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Abstract—In order to exchange information between systems,
the information must get encoded into a predefined data format,
and it must be transferred in a protocol that the communicating
parties have agreed upon. This works well if all parties follow
the same protocol standard and use the same data description
schemes. If systems use different data formats or protocols,
then some sort of translation is required. Protocol and data
format translation has been attempted previously through rule-
based approaches, ontologies, and also by using machine learning
(ML) techniques. Due to the current advances related to AI/ML
methods, tools, and infrastructure, the accuracy and feasibility
of ”translation” with ML-approaches improved significantly.
This paper introduces a generic approach and methodology for
translating data formats and protocols with ML-based methods
and presents our initial results through JSON-XML and JSON-
SenML translation.

Index Terms—protocol translation; machine learning; neural
machine translation; natural language processing; LLM

I. INTRODUCTION

Successful information exchange requires communicating
systems to follow the same data formats and the same protocol
dialogue setup, as well as error handling.

Heterogeneous, distributed, cyber-physical system-of-
systems (CPSoS), however, often lack complete protocol
or data structure matching – in which case the information
exchange either fails or one of the parties must align. One
way of alignment is based on the ”robustness principle” (be
conservative in what you send, and be liberal in what you
accept), where either the receiver part needs to be intelligent
enough to adjust its understanding to the protocol or the
data format – or there should be a translator in between
the sender and the receiver(s) that align the data and the
protocol dialogue as expected by the receiver. We refer to
this alignment in understanding as ”translation”.

Translating textual information between natural languages
has improved very significantly in the last decade. This is
primarily due to the improvement of Artificial Intelligence
(AI) and Machine Learning (ML) methods, tools, and, most
importantly, its engineering infrastructure.

This paper focuses on the possibilities of ML-based transla-
tion for machine-to-machine (M2M) type communication pat-
terns – namely, the translation of data structures and protocols.

The contributions of this paper are the following: i) it pro-
vides a timely overview on M2M communication translation

approaches and results; ii) it introduces a generic methodology
to ML-based translation of data formats and M2M protocols;
iii) it presents initial but successful translation results for
JSON-XML and JSON-SenML example datasets.

This paper is structured in the following way. Section II
provides an overview of current M2M translation approaches.
Section III introduces our suggested methodology for ML-
based M2M data format and protocol translation, supported by
examples with language translation tools. Section IV presents
our current results with this methodology and toolset applied
to JSON-XML and JSON-SenML translations. Section VI
presents our initial results on a ChatGPT-based translation test.
Section VI summarizes the findings and suggests a path for
future works in the domain.

II. RELATED WORK

Interoperability among systems is best achieved by using a
common implementation of the same standardized protocol.
This is not always feasible, unfortunately.

Interoperability within heterogeneous CPSoS can be
achieved by real-time translation [1]. Besides mapping data
formats, however, multiple challenges appear in protocol er-
ror propagation handling [2], and tackling the security- and
privacy-related issues [3] in autonomous CPSoS with dynamic
handling of interoperability issues. The Eclipse Arrowhead
Framework addresses such interoperability issues [4] of CP-
SoS, and is dedicated to providing protocol translators [5] as
part of the Industry 5.0 [6] initiative.

The XML- [7] and JSON-based [8] data representations
are commonly used data formats to exchange information.
Effective translation between these representations has an
immediate practical impact. Several solutions have been de-
veloped to translate between these formats in recent years [9],
[10]. We use these as a baseline.

Translating between XML, or JSON – XML schemas is
not always straightforward, but it is important to validate
the XML/JSON translation results. There are no RFCs or
standards to map the data values. This is where ontology could
help by adding semantic annotations and supporting metadata
translation. F. Moutinho et al. [11] presented a method to
solve the interoperability problems between systems which use
different XML schemas. The proposed solution is integrated
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with the Arrowhead frameworks, and it automatically instan-
tiates XML translators based on semantic annotations [12].
G. Amaro [13] et al. further elaborated on this method and
extended the work to support JSON- and XML-based systems.

While investigating the recent research works on AI- and
ML-based methods regarding IoT platforms, we found that the
models are principally used for data analysis [14], real-time
prediction [15], and furthermore, for security reasons [16].

Neural Machine Translation (NMT) [17] [18] is a state-of-
the-art, Neural Network-based technique to translate between
languages. The training phase operates with dictionaries,
which are formed into word pairs after a preprocessing phase.

Pasindu [19] et al. presented techniques to improve the per-
formance of Neural Machine Translation methods in language
translation. The authors applied the OpenNMT [18] framework
for the evaluation work. The results show that translating
between grammatically similar languages could be improved
by using a middle language.

