforcing the entry’s priority.

3) Cache Miss and Eviction: Misses decrement the LRU
entry’s count. Entries with a negative count upon cache
saturation are replaced.

Factors like initial count, increment count (D), capacity, and
operational delay are critical to balancing performance and
resource utilization. The increment count (D) was used to
prioritize frequently accessed entries by dynamically increasing
their ”stickiness,” thus reducing the likelihood of their eviction
from the cache. The experiment aimed to test the effectiveness
of different values of D in optimizing cache performance
under the Mininet dumbbell topology. The specific goal was
to find a balance between cache efficiency and the system’s
ability to manage frequent cache hits without overcrowding the
cache memory. By adjusting D, we evaluated how increasing

2024 20th International Conference on Network and Service Management (CNSM)



Figure 9: Single-File Periodic Cross-Traffic Tests

Figure 10: Multi-File Periodic Cross-Traffic Tests

Figure 11: Burst-File Periodic Cross-Traffic Tests

the ”stickiness” of cached entries impacts overall latency and
retrieval time.

b) Cache Optimization: The capacities of the M1, M2,
and M3 caches were selected, and their specifications were
optimized through simulations. The optimization tables reveal
the relative performance of each caching strategy.

These results shown in Fig. 12 provide insights into the
performance and efficiency of the different caching strategies.
By carefully selecting the initial count, increment count,
capacity, and delay, optimal cache configurations can be
achieved that best suit the requirements of the network.

Table I: M1 Optimization

Cache Size Initial D Hits

5000

1 2 749
1 3 776
1 4 935
1 5 1088
1 6 1289
1 7 1201
1 8 1256
1 9 1243
2 2 815
2 3 811
2 4 1202
2 5 1112
2 6 1253
2 7 1224
2 8 1129
3 2 779
3 3 948
3 4 1141
3 5 1213
3 6 1129
3 7 1242
3 8 1126
4 2 849
4 3 957
4 4 1207
4 5 1149
4 6 1245
4 7 1241
4 8 1002
5 2 815
5 3 1020
5 4 1146
5 5 1104
5 6 1327
5 7 1310
5 8 1290

10 2 847
10 3 1044
10 4 1106
10 5 1141
10 6 1222
10 7 1023

10000
1 6 2669
2 6 2633
3 7 2622
4 6 2625
5 6 2707

Table II: M2 Optimization

Cache Size Initial D Hits

5000

1 2 2425
1 3 2532
1 4 2391
2 2 2365
2 3 2470
2 4 2462
3 2 2393
3 3 2516
3 4 2467
4 2 2428
4 3 2481
4 4 2511

10000
1 2 4894
1 3 5171
3 3 5164

2024 20th International Conference on Network and Service Management (CNSM)



Table III: M3 Optimization

Cache Size Initial D Hits

5000

1 2 3971
1 3 3962
1 4 3996
1 5 4003
1 6 3942
2 2 3965
2 3 3940
2 4 3934
2 5 3981
2 6 3864
3 2 3987
3 3 3896
3 4 3952
3 5 3936
3 6 3892
4 2 3872
4 3 3922
4 4 3937
4 5 3911
4 6 3950

10000
1 2 8042
1 3 7985
1 5 8022

Figure 12: Custom Cache Specifications

D. Caching Architectures

Our evaluation of caching architectures within the dumbbell
topology reveals significant differences in performance across
various setups. Figure 13a illustrates the baseline scenario
without any caching mechanisms, which predictably results
in the slowest data retrieval times due to the absence of any
cache at the h3 database.

The initial caching architecture, a single M2 LRFU cache
located at s1, as shown in Figure 13b, strikes a balance between
capacity and access time, suitable for environments with limited
caching capabilities.

We then explored a split cache configuration, deploying two
M2 caches to address hardware capacity limitations. These
caches, depicted in Figure 13c, operate in tandem yet are
physically separated, sharing cache space and the exact LRU
mechanism, effectively behaving as a unified cache system.

The most complex setup involved a multi-cache infras-
tructure, shown in Figure 13d, where each cache operates
independently with its own set of rules and policies tailored
to the specific needs of the network segments they serve. This
configuration provided the best performance due to its high
degree of optimization.

E. Architecture Comparison Results

Simulation results from running 5000 packet tests on each
caching infrastructure are displayed in Figure 14, detailing the
accumulated delay throughout the simulation. As hypothesized,

(a) Network Topology without Caching Mechanisms

(b) Singular M2 LRFU Cache Architecture

(c) Split Cache Architecture

(d) Multi-Cache Architecture

Figure 13: Different Caching Architectures

2024 20th International Conference on Network and Service Management (CNSM)



the multi-cache infrastructure outperformed all others, with a
cacheless setup showing the least efficiency.

