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Abstract—In this paper, we apply a machine learning classifier
to the publicly available consumer Internet of Things (IoT)
traffic traces to explore the nature and extent of any potential
data exhaust. To this end, we propose two feature sets and
compare them against the baseline flow feature set and the results
from the previous works. Evaluations show the improvement in
performance obtained using the proposed feature sets and the
variety of information that can be extracted from the captured
IoT traffic regardless of encryption.

Index Terms—IoT security, data exhaust, network traffic.

I. INTRODUCTION

Internet of Things (IoT) technology makes our daily lives
more convenient and intelligent with automatically functioning
devices controlled through physical or cyber interactions. In
general, IoT devices can be grouped into two categories,
namely, cyber-physical system IoTs and consumer IoTs.
Cyber-physical system IoT devices offer services such as
power utilities, manufacturing plants, or factory automation.
Consumer IoT devices offer services such as personal digital
assistants, home security or climate control. Despite the pos-
itive prospects for the spread of IoT technologies, a major
problem is the nature of the technology that gives rise to
new concerns about privacy and security. These devices have
the potential to gather information about their users and their
surrounding environments by combining sensor information
from cameras, microphones, motion sensors and their Internet
connectivity. Much of this information could have major
security as well as privacy implications. For example, when
devices surreptitiously record audio and share this information
over the Internet with device manufacturers and/or unknown
third parties, this can result in not only privacy concerns
but also in security problems. This type of system/device
behaviour is referred as data exhaust, i.e. data generated as
trails or information by-products resulting from digital/online
activities. Most of the Consumer IoT devices lack any func-
tionality/property that could indicate data exhaust for the users
to protect themselves. In this work, we apply a Machine
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Learning (ML) based approach to analyze data exhaust using
the metadata of the publicly available consumer IoT device
traffic datasets [1]-[4]. This enables us to explore the nature
and extent of potential data exhaust of these IoT devices. To
this end, we explore the following research questions:
¢ Q1: To what extent consumer IoT devices and non-IoT
devices can be separated in the captured traffic?
e Q2: Can we infer the category of a device based on the
captured traffic?
e Q3: Can we infer the type of a device based on the
captured traffic?
¢ Q4: Can we detect different voices based on the captured
traffic if the device is voice activated?
e Q5. Can we detect different activities (interactions) based
on the captured traffic if the device is voice activated?
The rest of the paper is organized as follows. Section II
summarizes the related work. Section III introduces the pro-
posed feature set, datasets used and the methodology followed.
Section IV details the evaluations, results and comparisons to
the related work. Finally, conclusions and the future work are
discussed in Section V.

II. RELATED WORK

There are several key challenges that limit our understand-
ing of data exhaust from consumer IoT devices and their se-
curity and privacy implications. In general, ground truth about
data trails and by-products in the IoT device ecosystem are
not readily available. For the vast majority of IoT devices, it
is not feasible to modify the device firmware, or employ proxy
techniques to identify data exhaust that might be leaking.
Previous works characterize IoT device traffic from different
perspectives. Some works focus on whether encryption is used,
and if so, whether it is misused [1]. Others analyze traffic
from many different IoT devices to identify encrypted and/or
unencrypted traffic and their vulnerability to different types
of attacks [2]. Several works investigate the communication
channels between IoT devices and their cloud services to
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characterize their traffic [4]. Others study encryption and
authentication protocol weaknesses of these devices [REF].
These studies cover data exhaust for different categories of IoT
devices such as medical devices, office and home automation
solutions. Additionally, several works in the literature focus
on intrusion detection systems using machine learning [5]
while others focus on a policy enforcement approaches for
detecting malicious behaviours [6]. Some research addresses
the problem of automatically verifying and enforcing the
compliance of a given IoT device according to its specification
[7]. Other approaches use statistical techniques on the device
traffic to profile users and their activities [3]. In this work, our
goal is to explore consumer IoT devices, and their interactions
over the Internet. In doing so, we aim to study the nature and
extent of any potential data exhaust.

