
Path Plausibility Algorithms in GoBGP
Nils Höger∗, Nils Rodday∗†, Oliver Borchert‡, Gabi Dreo Rodosek∗

∗Research Institute CODE, Universität der Bundeswehr München,
†University of Twente ‡National Institute of Standards and Technology

Abstract—BGP is known to be inherently insecure. Many
solutions have been proposed, with the RPKI becoming op-
erational in 2011. The RPKI only provides origin validation.
This leaves path manipulation attacks and route leaks unsolved.
In this demo session, we present our integration of two path
plausibility algorithms, namely ASPA and AS-Cones, into the
GoBGP routing daemon. We present advantages and drawbacks
of both approaches and extend the NIST BGP-SRx software suite
with the first implementation of AS-Cones.

Index Terms—BGP, ASPA, AS-Cones, Path Plausibility

I. INTRODUCTION

The Border Gateway Protocol (BGP) enables the exchange
of reachability information within the inter-domain routing
infrastructure. Unfortunately, it was never designed to be run
in an untrusted environment and therefore assumes proper be-
havior of every participant. In an infrastructure with currently
74,110 different Autonomous Systems (ASes) spread across
the globe, trust cannot be taken for granted. Several attack
vectors are present in the Internet routing infrastructure such
as BGP prefix hijacks [1], path manipulation attacks [2], and
route leaks [3] [4].

Many security solutions have been proposed throughout the
years (e.g., psBGP, S-BGP, soBGP) that did not succeed to
become standardized. To solve the security-related shortcom-
ings of BGP, the Internet Engineering Task Force (IETF)
created the Secure Inter-Domain Routing (SIDR) working
group which standardized two mechanisms:
Prefix Origin Validation. The Resource Public Key In-
frastructure (RPKI) [5] was operationally deployed in 2011
as the first cryptographically secured countermeasure against
BGP prefix hijacking. It allows prefix owners to create and
publish a Route Origin Authorization (ROA) object which
contains information as to which AS is authorized to announce
the given prefix. Other ASes can fetch the ROA objects and
make routing decisions based on the outcome of RPKI Route
Origin Validation (ROV) of received BGP updates. RPKI ROV
only protects against BGP prefix hijacks where the origin in
the BGP announcement does not match the legitimate AS
specified in a ROA object. Path manipulation attacks and route
leaks cannot be detected using RPKI ROV.
Path Validation. Border Gateway Protocol Security (BG-
Psec) [6] aims at cryptographically securing the entire AS
path within a BGP announcement. However, it has some
drawbacks that currently inhibit deployment on a wider scale.
First, it does not support partial deployment and thus is only

functional along contiguous ASes that all support BGPsec.
A single non-BGPSec capable router in-between breaks the
cryptographic chain and downgrades the announcement to
regular BGP. Second, BGPsec is, in contrast to RPKI-ROV,
designed to digitally sign and validate signatures in-band in
the BGP protocol. These cryptographic operations need to be
executed on the router, which comes with significant costs
in performance. Third, BGPsec does not permit BGP update
packing, which will result in routing tables growth when
deployed. Lastly, it does not protect against route leaks.
Path Plausibility. In this work, we focus on path plausibility
algorithms, in particular Autonomous System Provider Autho-
rization (ASPA) [7] and AS-Cones [8]. The effectiveness of
path plausibility algorithms is currently a hot topic within the
IETF’s Secure Inter-Domain Routing Operations (SIDROPS)
working group [9], the successor of SIDR. Path plausibility
algorithms are out-of-band mechanisms that are used to check
the plausibility of an AS path. They cannot cryptographically
prove that the BGP announcement traversed the path it claims
but only state the possibility of whether a BGP announcement
could have potentially traversed through the advertised AS
path. Figure 1 illustrates the proposed RPKI object creation
process for each algorithm. ASPA works in a bottom-up
fashion where an AS publishes an ASPA object specifying its
providers. AS-Cones works in a top-down fashion where each
AS publishes an AS-Cones object that specifies all customers.
Since there exist many more customer ASes compared to
provider ASes, the number of objects that have to be created
for ASPA is much greater than the number of objects required
for the AS-Cones approach. Next to object creation ASes
will have to implement the filtering algorithm based on the