Cache Type Cache Hits
No Cache 0

Single Cache 2532
Split Cache 3581
Multi-Cache 4187

Table IV: Cache Architecture Hits Comparison

Figure 14: Simulation Times for Each Caching Infrastructure

F. Performance Comparison

The comparison between single-cache and multi-cache setups
shows a significant improvement of approximately 65.4%,
highlighting the benefits of employing a more sophisticated
caching strategy in high-demand network environments.

G. Final Remarks

In this research, three different cache sizes are set between
M1, M2, and M3 caches to portray the tradeoffs of increasing
capacity for faster simulation time. Although not explicitly
mentioned, another crucial aspect of the caching architectures
implemented in the studies is to demonstrate a balance in
the costs of integrating different caches. The singular cache
architecture used an M2 cache, which balanced both the speed
of M1 and the capacity of M3. The split cache architecture
utilized two M2 caches, and the results showed that the
increased capacity offered by a split cache offered better
performance but would double the cost. And finally, the most
optimized performance was expressed through a multi-cache
architecture that focused on speed in s1 and capacity in s2.
This architecture would theoretically cost the most because
of the expensive technology needed for M1’s speed and the
drastically bigger capacity of M3. As for LRFU factors, two
different variables were tested in each cache (M1, M2, M3).
These variables were the initial value, which is the count that
the cached entry would start with, and D, the value at which
the entry is incremented when there is a cache hit. The values
of D used in the experiment were chosen based on a series of
performance simulations. These simulations involved varying
D and analyzing its effect on the number of cache hits, the
efficiency of retrieval, and the overall system latency. After
changing these factors under 5000 and 10000 packets, the
caches were set with the most optimized initial count and D
value for each.

V. NETWORK CODING COMPONENT

A. Introduction

This component employs XOR coding and RPS within a
dumbbell topology to enhance data transmission reliability and
efficiency, especially over the bottleneck link shown in Figure
15. By introducing multiple parallel links and network coding
strategies, we aim to improve data resilience against packet
losses significantly.

Figure 15: Network Topology with Multiple Links

B. Coding Strategies

1) XOR Coding: XOR coding at switch s1 involves splitting
incoming packet payloads into two fragments and creating a
third fragment by XORing the two pieces for redundancy. This
setup enables data recovery at switch s2, where packet frag-
ments are reassembled or reconstructed using XOR operations
via custom headers, as shown in Figure 16 [29].

Figure 16: Custom IPv4 header

2) Random Packet Spraying (RPS): RPS aims to enhance
packet delivery success rates by introducing redundancy. Once
identified, large packets are either duplicated or forwarded gen-
erally based on a probabilistic decision, thereby increasing their
chances of successful transmission without unduly burdening
the network.

C. Validation

Testing with a 7% packet loss scenario revealed distinct
transmission behaviors. The XOR coding strategy resulted
in more packets being transmitted due to its redundancy
mechanism, whereas RPS demonstrated lower retransmission
rates, emphasizing its efficiency (Figures 17, 18, and 19).

D. Conclusion

The component’s effectiveness in reducing packet drops and
retransmissions confirms the utility of network coding strategies
in enhancing network reliability. Future work will focus on
refining and testing these techniques on more robust platforms
to overcome current processing power limitations and ensure
the accuracy of the experimental results.

2024 20th International Conference on Network and Service Management (CNSM)



Figure 17: Transmission Patterns Across Different Controllers

Figure 18: Retransmission Rate Comparison

Figure 19: Packet Loss Comparison

VI. DISCUSSION

This research has demonstrated the potential of integrating
speed testing, caching architectures, and network coding strate-
gies to mitigate key network performance parameters such as
packet loss, latency, and retransmissions over a bottleneck. Each
component addresses specific challenges within a data center
environment, and their combined application can significantly
enhance overall network efficiency.

The speed testing component, utilizing IPerf3 in both Cubic
and BBR modes, along with UDPST, provides a robust
framework for evaluating network performance under various
conditions. The results indicate that BBR mode consistently
outperforms other configurations, particularly in high-latency
and packet-drop scenarios. This finding is crucial for data
centers where maintaining high throughput and low latency is
essential.

Network coding, precisely the XOR coding strategy, has
shown promise in reducing packet loss for data center queries.
However, its implementation is more expensive due to the
use of three links. To address this, caching can be introduced
to reduce duplicate queries from hosts, which reduces the
load on the switches. The combination of these strategies can
enhance data transmission reliability, especially in scenarios
with significant packet loss.

