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Abstract—Data exchange in information systems that span
multiple policy domains typically rely on network middleware
that can abstract the management of underlying heterogeneous
communication protocols. This also involves issues in managing
interoperability, scalability, and privacy that arise in the move-
ment of data from one domain to another information domain.
The Data Fabric is an emerging approach to systematically build
and design such middleware systems to support multi-domain
exchange at scale. In this paper, we discuss and compare two key
data-centric approaches: 1) application layer topic-based messag-
ing and name-based networking in a multi-cloud environment.
We implement and deploy these two approaches (using Kafka
and NDN) and we compare the performance in terms of object
transfer latency and CPU and memory utilization. We find that
NDN networking has superior latency performance and lower
resource usage. We believe that this advantage derives from the
fact that named-based messaging operates at the network level,
while topic-based messaging operates at the application level.

Index Terms—Data Fabric, Kafka, Multi-domain Information
Systems, Named Data Networking, Network Middleware.

I. INTRODUCTION

We live in a digital world awash in data, where social media,
IoT devices, sensors, cameras, and the vast expanse of the
Web create enormous volumes of data every second. Individ-
uals, governments, businesses, and organizations benefit from
harnessing the data available to them. Typically, intelligence
is extracted from the data through analytics and machine
learning and then applied to decision making in a wide range
of scenarios. Applications can range from sentiment analy-
sis and market trading to automated monitoring, protection,
and management in: buildings and factories; networks and
information technology systems; and in operations technology
systems such as energy generation, power grids, and pipelines.
All of these applications depend on the availability of the
right data at the right time and the expeditious extraction
of intelligence to effect timely decision making. A key issue
here is the sharing of data beyond the stakeholder’s domain
where the data originated. Sharing data across policy domains
gives rise to significant challenges in terms of interoperability,
scalability, security, and privacy.

The Data Fabric is an emerging concept intended to fa-
cilitate the exchange of data in multi-domain information
systems while addressing interoperability, scalability, security
and privacy [1]. In general, a data fabric is a middleware
architecture with associated data-centric services that together
provide a unified and consistent experience across endpoints in

a multi-domain information system [1], [2]. While individual
information domains that use a common data fabric can
impose policies and regulations to govern the sharing of data
beyond their borders, the data fabric can act as a unifying
layer for accessing data across all attached domains, by
using abstraction to hide the underlying heterogeneity of data
storage and management systems, communication protocols,
and cloud environments that store, move, and process data in
each domain [1], [2]. The Data Fabric needs to manage the
heterogeneity of the underlying communication protocols to
ensure consistency of experience as the data traverses different
systems, cloud providers, and policy domains [3].

In this paper, we focus on examining data-centric ap-
proaches of sharing data across multiple information domains
in the so-called Data Fabrics. Data-centric approaches allow
using topics/names to organize and move data objects in the
fabric. Names/Topics can simplify sharing data across multiple
domains in the fabric by: 1) decoupling data exchange from
the identity of the communicating endpoints and 2) allowing
application names to be directly mapped to the underlying
communication methods used in the fabric. In particular, we
aim to measure and compare the performance of topic-based
messaging systems that operate at the application layer using
Kafka [4] with the performance of name-based networking
methods that operate at the network layer using the Named
Data Networking (NDN) architecture [5]. We believe that com-
paring data-centric application and network layer approaches
can provide useful insights about the applicability of these
approaches in various scenarios that involve sharing data
across multiple information domains.