III. METHODOLOGY

In this work, the methodology follows the design and im-
plementation of a network traffic analysis pipeline including:
(1) selecting and extracting features from traffic traces; (ii)
training and testing the classifier using those features; and
(iii) analyzing the ML model solutions and their performance.
To achieve this, we employ the Random Forest classifier
since it has been reported as the best performing classifier
in [1], [2]. And, we employ four publicly available datasets,
namely NEU-SNS [1], CIC-IoT [2], UPC-IoT [3] and ISOT-
CID [4], since these were the most recent publicly available
datasets reported in the literature in this field. These not only
ensure the replicability of our research but also enable us to
explore the research questions introduced in Section-I. Out of
these four datasets, the first three include IoT device network
traffic, whereas ISOT-CID dataset does not include IoT traffic.
This allows us to investigate the similarities and differences
between IoT and non-IoT network traffic in our evaluations.

A. Datasets

The NEU-SNS dataset consists of traffic from 81 IoT
devices (54 unique types of devices) located in the UK and
USA IoT labs (testbed). The dataset includes IoT devices
from the following six categories [1]: Cameras (14 devices),
Smart hubs (7 devices), Home Automation (10 devices), TV
(5 devices), Audio (7 devices), and Appliances ( 11 devices).

The CIC-IoT dataset consists of malware and benign traffic
of 10T devices [2]. This dataset includes some different (such
as Door Lock brands) and some similar (such as camera
brands) IoT devices compared to the NEU-SNS dataset. The
UPC-IoT dataset employed in this work only includes Amazon
Alexa traffic traces. It contains 300’000 raw PCAP traces with
all the communications between the Amazon Echo device and
Amazon Alexa servers with 100 different voice commands
repeated 500 times in two different languages [3].

On the other hand, the ISOT-CID dataset is collected from
a cloud environment and includes more than 2.5 terabytes of
traffic traces, such as normal activities and a variety of attacks.
These include web traffic generated by more than 160 legiti-
mate users, traffic generated by 100 robots, performing tasks

such as account registration, reading/posting and commenting
on blogs as well as browsing various pages [4].

B. Proposed feature selection and extraction

To study the research questions stated in Section-I, we
used Python 3.9.5 programming language and the Random
Forest (RF) classifier with the newly developed feature sets.
All features used to train the RF classifier are generated from
the flow statistics gathered from packet sizes and timestamps.
Our preliminary research has shown that the flow statistics
gathered from packet sizes in bytes and timestamps have
different fingerprints for the types and interaction of IoT
devices. Our observations indicate that while ’data.len’ related
information is more helpful for research questions Q1 to Q3,
the distributions of bytes send/received over the flow duration
seems to be preferable for Q4 and QS5. Based on the above,
we propose two feature sets, namely feature set 1 (FS1) for
Q1, Q2 & Q3, and feature set 2 (FS2) for Q4 & Q5. For this
purpose, the features extracted from the network traffic traces
are shown in Table I. These fields are used to generate flows.

TABLE I: IP Fields extracted

Name
frame.time_epoch
frame.time_delta
frame.protocols

Description

Epoch Time

Time delta from previous captured frame (TD)
Protocols in the frame

frame.len Frame length on the wire (FL), seconds
ip.src IP Source Address
ip.dst IP Destination Address

TCP Source Port

TCP Destination Port
UDP Source Port

UDP Destination Port
Data Length (DL), bytes

tcp.sreport
tep.dstport
udp.srcport
udp.dstport
data.len

The flows are then aggregated by the following fields (flow
keys) [10]: ’frame.protocols’, ’ip.src’, ’ip.dst’, ’tcp.srcport’,
"tep.dstport’, “udp.srcport’ and “udp.dstport’. The flow aggre-
gation algorithm supports bi-directional flows (client-server
and server-client sub-flows) [8] and generates two sets of
features (time and size frames statistics within the flow) - FS1
and FS2 shown in Tables II and III respectively. We also used
the *Tranalyzer2’ flow generator and packet analyzer [9] to
generate the third feature set, shown in Table IV. Hereafter,
this will be referred as the baseline to evaluate the effect of
proposed feature sets based on aggregated flows.

