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Abstract—Time-sensitive networking (TSN) is a set of stan-
dards for establishing real-time, deterministic communication in
industrial applications. One of the core tasks of TSN is providing
accurate and precise time synchronization between nodes by
using a profile for the Precision Time Protocol (PTP). This profile
defined by IEEE 802.1AS standard – often called gPTP – is
restrictive regarding the synchronization method, only allowing
peer-to-peer (P2P) synchronization protocol between the grand-
master (GM) and slaves. Most use cases apply PI controller
as a servo, which affects the overall accuracy and precision.
Here we show that the increasing number of intermediate hops
between the slave and the GM significantly deteriorates the
synchronization accuracy. Based on a closed-loop model, we
simulated the behavior of the slave clock during multi-hop
P2P synchronization by investigating the step response of the
system. These results were validated by measurements in real
network setups using embedded devices as endpoints. Our results
demonstrate that such errors cannot be completely eliminated
using PI controller even if optimal tuning is used; therefore,
researching and implementing other methods are recommended.

Index Terms—tsn, time synchronization, IEEE 802.1AS, gptp,
linuxptp, pi controller

I. INTRODUCTION

Communication plays a key role in industrial automation,
especially nowadays when numerous applications in digital
production systems require real-time communication capabil-
ities [19]. There are plentiful areas in such digital industrial
ecosystems, e.g. Industrial Internet of Things (IIoT), Cyber-
physical Systems (CPS), Manufacturing Execution Systems
(MES) which demand hard real-time data exchange with addi-
tional timing and reliability requirements between nodes [18],
[9]. These application fields are not entirely new, however most
of them have been widely adopted only in the last few years,
therefore, addressing the communication requirements still is
a hot and intensively researched topic.

In the last two decades different classes of Real-Time
Ethernet (RTE) networks became the most prevalent ways
to achieve industrial communication with the hard-real time
requirements between devices. Recently, the biggest driver
in this field is shifted from streaming data (audio-video) to
control data thus motivating the creation of Time-sensitive
Networking (TSN) [20]. TSN is a set of various standards to
extend Ethernet in order to achieve real-time synchronization
and deterministic, low-latency communication [4], [17].

One of the pillars of TSN is standard IEEE 802.1AS [6],
Timing and Synchronization for Time-Sensitive Applications.
It utilizes Precision Time Protocol (PTP, IEEE 1588 [5]) as the
mechanism for synchronizing devices, but the standard itself
is more restrictive regarding several criteria, than PTP itself
thus only enabling a specific profile for the protocol, often
called general(ized) PTP (gPTP).

gPTP profile has numberous restrictions including the exclu-
sion of end-to-end (E2E) measurements, allowing only peer-
to-peer (P2P) measurements between nodes. This completely
excludes the usage of transparent clocks, which means that
slaves cannot obtain the grand-master’s clock directly by
adjusting the measured path delay between them – only if
they share a direct link; otherwise, they have to synchronize
to the next boundary clock [10].

In this paper, we model synchronization with a closed-loop
control system to describe how the PI controllers affect the
P2P path delay mechanism. The impact of the controllers will
be demonstrated by simulations and validated by real-network
measurement setups. The results show how the number of
nodes hops between the GM and the slave and also the
parameters of the controllers affect the overshoot and the
settling time of the overall system.

The paper is structured as follows. Section III introduces the
control system model of the synchronization method and the
potential issues supported by simulations. Section IV details
the measurement setups and the applied tools and equipment,
moreover it presents the results of the measurements and
compares them to the simulated ones. Section V concludes
the paper and suggests further research directions within the
topic.

II. RELATED WORK

There are different ways to implement a servo that is respon-
sible for keep the local clock in sync with the master, however
most applications including linuxptp [1], the user space PTP
stack for Linux implements the servo as a PI (Proportional and
Integral) controller.1 In end-to-end measurements this choice
moderately affect the overall performance of the control due
to usage of transparent clocks - which enables delay request-
response mechanism through the device. Therefore, in the

1Theoretically, the user can choose the servo type, but currently only PI
and an adaptive controller using linear regression are implemented.
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E2E case only the endpoint will run the servo in order to
synchronize to the master clock, while in the P2P case each
node runs the servo as all of them must keep the precise time
synchronicity.