III. A MODERN APPROACH TO DATA AND PROTOCOL
TRANSLATION

A. Interoperability issues and Machine Learning

Industry 5.0 integrates intelligent digital technologies, such
as dynamically interconnected CPSoS and AI-optimized IoT
solutions, to speed up the manufacturing processes.

Since each vendor and production integrator may use a dif-
ferent combination of the currently popular data formats, com-
patibility between the CPS endpoints is not guaranteed. A new
problem appeared in this domain: interoperability issues. To
solve the communication needs between these closed domains,
we can investigate Machine Learning (ML) solutions as a
possible approach. ML is a subdomain of Artificial Intelligence
(AI), aiming to provide models for automatic operation from
the previously learned knowledge base without programming.
In the following sections we present our approach and initial
results on ML-based data format translation.

B. Methodology

The general idea of the ML-based data format translation
comes from the success of Natural Language processing. We
can treat M2M communication data formats as structured
and somewhat rigid language sentence formats. We suggest
applying the same tools for M2M data format translation as
for NLP; although for the M2M case, we feed the models
and tools with a great volume of data schema example pairs
of the two (from-to) data formats. M2M translation could be
compared to a human ”meeting protocol” translation. This is
more like a format exchange from a meeting session of one
human culture to a meeting format of another human culture.
In protocol translation, we need to consider fundamental
differences in information exchange, which is a very complex
matter. On the other hand, protocol message translation could
be much simpler, so the current paper stretches just as far
as protocol messages. Our suggestion is to handle protocol
messages as multi-embedded heterogeneous data formats. In
this case, the challenge gets simplified to the following tasks:

1) identification of protocol encodings, message types, and
versions,

2) identification of message embedding boundaries, and
3) data format translation.
The current paper focuses on the challenges of the latter.

C. Tools and Architecture

XML and JSON are well-known and widely used protocols
to represent data models, piping and instrument diagrams, sen-
sor measurement values, configurations, and other information.

Listing 1: XML data format
1 <bookstore>
2 <book category=”fiction”>
3 <title lang=”en”>Harry Potter</title>
4 <author>J.K. Rowling</author>
5 <year>1997</year>
6 <price>20.00</price>
7 </book>
8 </bookstore>

They have distinct structures for representing data, which is
often predefined in a schema. JSON employs a straightforward
key-value pair structure, making it easy to parse and under-
stand, while XML utilizes nested hierarchical tags, offering
flexibility in expressing complex data relationships. Listing 1
and Listing 2 represent the same content in XML and also in
JSON format.

Listing 2: JSON data format
1 ”bookstore”: {
2 ”book”: [
3 {
4 ”category”: ”fiction”,
5 ”title”: { ”@lang”: ”en”, ”#text”: ”Harry Potter” },
6 ”author”: ”J.K. Rowling”,
7 ”year”: 1997,
8 ”price”: 20.00
9 }

10 ]
11 }

If we investigate these two data representation formats, we
can notice two key points:

1) Both have text-based, human-readable formats.
2) Both have recognizable and predefined, schema-related

semantics.
Based on these key features, the translation needs regarding

XML-to-JSON, JSON-to-XML, XML-to-XML, and JSON-to-
JSON correspond to a text-to-text, or more specifically, a
language translation task.

D. AI/ML tools for language translation

In recent years, the usage of AI/ML methods to translate
between languages or dialects became more and more pop-
ular. If we examine the currently available techniques, three
categories could be highlighted: i) Neural Machine Translation
(NMT), ii) Natural Language Processing (NLP), and iii) Large
Language Model (LLM)-based translation.

Neural Machine Translation (NMT) is an AI-driven trans-
lation technique. It operates and trains neural networks on
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Fig. 1: Workflow stages

Tool name Note
PyTorch An open-source library for DL.

Scikit-learn An ML library for data analysis.
SpaCy NLP library with pre-trained models.

Google VertexAI Pre-trained AI models.
ChatGPT Automatic content generation.

Wit Extraction of information from sentences.
Huggingface Pre-trained AI models.

NLTK Open-source NLP library.
LangChain A framework to work with language models.
OpenNMT Open-source library for NMT-related models.

TABLE I: Machine Learning tools and libraries

large amounts of parallel (text-based) data to learn the relation-
ships and patterns between expressions and words in different
languages. NMT and deep learning have shown significant
improvements in the accuracy of machine translation.

Natural Language Processing (NLP) constitutes a sector of
AI dedicated to understanding and analyzing human language.
It has a variety of applications, including search engine
optimization, automating customer service interactions, and
facilitating textual translation tasks.

Large Language Models (LLM) are the latest approach in
the AI-driven solution workspace. It got famous based on its
groundbreaking results in generative AI, through tools such
as ChatGPT [20]. These tools can already be used as native
translators for certain data formats that are included in the
language model training.