IV. EVALUATIONS AND RESULTS

In the following evaluations, the RF classifiers are trained
with the default parameters on the training partitions and
the trained models are tested on the test partitions of the
respective datasets (Section III-A). The following details the
proposed FS1 and FS2 in combination with the datasets used:

- FS1 and Tranalyzer2 feature sets are generated from the
NEU-SNS and ISOT-CID datasets. These datasets are labelled
as IoT and non-IoT, respectively. They are used to study Q1

- FS1 and Tranalyzer2 feature sets are generated from
NEU-SNS dataset. In this case, the dataset is labelled
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TABLE II: Proposed Feature Set - FS1

TABLE IV: Feature Set - Tranalyzer2

# Description

1 Different protocols in the flow®

2 Number of different protocols (depth)
3 Flow duration

4 Min TD value in the flow

5 Mean TD value in the flow

6 Median TD value in the flow

7 Max TD value in the flow

8 TD variance in the flow

9 # of frames in the flow

10 Min FL value in the flow

11 Mean FL value in the flow

12 Median FL value in the flow

13 Max FL value in the flow

14 TD variance in the flow

15-18 | FL percentiles (20, 40, 60, 80)

19 Mean DL value in the flow

20 Median DL value in the flow

21 # of frames in the client-server sub-flow
22 # of frames in the server-client sub-flow
23 Total DL in the client-server sub-flow
24 Total DL in the server-client sub-flow

2Categorical feature encoded with *OdrinalEncoder’.

TABLE III: Proposed Feature Set - FS2

Description
Protocols in the flow®

Flow duration®

Min TD value in the flowP

Mean TD value in the flowP

Median TD value in the flowP

Max TD value in the flowP

TD variance in the flowP

# of frames in the flowP

Min DL value in the flowP

Mean DL value in the flowP

11 Median DL value in the flowP

12 Max DL value in the flowP

13 DL variance in the flowP

14-23 | Bytes send/received distribution over the flow durationP
aCategorical feature encoded with *OdrinalEncoder’.
bFeatures 2-23 are calculated for the flow and client-server
and server-client sub-flows resulting in the total number of
features equal to 67.
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according to IoT device types to study Q2.

- FS1 feature set is generated by the Sompy Door Lock
from the CIC-IoT dataset which is labelled as ’ToT.

- FS2 feature sets are generated from the UPC-IoT English
and Spanish datasets (respectively) and labelled as ’voice’
for studying three voices and ’interaction’ for studying 100
interactions available in the datasets.

It should be noted here that we used stratified sampling to
randomly split each of the above datasets into the training
(70%) and test (30%) partitions. Moreover, we used the
following metrics to evaluate the performance of the models:
precision (1), recall (2), and F1-score (3).

# Name Description

1 dir Flow direction®

2 duration Flow duration

3 numHdrDesc Number of different headers descriptions
4 numHdrs Number of headers (depth) in hdrDesc
5 hdrDesc Headers description®

6 14Proto Layer 4 protocol

7 numPktsSnt Number of transmitted packets

8 numPktsRcvd Number of received packets

9 numBytesSnt Number of transmitted bytes

10 | numBytesRcvd | Number of received bytes

11 | minPktSz Minimum layer 3 packet size

12 | maxPktSz Maximum layer 3 packet size

13 | avePktSize Average layer 3 packet size

14 | stdPktSize Standard deviation layer 3 packet size
15 | minlAT Minimum IAT

16 | maxIAT Maximum [AT

17 | avelAT Average 1AT

19 | stdIAT Standard deviation IAT

20 | pktps Sent packets per second

21 | bytps Sent bytes per second

22 | pktAsm Packet stream asymmetry

23 | bytAsm Byte stream asymmetry

2Categorical feature encoded with *OdrinalEncoder’.