There are several articles that modelled PTP synchronization
process differently as these models focus on different aspects
of process. In terms of control theory it is usually described
as a discrete control loop (PI controller, plant) with additional
filters and estimators to minimize error [15], although not only
PI controller can be used as a servo. Authors of [8] propose
Kalman-filter while in [16] a linear programming approach
is introduced, while in [7] open-loop algorithm is investigated
and evaluated that comes from the classical closed-loop model.
However, these solutions performed very well in simulated
environments (or in test measurements as in [14], where
authors proposed an adaptive fuzzy-PI servo), practical use-
case almost exclusively utilize PI servo as it is a fairly simple
servo and is available in all PTP applications (PC bridges,
switches, embedded devices, etc.) – which is one of the most
important factor and the reason we investigate a PI servo
model in this paper.

In [13] authors proposed a discrete model with a PI servo to
describe the synchronization protocol. They derived the stabil-
ity criteria of the system from the state transition matrix and
also showed the stability region on the kP −kI plane. In [21] a
Kalman-filter based algorithm is introduced but as a connector
to a PI servo to reduce the growth rate of synchronization
error due to the quantization error in timestamping, which is
the result of casacded networks where the number of hops has
a traceable impact on the performance of synchronization.

Since we investigate the P2P synchronization of any node
in the network, we must distinguish between the P2P syn-
chronization model and the E2E model in which there is
no additional node between the grand-master and the slave.
Usually, there is no differentiation in PTP related literature,
as E2E measurements are allowed, but in this case additional
nodes might change the characteristics of the communication
significantly.

Because of the restriction of the 802.1AS standard, no
transparent clocks are allowed, but only ordinary (OC) and
boundary clocks (BC). An ordinary clock shall contain a
single PTP port, while a boundary clock shall contain multiple
ones. It also means that ordinary clocks have one servo
while boundary clocks can have as many as PTP ports they
have. Usually, switches have one local clock as boundary
clock, while PC bridges have as many PTP port they have,
since most Network Interface Cards have one hardware clock
for all of their ports. While transparent clocks transit time
information and corrects propagation delay, non-transparent
boundary clocks can transmit only their own time information.
It requires the corresponding PTP ports to be in sync which
can be achieve by phc2sys software, but not exclusively.
In a general sense, synchronization over a non-transparent
boundary clock can be performed by after it is synchronized
to the GM and also the two ports must be sychronized as well,
which may imply the usage of two servos, especially in the

case of PC bridges. Eventually, this will affect the proposed
P2P control system model [10], [5].

III. METHODS

A. Model

In this paper, we model the synchronization process between
a master and a slave – as it’s seen in Figure 2 – with one
PI controller and the plant to be controlled – which is the
slave clock. While prior articles such as [12] also introduced
a comparable model, it is important to note that their model
is discrete and more general. In contrast, this paper employs
a continuous model, aligning with the approach of linuxptp in
considering controller parameters as continuous.

Control loop between clocks (e.g. phc2sys)

Clock

Master port

Clock

Master port

Clock

Control loop

Slave port

(a) Boundary clock with distinct physical clocks per port syn-
chronized by an additional control loop

Control loop between clocks (e.g. phc2sys)

Clock

Control loop

Master portMaster port Slave port

(b) Boundary clock with shared local clock

Fig. 1: Simplified models of an shared local clock and sep-
arated local clock OC or BC according to the IEEE 1588
standard [5]

The model is built on the commonly used closed-loop base
model that consist of (i) one PI controller (ii) one plant with
a transfer function of Wp(s) = 1/s, that represent the the
clock to be synchronized and (iii) the negative feedback of the
response to the output. In P2P based synchronization process,
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Fig. 2: Block diagram of the closed-loop E2E and P2P master-slave synchronization model, where a block is consisting of one
PI controller and the slave clock
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The nature of the synchronization implies that the r(t)
reference signal is not static, in fact it is increasing linearly
as it is the time of the grand-master clock. Nevertheless, the
error caused by the dynamic reference is usually negligible
compared to the one coming from the cascading second-order
systems, which can be adjusted by choosing appropriate values
of k(i)P and k

(i)
I as it is shown in Equation 2.