ASA ASB ASC

ASD ASE

ASF

(a) ASPA

ASA ASB ASC

ASD ASE

ASF

(b) AS-Cones

Figure 1: Comparison of ASPA and AS-Cones object creation:
To cover the whole graph, ASPA requires the creation of five
objects, while AS-Cones requires the creation of three objects.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



particular draft [7], [8]. Even though these algorithms do not
provide the path protection that BGPsec provides, they are
designed to operate in partial deployments and do not add a
significant additional load on routers.
Contributions. In this work, we propose a BGP router im-
plementation called GoBGPSRx which supports both, ASPA
and AS-Cones validation. In detail, we make the following
contributions:

1) We extend the GoBGPsec implementation to support
ASPA and AS-Cones validation.

2) We provide an implementation for AS-Cones within the
National Institute of Standards and Technology (NIST)
BGP Secure Routing Extension (SRx) software suite.

3) We create a container-based solution to easily integrate
our implementation into other projects and design a
testbed for evaluation.

4) We publicly release all source code and documentation
of our extensions [10].

II. NIST BGP-SRX SOFTWARE SUITE

Our work relies heavily on the NIST BGP SRx software
suite [11] which offers multiple components:
SRx-Server. The SRx-Server implements several standards:
RPKI [5], BGPSec [6], and ASPA [7] (draft version 9). We
extend the SRx-Server implementation with the AS-Cones [8]
algorithm. It receives validation requests from a BGP routing
daemon and replies with the validation results. RPKI objects,
such as ROAs, ASPA, and AS-Cones objects are collected
via the RPKI to Router (RTR) protocol from the RPKI test
harness. We extend the RTR protocol [12] with an AS-Cones
Protocol Data Unit (PDU).
BGP routing daemon. The BGP routing daemon connects
to the SRx-Server to perform validation requests. The NIST
BGP-SRx’s default routing daemon is based on Quagga. In
addition, the framework provides GoBGPsec, which is based
on the GoBGP routing daemon. We extend the GoBGPsec
daemon with an additional GoSRx-Proxy Application Pro-
gramming Interface (API) for ASPA and AS-Cones validation.
RPKI Cache Test Harness. The RPKI Cache Test Harness
provides a database for validated RPKI information such
as Validated ROA Payload (VRP), Validated ASPA Payload
(VAP), and BGPSec keys. We extend the RPKI Cache Test
Harness to also support validated AS-Cones payload.
BGPsec-IO. The BGPsec-IO (BIO) is a BGP and BGPsec
traffic generator that is capable of generating multi hop BGP
paths and fully signed multi hop BGPsec paths. It is used for
the evaluation of BGP and BGPsec router implementations.

III. METHODOLOGY & IMPLEMENTATION

The NIST BGP-SRx provides two methods for validation:
local and remote. Local validation is only available for BGPsec
using the SRx Crypto API (SCA) directly from within the dae-
mon. Remote validation outsources the validation to the SRx-
Server. The SRx Proxy facilitates communication between a
BGP daemon and the SRx-Server. It implements the SRx

GoBGPSRx SRx-ServerAS-Cones

GoSRx-Proxy

ASPA

RTR

BGPsec

Crypto APICrypto API
TCP

RPKI ROV RPKI Cache
Test Harness

Figure 2: GoBGPSRx architecture: The highlighted part shows
our GoSRx Proxy implementation, which connects via a TCP
socket to the SRx-Server.

Proxy Protocol within the SRx Proxy API [13], which hides all
complexities of TCP protocol communication with the SRx-
Server. Moreover, it offers full support for RPKI, BGPsec,
ASPA, and (in our extended version) AS-Cones validation.
Another method to communicate with the SRx-Server is to
directly implement the SRx Proxy Protocol without using the
SRx Proxy API. On the one hand, it is much more complex
as asynchronous processes have to be dealt with. On the
other hand, it offers greater flexibility as it allows the use
of other programming languages. Building a Go-based SRx-
Proxy allows direct integration into the GoBGP daemon.