L TP 0
precision = TP+ FP
TP
l=—— 2
reca TP+ FN )

Fl—9x precz:s?on X recall 3)
precision + recall

where: TP (true positives) are positive instances, labelled
as positive. TN (true negative) are negative instances, labelled
as negative. FP (false positive) are negative instances, labelled
as positive. FN (false negative) are positive instances, labelled
as negative. D3 - FS1 feature set generated by the Sompy
Door Lock from the [oT-23 dataset and labelled 'IoT.

A. Exploring - Q1

The following evaluation is intended to show to what extent
IoT and non-IoT traffic can be separated (binary classification).
In this evaluation FS1 feature set is compared to the base-
line feature set to measure the impact of aggregating flows.
Figure 1 and Table 5 show the results. The results show that
proposed FS1 features sets based on aggregated flow performs
better than the baseline.

TABLE V: Precision, Recall and F1 scores. Experiment El

Metric FS1 Tranalyzer2
IoT non-lIoT ToT non-IoT
precision, % 99.99 100 98.07 99.77
recall, % 100.00 99.99 99.76 98.1
F1 score, % 99.99 99.99 98.91 98.93
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Fig. 1: Exploring Q1 - Confusion matrices.

B. Exploring - Q2 and Q3

In this case, the goal is to study how well a device’s category
could be inferred from the captured traffic. In this evaluation,
FS1 feature set is compared with the baseline feature set.
Moreover, to compare the number of inferable IoT devices
with the results in [1], we assumed the same conditions: the
device is inferable when its F1 score is greater than 75%. All
IoT devices are grouped in the same six categories [1]. The
results are shown in Tables VI to VIIL

TABLE VI: #Devices (per category) using FS1, F1>75%.

Category VPN

US UK [ USN [ UKN US UK [USN [ UKN
Appliances 8 [4W|1 2|22 709 4D (12222
Audio 405) |56)[3@[3@H| 506B) |56 (4@ ][34
Cameras 1HAD[8®)[5BG)|50G) (11D |[8®)[5(B)|5(01)
Home Auto | 9(9) (6 (6)|5G)|50B)] 909 [66)[50)|5(5)
Smart Hubs | 7(7) [6(6)[6(6)|6(6)| 7(7) |6(6)|6(6)]| 6 (6)
TV 56G) |4 |4B[4@d ]| 506) (34D |34
The total number of devices is shown in parentheses.

TABLE VII: #Devices (per category) Baseline, F1>75%.

Category VPN

US UK | USNn | UKN US UK | USN | UKN
Appliances 209 [1GH|02)[|0@2) | 20 |2@|102|(1@®
Audio 205) (2@ |1@G[1@ ]| 36) (162404
Cameras 100D [7@®)[40B)[406) |11 L) [7®6)|50B)]|50B)
Home Auto | 8 (9) [S®6)[5G)[50B)| 80 [46)[505)]4(O)
Smart Hubs | 5(7) [5(©6)[4(®©)|5@)| 4(7) |5(6)[4(6)]|5(©6)
TV 405 |3@W[3@ (3@ | 405 |3(3@G (3@
The total number of devices is shown in parentheses.

TABLE VIII: Over all: #Devices, F1>75%.

Feature Set VPN
FS1 126 (132) or 95.4% | 126 (132) or 95.4%
Tranalyzer2 89 (132) or 67.4% 91 (132) or 68.9%

The total number of devices is shown in parentheses.

The results obtained with the FS1 feature set outperforms
the results obtained with the baseline feature set as well as
the results given in [1]. Moreover, we used FS1 to study Q3
(device classification per type). Results show that 46 out of 54
(85%) unique types of devices could be detected correctly (F1
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(a) English voices. (b) Spanish voices.