For measurement purposes, we create a multi-cloud network
infrastructure where individual cloud network providers act
as separate information domains. We measure the amount of
resources required to support various cross-domain through-
put, as well as the corresponding latency when data objects
traverse across the information domains. The rest of this paper
is organized as follows. We overview key messaging systems
and name-based networking in Section II. Next, in Section
III, we discuss our multi-cloud deployment environment and
elaborate our performance evaluation results and experiments.
In Section IV, we discuss several use-case scenarios that can
benefit from data fabrics for enabling data exchange in multi-
domain information systems. Finally, we provide conclusions
and discuss future work in Section V.
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Fig. 1. Multi-cloud deployment of Kafka platform and NDN network on Azure, AWS, and GCP

II. BACKGROUND

A. Topic-based Messaging Systems

Topic-based messaging is a form of communication in
which data messages are programmed to be delivered to a topic
message stream rather than a specific destination address [6].
The topic is typically an application-specified name selected
by data producers before sending their data messages into the
messaging system. Once a data message is sent to a topic in
the messaging system, the system delivers the message to all
data consumers who have active subscriptions to receive the
data for the given topic [6]. A topic-based messaging system
typically uses a network of distributed messaging brokers that
each handle the delivery of messages to data consumers in their
attention [7]. Due to the asynchronous nature of topic-based
messaging, these systems are ideal for Data Fabrics as data
producers and consumers across various information domains
do not need to know about each others’ identity and location
[6].

Today, a variety of messaging systems support topic-based
messaging protocols. Message Queuing Telemetry Transport
Protocol (MQTT) [8] is one of the principal and widely used
messaging protocols on the Internet. MQTT is a lightweight
messaging protocol designed for machine-to-machine commu-
nication in high latency and low bandwidth network conditions
[9]. Advanced Message Queuing Protocol (AMQP) is another
widely used messaging protocol on the Internet [10]. AMQP
focuses mainly on supporting process-to-process communi-
cation over IP networks [11]. Both the MQTT and AMQP
protocols are widely used to support communication between
system components for the Internet of Things [12], [13] and
in machine learning applications [13]. Both protocols are also

supported by a wide range of messaging brokers that range
from micro-scale to cloud-scale performance [7], [13].

The extended messaging and presence protocol (XMPP)
[14] is another messaging protocol that is widely used on the
Internet. Due to its verbose and network-agnostic nature [15],
the XMPP protocol is used in many applications, including
IoT [16], instant messaging [17], [18], and real-time voice
and video communications [14]. Much like MQTT, the Data
Distribution Service (DDS) is used to support machine com-
munication in real-time systems [19]. However, unlike MQTT
and other messaging systems, DDS features a brokerless
messaging protocol [19] which is widely used in specific
contexts such as smart grids [20]. Finally, we would like
to highlight Kafka messaging [4] as an important messaging
system that features robust messaging at cloud-scale [7]. Kafka
messaging leverages a high-performance TCP-based protocol
that is optimized for message delivery at scale [21]. Due to its
high-performance, Kafka messaging is considered ideal for use
in large-scale messaging environments such as Data Fabrics
[22].

B. Name-based Networking

Name-based networking uses names to organize data, much
as topic-based messaging systems use topics to organize its
flows. A fundamental difference, however, is that names in
name-based networking replace network layer IP addresses
[23]. In other words, names are used not only to organize
the data but also to directly identify data in the network. Con-
sequently, there is no need for names in the application layer
(i.e., topics) [24]. The potential of name-based networking to
simplify the network stack required for communications in a
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Fig. 2. (A) Average latency of data delivery from AWS to Azure and AWS (B) Average CPU utilization (C) Average Memory utilization

Data Fabric, makes it an ideal solution for use in multi-domain
information systems.

In a broader sense, name-based networking also provides an
approach to uniquely identify information content in the net-
work, which is also known as Information-Centric Networking
(ICN) [25]. A Data Fabric that uses ICN can recognize the
uniqueness of the contents in the network and move the
contents in the fabric based on its type and substance [25].
The same can be also achieved by application-layer content-
based messaging systems [6]. However, an ICN architecture
achieves this goal at the network level [26]. Currently, name-
based networking is supported by several ICN architectures,
including CCN [27], NDN [5], PSIRP [28], PURSUIT [29],
and NetInf [30]. Some of these were developed as future
Internet architecture projects [31] for use at the Internet scale.