Choice of interface. The NIST BGP-SRx framework extends
the GoBGP daemon with the capability to perform RPKI
and BGPsec requests towards the SRx-Server. The extended
version uses the SCA to enable BGPsec features for the
existing BGP daemon. It is now called GoBGPsec [14]. Our
work builds upon the GoBGPsec daemon and adds ASPA and
AS-Cones validation features. We call the resulting daemon
GoBGPSRx [10]. We added an additional API that uses
socket-based communication between the two entities. Figure
2 illustrates the additional interface we created.

Implementation. We introduce two new classes: RPKI-
manager and Go-Proxy. During startup, the routing daemon
creates a new RPKI-manager instance that is responsible for
ASPA and AS-Cones validation. The manager spawns a new
GoSRx Proxy instance responsible for the session handling
between the SRx-Server and GoBGPSRx. The GoSRx Proxy
connects to the SRx-Server via the SRx Proxy Protocol [13]
implemented in the Go programming language. Depending on
the message type contained in the replies received from the
SRx-Server, the GoSRx Proxy invokes the respective callback
functions within the RPKI-manager to process the received
data. If the router receives an update message from a BGP
peer, it forwards it to the RPKI-manager. The RPKI-manager
stores the message in a separate data structure and extracts
the mandatory information to create a validation message. The
validation request can either be of type ASPA or AS-Cones.
The message contains the AS path list, the propagated prefix,
and a default result, among other fields. The RPKI-manager
forwards this message to the GoSRx Proxy, which then sends
the validation request to the SRx-Server. The SRx-Server sends
the validation result back to the GoSRx Proxy [11], which
forwards the data to a callback function of the RPKI-manager.
The manager ignores the stored BGP message if the validation
result is invalid or unknown. If the result is valid, it passes

2023 19th International Conference on Network and Service Management (CNSM)



ASA

ASB

ASC

ASD

ASE

ASF

ASG

ASH

Simulated AS
GoBGPSRx
BIO
Scenario 1
Scenario 2

Figure 3: EvaluationTopology

the BGP message back to the routing daemon, which further
processes the data.

We also created a Docker image to properly test the im-
plementation in a testbed. This image extends the one from
the NIST BGP-SRx framework and is also based on centos.
It contains all components of the NIST-BGP-SRx framework,
including our router implementation.

IV. PROOF OF CONCEPT

We evaluate our router implementation using the demo
topology, which is part of the NIST BGP-SRx software suite
for ASPA evaluation. Figure 3 displays the topology of our
testbed. The directed lines represent the direction of BGP
announcements.

In this topology, we replace ASH with our GoBGPSRx
implementation and simulate incoming BGP traffic from the
neighbors ASG (Scenario 1) and ASF (Scenario 2) using the
BIO traffic generator. We run several use cases to test our
implementation: regular BGP messages, BGP prefix hijacks
combined with path-shortening, and route leaks. Our imple-
mentation can recognize valid BGP messages and can detect
artificially crafted attacks through validation using the SRx-
Server. After successful validation, only valid BGP messages
are entered into the local Route Information Base (RIB). All
other messages are discarded. Thus, we are certain that our
implementation performs validation operations with the help
of the SRx-Server as intended.

Initially, we wanted to use the SRx-Proxy, a C implemen-
tation of the SRx API, implemented by NIST, that handles
the communication between a router implementation and the
SRx-Server. Unfortunately, integrating the C-based API into a
Go-based project was not possible. With the support of NIST
staff, we developed our own GoSRx proxy implementation that
supports hello messages for session establishment, validation
requests, and synchronization requests.

V. LIVE DEMONSTRATION

During our demonstration, we will show how our GoB-
GPSRx implementation processes various scripted BGP an-
nouncements and performs decisions based on path plausibility
algorithms. Using the topology displayed in Figure 3, we
will present a testbed in which we will send different BGP
messages to the GoBGPSRx router to trigger reactions for
multiple use cases. In detail, we will present the handling of
three attacks: BGP prefix hijack, path shortening, and route
leak. We will show that our implementation of path plausibility
algorithms cannot detect BGP prefix hijacks but can detect and
mitigate path-shortening attacks as well as route leaks.