Fig. 2: Confusion matrices. Experiment E4.

score >75%). The full list of all available IoT devices can be
found in Table 1 in [1]. The error analysis indicates that most
errors are caused by mislabeling the devices within the three
groups:

¢ Google Home and Home Mini.

e Amazon Echo Dot, Echo Plus and Echo Spot

o Samsung Washer and Dryer.

We assume that the devices from the above groups use
similar firmware, which affects the classification results. After
re-labelling devices within the groups as ’Google Home,
’Amazon Echo’ and ’Samsung Washer/Drier’, respectively, we
were able to correctly detect (F1 score >75%) 48 out of 50
in other words 96% of the unique types of IoT devices. These
results are better than the results given in [1] as well as [5],
where an average of 87.3% is given for inferring device types
using RF classifier over 20 IoT devices.

Furthermore, we utilized the RF model trained for Q1 and
tested it on 130 FS1 flows generated from the *Sompy Door
Lock’ traffic using the CIC-IoT dataset. This device was not
available during the training of the model used here. In this
case, all 130 flows are labelled correctly reaching 100% F1
score. This seems to show that the trained model with the
proposed feature set could detect new IoT devices. Further
research is necessary to evaluate other new devices.

C. Exploring - Q4

The goal of this evaluation is to study how well different
voices used to interact (issue a voice command or ask a
question) with a Smart Voice Assistant (Amazon Alexa) could
be detected in the captured traffic. The following experiments
are conducted using the UPC-IoT datasets (Section III-A).
Table IX summarizes the results, and Figure 2 shows the
confusion matrices for English and Spanish Voices.

TABLE IX: Voice Classification Results.

Voice precision, % | recall, % | F1 score, %
Salli 71.45 68.86 70.13
Matthew 67.88 70.86 69.34
Joanna 66.56 65.94 66.25
Conchita 70.66 72.09 71.37
Enrique 67.14 68.4 67.77
Lucia 66.85 64.23 66.51
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Fig. 3: QS5 - F1 scores distributions.

In these evaluations, it is possible to achieve F1 scores of
66% and 71%. On one hand these scores are better than ran-
dom guessing. On the other hand, they are high performances
in the case of ternary classification. However, they demonstrate
that potential adversaries could extract information about the
number of voices, i.e. persons, in a household or office
environment using such consumer IoT devices. These results
indicate that this is possible using only the available metadata
present in the captured network traffic trace even if the traffic
is encrypted as in the datasets used in this study.

D. Exploring - Q5

In QS5, the goal is to study how well English and Spanish
voice interactions with Amazon Alexa can be detected from
the captured traffic. We also analyze whether the importance of
the features changes depending on the language of interaction.
The complete lists of available interactions (commands) can
be found in [3]. Table X summarizes the results and Figure 3
shows the F1 score distributions for English and Spanish
voice interactions. These results show that different voice
interactions with Amazon Alexa could be reliably detected
in the captured encrypted Alexa traffic traces regardless of the
language of interaction used.

TABLE X: Q5 - Voice interaction classification Results.

English voices Spanish voices

Metric precision, | recall, | F1 score, | precision, | recall, | F1 score,

% % % % % %
Mean 78.0 77.7 77.7 80.0 79.6 79.5
Std dev. 8.0 11.0 9.1 7.2 12.6 9.8
Min 62.8 45.3 55.3 57.1 30.8 41.7
25% 72.4 71.7 72.1 75.4 75.9 75.7
50% 77.0 78.5 71.3 80.8 83.0 81.3
75% 82.3 64.1 82.8 85.0 87.6 85.8
Max 99.5 99.6 99.5 99.2 97.8 98.5
F1 >75% 63 (100)° 77 (100)

2The total number of unique interactions is shown in parentheses.