III. EXPERIMENT METHODS AND ENVIRONMENTS

A. Multi-cloud Deployment Setup

We created a multi-domain environment by using resources
from three different public cloud service providers, Azure,
Amazon Web Service (AWS), and Google Cloud Platform
(GCP), as shown in Fig. 1. Logically, each cloud service
provider is a separate policy domain governing the data that
is generated in that domain. A Data Fabric facilitates data
exchange among the separate policy domains. We imple-
mented the two different approaches for building the given data
fabric: 1) multi-cloud Kafka messaging and 2) name-based
data networking using NDN. To provide a fair performance
comparison, we allow Kafka [4] and NDN [5] to each use
a separate virtual node as a data gateway for each policy
domain. The gateway’s role is to mirror outgoing data from a
given policy domain to other domains in the data fabric. Each
data gateway node is powered by 2 virtual CPUs and 4GB of
RAM. In this deployment, we use the AWS domain as a data
producer, and Azure and GCP as data consumer domains.

B. Kafka Messaging Deployment

We deployed Kafka in our multi-cloud information system
using Apache Kafka 3.5 [4]. In each policy domain, we
utilized a separate Kafka cluster. We employed MirrorMaker
2.0 (MM2) [32] to enable cross-domain replication. MM2

functions as a multi-domain data replication engine in our
system and is built on the Kafka Connect framework [33].
Each MM2 instance encapsulates both Apache Kafka source
and sink connectors [34] that are compatible with each cloud
provider. These connectors are responsible for automatically
detecting new topics and partitions in each domain and
ensuring that topic configurations are synchronized among
registered domains. This approach allows us to read data from
the topics in the source information domain and write it to
topics with the same name in the target information domain.

C. NDN Deployment

We build a Data Fabric that is based on NDN [5], that uses
the latest version of Named Data Forwarding (NFD) [35] on
each data gateway. NFDs are programmed to interconnect us-
ing Faces [35] that mutually connect them. For data exchange,
we used the NDN Chunk tool [36] from the NDN tools to
transfer a predefined amount of data from AWS policy domain
to Azure and GCP policy domains simultaneously.

D. Performance Comparison Results

We compared the performance of Kafka messaging and the
NDN network, both of which were deployed in our multi-
cloud environment. We produced data objects of varying sizes
in the AWS policy domain and allowed these data objects
to be replicated to other policy domains (Azure and GCP)
via Kafka and NDN deployments. We measured the latency
of data distribution (Fig. 2, A) and the CPU and memory
utilization of the data gateways in the Azure and GCP policy
domains (Fig. 2, B and C) for each data object produced.

In Fig. 2(A), we compare the latencies of Kafka messaging
with NDN messaging when distributing data objects from the
AWS policy domain to the Azure and GCP policy domains.
Data objects ranged in size from 1KB to 100MB. Across all
object sizes, NDN messaging exhibited much lower latency
than Kafka messaging. We observed that the NDN network
consistently experienced retransmissions of data packets and
timeouts when using NDN Chunk for data generation, which
could have influenced the results. We anticipate that latency
can be further reduced for larger data objects in NDN networks
when operating in more optimized networking environments.
A significant factor contributing to NDN’s lower latency, in
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TABLE I
NDN VS KAFKA UNDER 1GB DATA OBJECT SIZE

Cloud/Param Latency (Seconds) CPU (%) Memory (%)

NDN/Azure 101.455 18.25 9.63

Kafka/Azure 216.526 46.73 49.31

NDN/GCP 147.237 29.37 13.8

Kafka/GCP 215.051 49.47 43.31

comparison to Kafka, is its operation at the network layer,
while Kafka messaging functions at the application layer.

Next, we compare the CPU and memory performance be-
tween Kafka messaging and NDN messaging. By contrasting
Figure 2(B) with Figure 2(C), it becomes evident that data
gateways equipped with NDN data forwarders surpass those
using Kafka. This is evidenced by their consistent use of
significantly less memory and CPU capacity when receiving
data objects across all object sizes. It is important to note that
the slight variations in latency, CPU, and memory utilization
among data gateways in Azure and GCP policy domains could
stem from differing networking conditions and configurations
inherent to each cloud service provider’s infrastructure.

