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Abstract—In the context of wireless networked robotics, com-
plex missions, such as autonomous Search and Rescue, may
require the use of multiple Unmanned Aerial Vehicles (UAVs)
to achieve higher efficiency and Quality of Service (QoS) while
assuring mission-specific imperatives like the maximization of area
covered in a single passage of the fleet over area subsections. In
this paper, we present a learning-based formation control protocol
that adapts the principle of Q-learning to pilot an autonomous
fleet of networked UAVs to maintain formation throughout a
mission where large quantities of data need to be exchanged.
Also, the protocol tries to ensure rotational formation control by
leveraging only the signal strength extrapolated from the UAV
communications. A leader-follower model is used to control the
fleet. One UAV serves as the leader, and the remaining as the
followers. The followers use the Received Signal Strength Indicator
(RSSI) values obtained from their neighbors to autonomously
determine the leader’s direction of movement and maintain for-
mation orientation to avoid area coverage overlapping. We carried
out several simulation experiments to evaluate the performance
of the proposed scheme in terms of QoS and convergence time of
the formation under varying velocities.

Index Terms—Wireless Networked Robots, UAV, formation
control, Q-learning, fleet control.

I. INTRODUCTION

The advances in robotics and aeronautics technologies have
led to an increase in the application of Unmanned Aerial
Vehicles (UAVs), also known as drones or quadcopters, for
more and more complex civilian operations or tasks such as
surveillance, logistics, media, sports, and Search and Rescue
(SAR) operations. Most of these are carried out in large areas
and require the exchange of images or video data in real-time
for instant decision-making. Tasks like SAR are even more
time critical because they involve reaching and operating over
a potentially life-threatening target. It has been speculated and
researched that using a single drone will not be as effective
for these operations due to the limited size and capability of
single UAVs [1]. More so, a single Unmanned Aerial Vehicle
(UAV) mission requires a powerful drone that needs to fly to
a very high altitude, carrying a very high-resolution camera
[2]; also, in the event of failure, the whole operation halts.
These reasons led to using multiple UAVs (multi-UAVs) for
such complex operations.

Multi-UAV operations require controlling a fleet of UAVs to
maintain a predefined formation pattern throughout the mission
or adapt to changes in the mission or the environment [3].
Several frameworks and solutions are proposed in the literature,
focusing on the different challenges facing the design of multi-
UAV operations. These include target identification [4] [5],
agent autonomy [6], localization and formation control [7]

[8]. Localization and formation control of a fleet of UAVs
has recently attracted more research efforts because of its
importance to any design or solution involving multiple au-
tonomous vehicles. Localization of UAVs nominally requires
absolute positioning techniques such as Global Positioning
System (GPS), although GPS is generally considered ineffective
indoors or in places with physical obstructions [9] [10]. Other
techniques like Angle-of-Arrival (AoA) and Time-of-Arrival
(ToA), which provide location or direction information relative
to a reference frame leveraging radio signals, but they require
additional hardware such as Ultra-wideband (UWB) devices
[10]. Therefore, location fingerprinting techniques that are more
cost-effective and indoor-friendly were proposed [11]. The
location fingerprinting methods leverage the Received Signal
Strength Indicator (RSSI) values that each robot computes
during communications.