V. CONCLUSION AND FUTURE WORK

We applied a RF classifier to explore data exhaust of
consumer [oT devices. We used the metadata of the publicly
available traffic traces of IoT devices. We proposed two

different feature sets: (i) FS1 based on packet time and size
statistics, and (ii) FS2 based on the distributions of time and
size information exchanged over aggregated flows. We studied
five research questions, Q1 - QS5, and compared the results to
the baseline flow feature set and to the related works using
the same traces. The evaluations for Q1 to Q3 show that
IoT and non-IoT traffic can be separated using RF with a
99.99% F1 score. Moreover, the trained model can also infer
the category and type of an IoT device with a high accuracy.
It can also reliably detect the traffic of IoT devices not seen
during the training. Further evaluations for Q4 and Q5 reveal
that the number of users (voices used to interact) of Amazon
Alexa Smart Home Assistant in the household/office can be
classified. Also, the different user-device voice interactions can
be reliably detected with an F1 score reaching to 99%. Future
research will explore other non-IoT and IoT traffic traces as
well as analyze other types of new IoT devices.

ACKNOWLEDGEMENT

This research is supported by the Mitacs and Calian Group
funding program. The research is conducted as part of the
Dalhousie NIMS Lab'.

REFERENCES

[1] J. Ren, D. Dubois, D. Choffnes, A.M. Mandalari, R. Kolcun, H. Haddadi,
“Information Exposure for Consumer IoT Devices: A Multidimensional,
Network-Informed Measurement Approach,” Proc. of the Internet Mea-
surement Conference (IMC), 2019.

[2] S. Garcia, A. Parmisano, M.J. Erquiaga, “IoT-23: A labeled dataset with
malicious and benign IoT network traffic (Version 1.0.0) [Data set],”
Zenodo, 2020 http://doi.org/10.5281/zenodo.4743746.

[3] R. Barcel6-Armada, 1. Castell-Uroz, P. Barlet-Ros, “Amazon Alexa
traffic traces,” Computer Networks, vol. 202, 2022.

[4] A. Aldribi, 1. Traore, P.G. Quinan, O. Nwamuo, “Documentation for
the ISOT Cloud Intrusion Detection Dataset,” Technical Report # ECE-
2020-10-10, University of Victoria, ECE Department.

[5] S. Dadkhah, H. Mahdikhani, P. K. Danso, A. Zohourian, K. A. Truong
and A. A. Ghorbani, "Towards the Development of a Realistic Mul-
tidimensional IoT Profiling Dataset,” 2022 19th Annual International
Conference on Privacy, Security & Trust (PST), Fredericton, NB,
Canada, 2022, pp. 1-11, doi: 10.1109/PST55820.2022.9851966.

[6] 1. Hafeez, M. Antikainen, A. Y. Ding and S. Tarkoma, “IoT-
KEEPER: Detecting Malicious IoT Network Activity Using Online
Traffic Analysis at the Edge,” in IEEE Transactions on Network and
Service Management, vol. 17, no. 1, pp. 45-59, March 2020, doi:
10.1109/TNSM.2020.2966951.

[7] A. Hamza, D. Ranathunga, H. H. Gharakheili, M. Roughan, and V.
Sivaraman, “"Clear as MUD: Generating, Validating and Applying IoT
Behavioral Profiles,” 2018 Workshop on IoT Security and Privacy. ACM,
New York, NY, USA, 8-14. https://doi.org/10.1145/3229565.3229566.

[8] S. Burschka, B. Dupasquier, “Tranalyzer: Versatile high performance
network traffic analyser,” 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), 2016.

[9] Tranalyzer2 Tarantula version 0.8.14lmwl, Retrieved October, 2022

from https://tranalyzer.com.

B. Trammell, A. Wagner, B. Claise, “RFC7015, Flow Aggregation for

the IP Flow Information Export (IPFIX) Protocol,” Proposed standard

proposal, https://www.rfc-editor.org/rfc/rfc7015, 2013.

[10]

Uhttps://projects.cs.dal.ca/projectx/