E. Meeting The Gigabyte Scale

To extend our evaluation to higher scales, we measured
the performance of the Kafka and NDN deployments in
experiments where a 1GB data object is replicated from the
AWS policy domain to the Azure and GCP policy domains
simultaneously. The latencies for NDN increased by more
than a factor of 10 as the object size went from 100 MB
to 1 GB. The latencies for Kafka increased by less than a
factor of 10, but were still nearly twice that of NDN. We again
observed that data packet retransmission occurs frequently in
the NDN network while using the NDN Chunk data generator.
In particular, we observed 408 data packet retransmissions for
the data object sent from the AWS data gateway to the data
gateway in the Azure policy domain, and 2098 data packet
retransmissions for the data object that was sent from the
AWS data gateway to the data gateway in GCP. This behavior
requires further investigation. In terms of CPU utilization,
NDN continued to show lower usage than Kafka. Furthermore,
NDN showed a higher proportional increase in usage relative
to Kafka, showing that its resource use increases according to
load, whereas Kafka has a higher but more fixed usage level.

IV. OPPORTUNITIES AND USE CASES

Federated Learning: Federated machine learning environ-
ments serve as an exemplary case of a multi-domain informa-
tion system. In these environments, a decentralized training
model replaces the traditionally used centralized model that
operates on a single global server collecting data from all
sources across multiple information domains [37]. In federated
learning, domains with shared interests collaborate by training
their individual local models using their own data. These

domains can enhance their model accuracy while safeguard-
ing their privacy. This is achieved by only sharing locally
generated model parameters with the central server. This
central server then utilizes these local models to construct a
comprehensive model that integrates the insights from various
information domains [37].

In such a framework, the Data Fabric ensures the accuracy
of the model by facilitating the exchange of model parameters.
Moreover, it manages the versions of machine learning models
across the participating entities from different domains [38].
This guarantees that the most current and relevant models are
available to all participants, thereby amplifying the efficiency
and success of the Federated Learning process.

Healthcare: Data Fabric systems offer a powerful solution
to the challenges associated with sharing and integrating
patient-generated data from wearable devices, sensors, and
health records [39], [40]. As patients increasingly use health
monitoring devices, the data produced becomes invaluable
for global analysis. This information offers insights into cur-
rent health trends and aids in responding to pandemics like
COVID-19 [41]. The Data Fabric serves as a unified data layer,
seamlessly integrating information from varied sources such as
wearable devices, electronic health records, and research data
[39]. Leveraging a Data Fabric allows healthcare organizations
to securely gather and disseminate vast amounts of data across
different information domains. They can do so while adhering
to strict policy governance, ensuring both data privacy and
security [39]. This methodology promotes cross-institutional
collaboration and research without jeopardizing patient privacy
or data integrity. Thanks to the scalability and real-time data
access offered by the Data Fabric, healthcare professionals
can analyze and interpret data more effectively, which leads
to enhanced patient care, improved public health outcomes,
and a deeper understanding of global health trends [39].

V. SUMMARY AND FUTURE WORK

This paper has investigated two data-centric approaches for
building Data Fabric systems that support data exchange in
multi-domain information systems. The paper examined Topic-
Based Messaging Systems and Name-Based Data Networking
as approaches to design Data Fabrics. The two approaches
were implemented and deployed on three public clouds: AWS,
GCP, and Azure. Experimental measurements of object de-
livery latency and gateway CPU and memory usage were
conducted for the two approaches. The results show that
Name-Based Data Networking (implemented using NDN) out-
performs Topic-Based Messaging (implemented using Kafka).
NDN has much lower latencies than Kafka, and its CPU and
memory utilization are lower as well. We attribute this superior
performance to the fact that NDN operates at the network layer
while Kafka operates at the application layer. We also noted an
opportunity to further improve NDN Chunk tool performance
by investigating its data object segmentation algorithm with a
view to reducing packet retransmission.
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