The P2P measurement indicates that the underlying P2P
control system model is a serialization of multiple master-
slave models with the transfer function

W (s) =

N∏
i=1

W (i)
c (s) (3)

However, we assume that each closed-loop is the same,
the communication between each node has the same char-
acteristics and also that each controller has the same set of
parameters, i.e. T

(i)
0 = T0 and ζ(i) = ζ. In this case, the

overall transfer function is

W (s) =
(2ζT0s+ 1)N

(s2T 2
0 + 2ζT0s+ 1)N

(4)

resulting in the original poles of Wc(s) with a multiplicity
of N . This multiplicity ends in more and more amplification
at the frequency specified by the time constant, effectively
decreasing the efficiency of the synchronization.

In Figure 1 different boundary clocks are shown: one has
distrinct physical clock for each port, while other one has only
one shared clock that is used by all ports. Therefore, in the
first case, if the number of the nodes between the slave and
the grand-master is n, then the P2P model consists of 2n+ 1
cascaded E2E models since the bridge nodes between the GM
and the end station (slave) are non-transparent boundary clocks
with distinct physical clocks, therefore and additional internal
synchronization between their PTP ports is required.

B. Simulations

In order to illustrate the effect of the parameter adjustments,
we will use a system described by the E2E model with the
default parameters of linuxptp: kp = 0.7 and kI = 0.3.
According to the bode plot of the frequency response – shown
in Figure 4 – there is significant amplification around the
system’s natural frequency that’s given by ω0 = 1/T0 =
0.5477 rad s−1. The amplification will increase in the P2P
model as it’s composed of multiple cascaded E2E ones, thus
having a great impact on the behavior of the system.

The simulated step responses of the cascaded model for
certain values of n can be seen in Figure 3. According to these
results, even several nodes between the grand-master and the
slave can significantly decrease the accuracy of the synchro-
nization due to the overshoot occurring in the responses.

By tuning the parameters of the controller, the amplification
around the natural frequency can be damped, thus flatting the
frequency response and decreasing the oscillations, however
this will affect not only the overshoot but the settling time of
the system. The Ts settling time is usually meant as the time
when the response reaches and stays within a range of 2% of
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Fig. 3: Simulations of the model’s step responses to P2P
measurements, in the case of n = {0, 1, 2, 3} intermediate
nodes between the GM and the slave using the linuxptp’s
default kp and ki values
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Fig. 4: Bode plot of the system’s frequency response for n =
{0, 1, 2, 3}

the steady state value and is often expressed by the ζ damping
factor as shown in Equation 5.

Ts =
− ln

(
0.02×

√
1− ζ2

)
ζω0

(5)

As Equation 5 presents, the damping factor directly affects
the settle time: the bigger the damping factor, the slower the
settling, and vice versa. It is worth noting that changing the

damping implies a change in the natural frequency, so the
dependency is not linear.

Consequently, considering any clock that uses a PI con-
troller as a servo, the dumping factor of the system can be
used to adjust its response to meet the requirements regarding
the overshoot or settle-time. However, it must be emphasized
that limiting the overshoot will significantly increase the settle-
time as it’s stated before and shown in Figure 5 and Figure 6.
Due to the nature of the system, an optimal tuning for the
parameters can always be found, as in [13] was shown that
a stable combination of kP and kI always exists for such
systems as the proposed E2E model – nevertheless as the
n increases the overall properties of the system deteriorate
despite the optimal settings.
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Fig. 5: Simulation results of the model’s step responses to P2P
measurements, in the case of n = {0, 1, 2, 3} for different
damping factor (ζ) values – the legend is shared between the
plots

In the next sections these results will be verified and
supported by real-network measurements in different setups.