Caching can play a vital role in optimizing data retrieval and
reducing latency, particularly for redundant queries common in
data centers. The study evaluated various caching architectures,
including singular, split, and multi-cache configurations. The
multi-cache architecture emerged as the most effective, balanc-
ing cache capacity and access time. This setup is particularly
beneficial in environments with high query redundancy, as it
reduces the load on the database and improves response times.

The integration of these components is particularly relevant
for data centers, where many users generate redundant queries,
leading to potential bottlenecks. By combining speed testing,
caching, and network coding strategies, data centers can achieve
significant reductions in time, cost, and power consumption.
This holistic approach ensures that each component com-
plements the others, providing a comprehensive solution to
network performance challenges.

VII. CONCLUSION

This study utilized SDN within a Mininet environment to
enhance data center network performance, focusing on speed
testing, caching architectures, and network coding. While
Mininet may not fully capture the complexities of large-scale
networks, it provides a controlled environment to explore
fundamental strategies like caching and network coding [31],
[32].

Our evaluation highlighted BBR’s effectiveness in handling
high-latency and packet-loss scenarios, outperforming other
protocols. Multi-cache architectures significantly optimized
latency and cache hit ratios, and network coding techniques
like Random Packet Spraying (RPS) minimized retransmissions
and improved reliability.

2024 20th International Conference on Network and Service Management (CNSM)



These findings demonstrate the potential of customized
SDN strategies in data centers. Future work will expand these
strategies across more complex network topologies, explore
additional queuing mechanisms like tc-pie and fq codel, and
replace artificial cross-traffic with traffic generated by our
caching and network coding mechanisms.

We plan to further integrate network coding and caching
strategies with various cross-traffic simulations to assess their
performance over bottleneck scenarios. Testing with different
queuing strategies and real-world network traces will also be
conducted to ensure our solutions are robust and adaptable to
real-world conditions.

REFERENCES

[1] C. BasuMallick , “Switch vs. Router: Understanding 15 Key Compar-
isons,” 2022.

[2] S. Das and S. Kalafatis, ”Network Coding to Reduce Congestion and
Improve Memory Buffer in Smart Switch,” 2023 International Symposium
on Networks, Computers, and Communications (ISNCC), Doha, Qatar,
2023, pp. 1-6.

[3] Ahmad, M., Ahmad, U., Ngadi, M. A., Habib, M. A., Khalid, S., and
Ashraf, R. ”loss based congestion control module for health centers
deployed by using advanced IoT based SDN communication networks”,
International Journal of Parallel Programming, Vol. 48, pp. 213–243,
2020

[4] Verma, L. P., and Kumar, M. ”An IoT based congestion control
algorithm”, Internet of Things, Vol. 9, pp. 100157, 2020.

[5] Zhuang, R., Han, J., Xue, K., Li, J., Sun, Q., and Lu, J., ”ProactMP: A
Proactive Multipath Transport Protocol for Low-Latency Datacenters”,
IEEE Transactions on Network and Service Management, 2024

[6] Huang, J., Odiathevar, M., Valera, A., Sahni, J., Frean, M., and Seah, W.
K., ”Realtime BGP Anomaly Detection Using Graph Centrality Features”,
International Conference on Advanced Information Networking and
Applications, pp. 222–233, 2024

[7] Alhilali, A. H., and Montazerolghaem, A., ”Artificial intelligence based
load balancing in SDN: A comprehensive survey”, Internet of Things,
100814, 2023

[8] Iqbal, M. S., and Chen, C., ”P4-MLFQ: A P4 implementation of Multi-
level Feedback Queue Scheduling Using A Coarse-Grained Timer for
Data Center Networks”, IEEE 12th International Conference on Cloud
Networking (CloudNet), pp. 120–125, 2023

[9] Song, C. H., Khooi, X. Z., Joshi, R., Choi, I., Li, J., and Chan, M.
C., ”Network Load Balancing with In-network Reordering Support for
RDMA”, Proceedings of the ACM SIGCOMM 2023 Conference, pp.
816–831, 2023

[10] Zhang, X., Wan, K., Sun, H., Ji, M., and Caire, G., ”A Novel Scheme for
Cache-Aided Multiuser Private Information Retrieval with User-to-User
Privacy”, 57th Asilomar Conference on Signals, Systems, and Computers,
pp. 717–723, 2023

[11] Bhardwaj, S., and Girdhar, A., ”Network Traffic Analysis in Software-
Defined Networking Using RYU Controller”, Wireless Personal Commu-
nications, 132(3), 1797-1818, 2023.