VI. CONCLUSION

In this paper, we explained our implementation of two path
plausibility algorithms, namely ASPA and AS-Cones, into the
GoBGP routing daemon. By extending the NIST BGP-SRx
software suite, we validated our implementation in a testbed
capable of generating artificially crafted BGP announcements.
During the evaluation, we showed that our implementation of
ASPA and AS-Cones could detect path-shortening attacks and
route leaks. Our contributions support the inter-domain rout-
ing community to further evaluate whether path plausibility
algorithms can be a meaningful addition to the security of the
inter-domain routing infrastructure.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback and
Kai Hamich for his work on AS-Cones. Moreover, we thank
Kyehwan Lee and the members of the NIST Internet Technolo-
gies Research Group [15] for their time for discussion. This
work was partly supported by the German Federal Ministry of
Education and Research (BMBF) within the project 6G-life.

REFERENCES

[1] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford, “A Survey of BGP
Security Issues and Solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, 2009.

[2] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill, “BGP Hijacking
Classification,” in 2019 Network Traffic Measurement and Analysis
Conference (TMA). IEEE, 2019, pp. 25–32.

[3] M. S. Siddiqui, D. Montero, M. Yannuzzi, R. Serral-Gracia, and
X. Masip-Bruin, “Route Leak Identification: A Step Toward Making
Inter-Domain Routing More Reliable,” in 10th DRCN Conference.
IEEE, 2014, pp. 1–8.

[4] S. L. Murphy, “BGP Security Vulnerabilities Analysis,” RFC 4272,
Jan. 2006. [Online]. Available: https://www.rfc-editor.org/info/rfc4272

[5] P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein, “BGP
Prefix Origin Validation,” IETF, RFC 6811, January 2013.

[6] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC 8205,
Sep. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8205.txt

[7] A. Azimov, E. Bogomazov, R. Bush, K. Patel, J. Snijders,
and K. Sriram, “BGP AS PATH Verification Based on
Autonomous System Provider Authorization (ASPA) Objects,”
Internet Engineering Task Force, Internet-Draft draft-ietf-
sidrops-aspa-verification-16, Aug. 2023. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-sidrops-aspa-verification/16/

[8] J. Snijders, M. Stucchi, and M. Aelmans, “RPKI Autonomous Systems
Cones: A Profile To Define Sets of Autonomous Systems Numbers To
Facilitate BGP Filtering,” Internet Engineering Task Force, Internet-
Draft draft-ietf-grow-rpki-as-cones-02, Apr. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-grow-rpki-as-cones-02

[9] T. Tauber, J. Snijders, and T. Bruijnzeels, “NANOG Discussion on ASPA
Deployment,” https://seclists.org/nanog/2023/May/220.

[10] N. Hoeger, N. Rodday, and K. Hamich, “GoBGPSrx Repository,”
https://github.com/nrodday/CNSM-23-demo.

[11] O. Borchert, K. Lee, K. Sriram, D. Montgomery, P. Gleichmann, and
M. Adalier, “BGP Secure Routing Extension (BGP-SRx): Reference
Implementation and Test Tools for Emerging BGP Security Standards,”
National Institute of Standards and Technology, Tech. Rep. 2060, 2021.
[Online]. Available: https://csrc.nist.gov/pubs/tn/2060/final

[12] R. Bush and R. Austein, “The Resource Public Key Infrastructure
(RPKI) to Router Protocol, Version 2,” Internet Engineering Task
Force, Internet-Draft draft-ietf-sidrops-8210bis-10, Jun. 2022. [Online].
Available: https://datatracker.ietf.org/doc/draft-ietf-sidrops-8210bis/10/

[13] “Secure Router Extension (SRx) Proxy Protocol,”
https://github.com/usnistgov/NIST-BGP-SRx/tree/master/srx-server/doc.

[14] K. Lee, “GoBGPsec,” https://github.com/usnistgov/gobgpsrx.
[15] “NIST Internet Technologies Research Group,” https://www.nist.gov/ctl/

wireless-networks-division/internet-technologies-research-group.

2023 19th International Conference on Network and Service Management (CNSM)