IV. EVALUATION

A. Measurements

To prove the correctness of the model proposed in Section
III and to investigate the overall behavior of a multi-node
network that gPTP compliant, multiple measurement environ-
ments have been set up. Two desktop PC-s (TSN, NST) were
used as bridge machines i.e. intermediate nodes between the
GM and the slave, both with different configurations:
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Fig. 6: Overshoot and settling time values of simulation results
in the case for n = 3 for different damping factor (ζ) values

• TSN bridge:
– ASUS PRIME Z270M-Plus Motherboard
– Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz
– I350 Gigabit Network Connection and Ethernet Con-

troller 10-Gigabit X540-AT2 2-port Network Interface
Controller connected via PCIe 4x slots

– 8 Gbytes of RAM
– Ubuntu Linux with kernel 4.13.0-32-generic

• NST bridge:
– ASUS Z9PE-D8 WS 1.0x Motherboard
– Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz
– 2 pieces of 82574L Gigabit Network Connection 1-

port Network Interface Controller connected via PCIe
4x slots

– 16 Gbytes of RAM
– Ubuntu Linux with kernel 5.4.0-126-generic

The measurements rely on the comparison of Pulse-per-
second (PPS) signals of the GM and the slave devices, but
none of the NIC-s have easily available PPS output – neither
supported by the driver nor physically available on a separated
pin. Therefore two embedded STM32F407 devices with an
Ethernet extension shield were used as GM and slave, since
the device enables precise time-stamping for PTP messages
and the chip itself supports PPS signals.

The firmware running on these devices is our port to
STM32F407 of an open source PTPd implementation for
STM32F429 [3] boards that was already used and verified
in scientific researches [11].

In each setup, the PPS signals from the GM and the
slave were connected to STM32G431 based embedded device,
which also calculated the difference of the signals. PPS signals
serve as triggers on two individual GPIO pins that are mapped
to the input capture function of a general-purpose timer,
therefore, if the rising edge of a PPS signal has been captured,

the corresponding channel identifier and timer value will be
stored. For this purpose, a 32-bit resolution timer with a
frequency of 195.5 MHz was used. This implies that the
resolution of the measurement is approx. 5.9 ns, while 25.34
second difference (which is more than 25 PPS interval) can
be held by the timer.

In the first (DI) setup, as shown in Figure 7, the GM and
the slave devices were connected directly via Ethernet, thus the
previously defined E2E model can be validated. For this setup,
the default parameters of the embedded PTPd implementation
were used, and no adjustments were applied.

Grand-master Slave

Fig. 7: Network setup for n = 0, direct measurements – the
difference meter is not included in these diagrams as it’s not
connected to any device via Ethernet

In the following setups (M1S1, M1S2, M1S3) are pere-
sented in one diagram in Figure 8. The GM and the slave were
connected via a bridge node (TSN or NST) because of two
reasons: (i) inspect the behaviour of different NIC-s that might
affect the overall results and (ii) to validate the simulation for
n = 1.

Grand-master

Slave

TSN/NST

enp3s0f0

enp3s0f1

Fig. 8: Network setup for n = 1, P2P measurements – it
covers all cases (M1S1, M1S2, M1S3) as only the NIC-s were
changed

The following setups involves n = 2 and n = 3 intermediate
nodes between the GM and the slave, respectively. Bridge
devices use linuxptp (ptp4l) in each setup.

Due to the limitations of the embedded PTPd implemen-
tation and in order to avoid complicated network setups, all
P2P measurements are achieved by direct and internal synchro-
nizations: Two neighboring nodes perform a synchronization
process over gPTP and thus synchronizing the clocks of the
link, while hardware PTP clocks of the ports (that can be
on the same NIC but also can be on different ones) are
synchronized internally by using the phc2sys software.