[12] Yan, D., Liu, Y., Zhang, S., Fang, B., Zhao, F., and Yang, Z., ”PCNP: A
RoCEv2 congestion control using precise CNP”, Computer Networks,
110453, 2024

[13] Sedaghat, S., and Jahangir, A. H., ”FRT-SDN: an effective firm real time
routing for SDN by early removal of late packets”, Telecommunication
Systems, 80(3), 359-382, 2022

[14] Lu, Y., Ma, X., and Cui, C., ”DCCS: A dual congestion control signals
based TCP for datacenter networks”, Computer Networks, 110457, 2024

[15] Li, W., Ren, M., Liu, Y., Li, C., Qian, H., and Zhang, Z., ”Congestion
Control Mechanism Based on Backpressure Feedback in Data Center
Networks”, Future Internet, 16(4), 131, 2024

[16] Zhang, X., Li, Q., Han, F., and Jiang, Y., ”A receiver-driven transport
protocol using differentiated algorithms for differential congestion in
datacenters”, Computer Networks, 245, 110357, 2024

[17] Zhuang, R., Han, J., Xue, K., Li, J., Sun, Q., and Lu, J., ”ProactMP: A
Proactive Multipath Transport Protocol for Low-Latency Datacenters”,
IEEE Transactions on Network and Service Management, 2024

[18] Hagargund, A. G., Shet, N. S. V., and Kulkarni, M., ”DTPF algorithm
based open-source Time-Sensitive Network leveraging SDN architecture”,
IEEE Access, 2023

[19] Saxena, M. C., Sabharwal, M., and Bajaj, P., ”Review of SDN-based
load-balancing methods, issues, challenges, and roadmap”, International
journal of electrical and computer engineering systems, 14(9), 1031-1049,
2023

[20] Li, Z., Huang, J., Li, Y., and Wang, J., ”Traffic-aware rate control for
mix-flow in datacenter”, IET Communications, 17(18), 2132-2139, 2023

[21] Shirmarz, A., and Ghaffari, A., ”Performance issues and solutions in
SDN-based data center: a survey”, The Journal of Supercomputing,
76(10), 7545-7593, 2020

[22] Montazerolghaem, A., ”Software-defined load-balanced data center:
design, implementation and performance analysis”, Cluster Computing,
24(2), 591-610, 2021

[23] Nougnanke, B., Labit, Y., Bruyere, M., Aivodji, U., and Ferlin, S., ”ML-
based performance modeling in SDN-enabled data center networks”,
IEEE Transactions on Network and Service Management, 20(1), 815-
829, 2022

[24] Shuja, J., Madani, S. A., Bilal, K., Hayat, K., Khan, S. U., and Sarwar,
S., ”Energy-efficient data centers”, Computing, 94(12), 973-994, 2012

[25] Zhu, L., Karim, M. M., Sharif, K., Xu, C., Li, F., Du, X., and Guizani, M.,
”SDN controllers: A comprehensive analysis and performance evaluation
study”, ACM Computing Surveys (CSUR), 53(6), 1-40, 2020

[26] Isong, B., Molose, R. R. S., Abu-Mahfouz, A. M., and Dladlu, N.,
”Comprehensive review of SDN controller placement strategies”, IEEE
Access, 8, 170070-170092, 2020

[27] Paliwal, M., Shrimankar, D., and Tembhurne, O., ”Controllers in SDN:
A review report”, IEEE access, 6, 36256-36270, 2018

[28] Xiao, Z., Song, W., and Chen, Q., ”Dynamic resource allocation using
virtual machines for cloud computing environment”, IEEE transactions
on parallel and distributed systems, 24(6), 1107-1117, 2012

[29] Ahlswede, R., Cai, N., Li, S. Y., & Yeung, R. W., ”Network information
flow”, IEEE Transactions on information theory, 46(4), 1204-1216, 2000.

[30] Ma, H., Luo, X., and Xu, D., ”Intelligent queue management of open
vSwitch in multi-tenant data center”, Future Generation Computer
Systems, 144, 50-62, 2023

[31] Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., and McKeown, N.,
”Reproducible network experiments using container-based emulation”, In
Proceedings of the 8th international conference on Emerging networking
experiments and technologies, pp. 253-264, 2012.

[32] Varga, A., and Hornig, R., ”An overview of the OMNeT++ simulation
environment”, Proceedings of the 1st international conference on
Simulation tools and techniques for communications, networks and
systems & workshops, 2010

[33] Cardwell, N., Cheng, Y., Gunn, C. S., Yeganeh, S. H., and Jacobson, V.,
”BBR: Congestion-based congestion control”, Communications of the
ACM Vol. 60 No. 2, pp. 58-66, 2017

[34] Dong, M., Li, Q., Zarchy, D., Godfrey, P. B., and Schapira, M., ”PCC: Re-
architecting congestion control for consistent high performance”, In 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), pp. 395-408, 2015.

2024 20th International Conference on Network and Service Management (CNSM)