Table I summarizes the state-of-the-art ML tools, regarding
fast language processing and translation.

IV. TEST BED AND MODEL CREATION

A. The architecture of the test environment

Figure 1 represents the stages of the work process. First,
we created a CoAP message generator and an XML generator,
which were used to generate random content. Both generators
were implemented in a way that the level of embedding and
the vocabulary from which the words are drawn randomly can
be configured. We designed it this way with the intent of later
being able to mimic real-life messages where only a limited
number of words are used usually. After writing the generator
scripts we embedded the XML content in the CoAP message
as payload, and generated 50,000 messages.

We translated then the CoAP messages to HTTP using our
own translator, the operation of which can be observed in
Figure 2. With yellow, the code of the message was translated

to the corresponding method name in HTTP. For this, we
looked up the CoAP and HTTP references and tried to find the
best matching method names and codes. The parts highlighted
with blue are the message type, the MID, and the token. These
parameters exist only in CoAP therefore we put these in the
first line of the HTTP payload. The options and corresponding
headers are highlighted with grey. Here we tried to find the
best matching header for each option but in some cases, there
were no directly matching headers. For this reason, we made
the header-option pairing configurable from file to fine-tune
for the special case where our default choice might not work.
The payload and body are highlighted with orange. Within the
CoAP message, the XML payload was translated to JSON with
the use of xmltodict [21] python library. To perform message
pairs as training-, verification- and validation data sets, we
translated every message in the CoAP database.

Fig. 2: Mapping CoAP to HTTP

B. Model creation with the OpenNMT framework

After the investigation of the currently available, open-
source ML frameworks for language translation, we selected
the OpenNMT [18] solution to create models for the transla-
tion tasks. Building an OpenNMT model requires four input
files: two for training and two for validation. Two files contain
messages in the source language and two contain their equiv-
alents on the target language. The paths of these files should
be given in a YAML data serialization file with the number of
input training records, the frequency of validation, and saving
models. The major steps of a model-building procedure are
the following:

1) Creating vocabulary from the training data,
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2) Training the model,
3) Validation of the model.
The first step of teaching a model is to build a vocabulary

from the training data sets, then the training and validation
periods alternate multiple times. Finally, the model might be
evaluated using an additional testing data set.

V. TRANSLATION BETWEEN DATA FORMATS

A. OpenNMT-based XML and JSON translation

As the first use case, we tested XML-JSON translation
using the NMT method. In the first round models were taught
to translate XML messages with one layer of embeddedness
containing one key-value pair. All tag names and value pairs
were generated from a discrete set of strings and numbers. This
narrows down the possible messages that might be translated,
but as industrial protocol standards also have strict rules of
how they represent data, it does not make false simplifications
about the method’s usability.

Table II represents the results of the first use case. Train,
Valid and Test columns represent the size of the data sets
respectively. The Val:Train shows that after how many training
iterations comes a validation step. Each training iteration
consists of 50 records. Train Acc. and Valid Acc. columns
abbreviate the training and validation accuracy scores.

Train Valid Test Val:Train Train Acc. Valid Acc.
1000 500 200 1:10 64.63% 82.55%
2000 500 200 1:10 71.19% 95.01%
5000 1000 200 1:10 88.82% 99.99%
10000 1000 200 1:10 88.37% 100.00%

TABLE II: XML-JSON containing a single key-value pair

The results showed that the model is able to learn the
structure in a relatively small training set, but required a 100-
1000 times bigger set to minimize the error rate to below
0.01%. The error rate of OpenNMT training is calculated
from the correctly translated tokens and the total number
of tokens. Models in the second round were also taught to
translate XML messages with one layer of embeddedness but
containing multiple key-value pairs. Table III summarizes the
results of the second use case.

Train Valid Test Val:Train Train Acc. Valid Acc.
2000 2000 200 1:10 50.40% 53.09%
4000 2000 200 1:10 58.38% 54.55%
6000 2000 200 1:10 74.30% 68.08%
8000 2000 200 1:10 88.29% 74.97%
10000 2000 200 1:10 92.10% 77.22%
12000 2000 200 1:10 96.00% 79.07%
14000 2000 200 1:10 98.90% 80.65%
16000 2000 200 1:10 99.00% 81.15%
18000 2000 200 1:10 99.30% 81.77%
20000 2000 200 1:10 99.50% 82.41%

TABLE III: XML-JSON containing multiple key-value pairs

As a second use case, we trained and tested JSON-SenML
translation models. SenML [22] is a predefined format for

representing sensor measurement values. It could be a common
language for providers who apply different schemas and
provide different JSON payload formats. Table IV represents
the accuracy of the trained models.