In each case, the step response of the closed-loop should
be determined, therefore step function has to be mixed with
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Grand-master

Slave

TSN

NST

enp3s0f0 enp3s0f1

enp7s0enp8s0

Fig. 9: Network setup for n = 2, P2P measurements – same
color means the same, physical NIC, but different ports. As
it’s seen NST bridge has only 1-port NIC-s, but the two NIC-s
are identical

Grand-master Slave

TSN

NST

enp3s0f0 enp1s0f1

enp3s0f1

enp7s0

enp1s0f0

enp8s0

Fig. 10: Network setup for n = 3, P2P measurements

the clock signal as the r(t) reference function. Since, the
H(t) unit step function cannot be used, as the PI controller
cannot follow such magnitudes in offset difference – and
resets the clock instead – the used step size is ∆ = 7.5 µs.
Regarding our measurement setup, we can not determine the
y(t) response signal since only the difference of PPS signals
can be measured, i.e. the e(t) error signal.

B. Results

As it’s stated above, the measurements focus on the e(t)
error functions for the different setups. Nevertheless, since the
r(t) reference signal is the sum of a quasi-linear clock signal of
the GM and a step function, we can approximate the response
as follows: y(t) = ∆ · H(t) − e(t), where H(t) is the step
function, ∆ is the step size. Therefore, the characteristics of
the closed-loop – overshoot, settle time – can be determined
based on only the e(t) signal itself.

As it’s shown in Figure 11, the response to the clock
offset of the NIC-s used in the bridge PCs are very similar.

Despite not having an optimized controller configuration, in
the stationary state, the overall precision is around 10 ns
interval and the settling time can be considered fast. This
performance is achieved by using Precision Time Measure-
ment (PTM) [2], which enables the coordination of timing
between multiple devices on the same (PCIe) bus. Without
PTM, several microseconds of delays would have a big impact
on the accuracy of the overall system.

According to the measurement results, there is no significant
difference between the NICs regarding the settling time and
the overshoot, however in the case of M1S1, significant ringing
occurred. This effect does not have a huge impact on the
response of the system, but it makes difficult to determine the
settling-time and the steady-state value. Nonetheless, regarding
the most important properties of the step responses, the NIC
can be considered almost identical.
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Fig. 11: Step responses of the system while using different
Network Card Interfaces as the intermediate node – the time
axis has been relabeled to make t = 0 denote the clock step

It can be seen by comparing Figure 3 and Figure 12 that
the results of the multi-node setup measurements follow the
simulations: the overshoot and the settle-time significantly
increase with number of n. However, in this case, the kI and
kp parameters of the servo are the default values provided by
the linuxptp, thus they are not adjusted to the given plant. This
fact does not affect the overall characteristics of the response
since it is a second-order system, as it was stated before.

n = 0 n = 1 n = 2 n = 3

Overshoot [%] 31 97 214 341
Settling time [s] 12 24 30+ 30+

TABLE I: Overshoot and settling time values based on the
measurements results in the case of n = {0, 1, 2, 3}
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Fig. 12: Step response of the system during P2P measure-
ments, in the case of n = {0, 1, 2, 3} intermediate nodes
between the GM and the slave – the time axis has been
relabeled to make t = 0 denote the clock step

V. CONCLUSIONS

This paper analyses the P2P synchronization method used in
the IEEE 802.1AS (gPTP) profile for PTP protocol regarding
the servo mechanism. Since PI (Proportional and Integral) con-
troller is the prevalent servo used in all PTP implementations,
we used a classic closed-loop to model the synchronization
process of two neighboring (directly connected) nodes. Since
P2P synchronization prohibits propagating the grand-master
(GM) clock as a boundary clock, slaves can synchronize only
to the neighboring nodes. Therefore, the full sync process be-
tween a slave and the GM can be modeled by cascaded closed-
loop (assuming the identical plant and controller settings).

In order to validate the model above, both simulations
and measurements over a real network were carried out. Our
measurement results follow the simulation as if the number of
the intermediate nodes increases, then the overshoot and the
settle-time of the overall system increase as well, degrading the
synchronization performance significantly. Since the model is
based on a second-order system, it is impossible to eliminate
this performance degradation completely, however with proper
parameter tuning, the response can be optimized to meet spe-
cific criteria regarding the overshoot or the settle-time of the
system. Further research activities involve investigating other
servo mechanisms (e.g. previously proposed only for PTP or
not proposed at all) to achieve more effective synchronization
control in gPTP-enabled TSN networks.
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