RSSI-based localization and formation control techniques
provide promising results, especially for outdoor applications
and when considering hardware cost and complexity. For this
reason, several proposals have been made in the literature. For
example, The work in [3] proposed a consensus-based UAV
formation and obstacle avoidance algorithm. The algorithm
addresses the constraints on flight velocity, acceleration, and
angular rate by adjusting their values after running a con-
sensus algorithm while avoiding collisions between UAVs. It
decomposes the UAV’s motion into a multidimensional axis and
designs control laws for each direction to account for the state
and position gaps between UAVs. The consensus algorithm is
combined with Particle Swarm Optimization (PSO) to avoid
static obstacles. It is also combined with Model Predictive
Control (MPC) to avoid dynamic ones. The combined algo-
rithms allow UAVs to maintain the desired formation while
avoiding obstacles. The authors in [7] proposed a centralized
multi-UAV formation control scheme. The scheme adopts a
leader-follower model with three followers positioned at the
vertices of an equilateral triangle and a virtual leader at the
center. The UAV formation passes through three phases to form
and keep the desired shape. The first is the loss phase; in this
phase, each UAV in the fleet takes off from different points.
The UAVs then switch to the assembly phase, establishing a
wireless ad-hoc connection. The virtual leader then receives the
flight trajectory information from the Ground Control Station
(GCS) and broadcasts it to followers. The followers follow
the leader to form the expected formation shape. Finally, the
keeping phase ensures that the fleet remains in formation for
the remaining period of the operation. The scheme employed a
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control protocol based on a back-stepping approach to reduce
the relative position error caused by environmental effects. A
GPS based multi-UAV trajectory recovery scheme is proposed
in [12]. The scheme aims to control UAVs that are out of the
transmission range of the GCS. The UAVs are GPS enabled
and are connected to one another in an ad-hoc mode, forming
a linear pattern to cover more operation area. The fleet is
connected to the GCS through one of the UAVs that forms
a direct connection with GCS. Each UAV periodically collects
and transmits GPS data through its neighbors down to the GCS.
The GCS processes the received data, determines the UAV’s
position, and sends the information back to the sender UAV.
The UAVs along the path only act as relays. Each UAV also
maintains a neighbor table containing the location information
of its neighbors. The table is updated periodically, and an
existing record is deleted when its Time-To-Live (TTL) expires.
Therefore, when the last record in the neighbor table expires,
the UAV considers itself out of formation and then triggers
the self-recovery protocol. To rejoin the formation, the out-of-
range UAVs moves to the location of the last UAV in its table.
If it receives new neighbor information, it rebuilds its table
to maintain form; else, it returns to base. The scheme achieves
extended operational coverage and a low-cost recovery. Authors
in [13] proposed a geometrical localization scheme based on
the RSSI for a fleet of UAVs. The scheme separates the UAVs
into two groups and controls the UAVs in each group to
maintain a circular trajectory using the differences in their
RSSI values. In [14], a localization scheme for fixed-wing
UAVs using RSSI is proposed. Unlike previous methods that
rely on detailed knowledge of transmitted power, antenna,
and channel characteristics, the proposed scheme compares
received powers by antennas on a linear array. Then, it uses
a control algorithm to ensure consensus on received power,
which allows for determining the device’s location without
extensive parameter information. The work in [15] explores the
use of intelligent robot swarms for search and rescue missions.
The scheme uses a genetic algorithm to autonomously control
the UAV fleet using the RSSI values received by each UAV
from its immediate neighbors. However, because each UAV
relies only on its immediate neighbor to position itself, if
wrong RSSI value is received from any UAV, all UAVs that
connect to the formation through it will break out of formation.
The scheme proposed in [16] utilizes reinforcement learning
to enable a UAV to determine its trajectory autonomously.
The study incorporates UAV-to-ground channel characteristics,
empirical path loss, shadowing models, and select waypoints
that minimize the average location errors.

In [8], a behavior-based formation control scheme that
employs a Q-learning strategy to control a fleet of UAVs
is proposed. The scheme’s learning strategy uses only the
RSSI values being exchanged periodically among the connected
UAVs to compute the distance between the current UAV’s
position and its expected position. During the learning phase,
a vehicle travels in different possible paths (N, E, W, and S)
and obtains its respective distances to its expected location. The

UAV then travels along the path with the shortest distance. The
vehicle repeats this process until it reaches its expected position
in the formation. The RSSI values the proposed scheme uses
make it less complex and cost-effective than other schemes
that use multiple parameters. However, the scheme may cause
a longer convergence time or converge into a correct formation
pattern but in a wrong orientation, which will consequently
cause an increase in exploration because its failure considers
formation orientation. Therefore, we propose a learning-based
formation control protocol that employs an orientation guide
mechanism that forces the follower drones into proper forma-
tion and orientation to the direction of flight. The contributions
of this paper are three-pronged and stated as follows:

1) A Q-Learning-based speed-control mechanism trains the
follower UAVs to maintain the same speed as the leader
autonomously.