Train Valid Test Val:Train Train Acc. Valid Acc.
2000 1000 100 1:10 81.95% 87.57%
4000 1000 100 1:10 84.75% 87.56%
6000 1000 100 1:10 85.68% 87.49 %

TABLE IV: JSON-SenML: Provider Message 1

B. Inspection results of OpenNMT

Investigating the XML-JSON translation results, the expe-
rience is that the longer messages grow, the more records are
required to fine-tune a model. With messages containing only
one key-value pair 10000 record was enough to minimize the
error rate to below 0.01%, while with messages containing one
to four key-value pairs the training data set containing 20000
records only scored 82.41% on validation accuracy.

Regarding the second use case, the provider schemes con-
tained several numeric values and had a significantly wider
value set than in the first use case. It turned out that OpenNMT
is not suitable for translating texts that include several different
numeric values. Listing 3 and Listing 4 present an incorrectly
translated test result. This might be due to the following
reasons. Firstly, OpenNMT creates a vocabulary from the
training set, so it favors using numbers that had already been
used in the training set. With significant intervals of numbers,
it is highly unfavorable. Secondly, as shown in Table IV, the
validation accuracy did not get better with more training steps,
which can be due to pattern overlearning.

Listing 3: Expected SenML message
1 [
2 {”u” : ”C”},
3 {”n” : ”sensor1temp”, ”v” : 68},
4 {”n” : ”sensor2temp”, ”v” : 11.25},
5 {”n” : ”relay1state”, ”vb” : true}
6 ]

Listing 4: Predicted SenML message
1 [
2 {”u” : ”C”},
3 {”n” : ”sensor1temp”, ”v” : 93},
4 {”n” : ”sensor2temp”, ”v” : 81.53},
5 {”n” : ”relay1state”, ”vb” : true}
6 ]

To eliminate the above problems, teaching from larger data
sets could be an effective way. If the results are not satisfactory,
then using an ML-based learning model to translate the
structure and then algorithmically inserting the numeric values
might be the solution.

VI. CHATGPT-BASED XML TO JSON TRANSLATION

As a comparison to the initial results, we also tested the
viability of ChatGPT [20] in protocol translation by translating
XML to JSON. We applied the following prompt:
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”Translate the following XML formatted texts to JSON. Only
give the translation as an answer, nothing else.”

We gave 100 XML formatted texts to ChatGPT for trans-
lation, then compared the results with the translations coming
from the translator we used before. The XMLs were randomly
generated using completely random strings and a maximum
depth of 3. We found that disregarding whitespaces 89 out of
the 100 translations were identical to the translations made
by our translator. In other words, 89% of the messages were
properly translated. With approximately 850 key-value pairs
out of which 11 were inaccurate, we can conclude that the
accuracy for key-value pair translation is around 98.7%.

The 11 incorrect translations can be classified into 3 groups
based on the type of mistake. In the first group, there were 4
incorrect translations, that were caused by leaving out escape
characters as the strings in XML were put between parenthesis
in JSON. In the second group, there were two translations
where the name of the XML tag ended with a hyphen.
The third group consists of 5 translations, where simply one
character was left out from the translation.

Few shot prompting could be a possible solution to improve
the previous results. Mistakes from the first and second groups
could be written into the prompt as well as something impor-
tant to look out for, to try to avoid them. Furthermore, all of the
mistakes in these groups can be corrected by postprocessing
as they are easily detectable.

VII. SUMMARY

In this paper, we investigated an ML-based method to solve
the M2M interoperability problems by text-based protocol
translation. Since the widespread industrial IoT payload for-
mats are XML and JSON, we focused on these during our
work. We recognized that ML-based language processing and
language translation models have improved a lot in recent
years. This identification supports the introduced model to
map the key-value pairs between different formats. As a
proof-of-concept, we showed an OpenNMT-based approach.
To measure the accuracy, we generated several data sets and
defined two use cases. If we examine the results of each
scenario, the accuracy of our model was 82% in the XML-
JSON related case, and 87% in the JSON-SenML related
case. We also tested ChatGPT for XML-JSON translation, and
measured 98.7% accuracy regarding key-value pair translation,
and 89% regarding the whole XML content.

We identified that the presented OpenNMT model has
some limitations regarding the numeric values. Future work
will further elaborate the translation of the numeric values
between JSON and SenML, and the training mechanism of
the language translation models to perform more accurate text-
based protocol mapping tasks. Our further research regarding
the use of ChatGPT in this field aims to refine the prompts to
give and to test other kinds of translations using the ChatGPT
API. In case of not being able to avoid predictable mistakes,
postprocessing by a script could further improve the accuracy.
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