2) A Q-learning algorithm for direction detection and for-
mation adjustment.

3) A mechanism that monitors a follower UAV to determine
its status and then decides to trigger either of the Q-
learning algorithms in phases one and two.

The rest of this paper is organized as follows. In Section
II, we present a review of related literature on the formation
control of UAV-fleet. Then, we discuss the system model
and define the research problem in Section III. Our proposed
protocol is illustrated in Section IV. The simulation setup is
presented in Section IV. In Section VI, we present and discuss
the simulation results and then conclude the paper in Section
VII.

II. SYSTEM MODEL

We consider a UAV fleet consisting of one leader and n
followers communicating using IEEE 802.11-family in ad-hoc
mode deployed for a SAR mission. In the simplest case, the
UAVs are configured to start from a predefined formation shape
and are expected to maintain it throughout the mission. The
number of followers, the shape, and the distance between the
UAVs are determined a priori based on the search area’s size,
the shape, and the mission’s expected duration. We assume
that the position of the search target is unknown, and it is
crucial to find it in the shortest possible time. In our system
model, the GCS controls the leader directly to follow a parallel-
sweep search pattern, which is very effective for this kind of
mission [17]. At the same time, the followers are expected to
autonomously follow the leader to maintain the fleet’s initial
formation shape. For clarity, see Figure 1. The figure shows a
fleet of three UAVs deployed for SAR mission.

The fleet is expected to keep a triangular formation at an
altitude of δ meters. The leader UAV occupies the top vertex. In
contrast, followers occupy the bottom vertices of an isosceles
triangle. For the rest of the documents, we will refer to the
triangular formation for the sake of simplicity.

For SAR operations, the UAVs are supposed to be equipped
with downward-looking cameras, and the lengths of the triangle
are defined such that the sum of all horizontal fields of view
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(FVs) of the three UAVs equals the width of the search area
Xm (see Eq. 1).

Xm = Fvh1 + FvhL + Fvh2 (1)

The Fv is considered as the area directly below the UAV
covered by a device camera [4]. It is measured along the
vertical and horizontal axis of the covered areas based on the
vertical and horizontal angle of views, respectively. We used
only the horizontal field of view (Fvh) of each UAV camera
here because it defines the width of the area covered along the
direction of flight. Therefore, FvhL is the leaders’ horizontal
field of view, while Fvh1 and Fvh2 denote the horizontal field
of view of followers 1 and 2, respectively. Fvh is defined as
in Eq. 2:

Fvh = 2δtan(
θh
2
) (2)

where δ is the UAV altitude, θh is the horizontal angle of
view of the camera, defined as Eq. 3:

θh = 2tan−1(
αh

2β
) (3)

where αh is the width of the camera lens and β is the focal
length of the camera.

From Figure 1, it is easy to observe that if the sum of the
horizontal field of views for follower 1, leader, and follower
2 equals the width of the search area Xm and the UAVs are
with the right orientation, it is possible to search the whole
search with the minimum number of passages. However, it is
necessary that the UAVs keep a formation oriented with respect
to the direction of flight of the leader.

Fig. 1. Fleet of three UAVs Deployed for SAR

A. Problem Definition

As stated in the previous sections, our work is based on [8].
In that work, a Q-learning strategy was proposed to control
a fleet of UAVs using only the RSSI values obtained through
the IEEE 802.11 communication within the fleet. During the
scheme’s learning phase, a follower UAV travels in different
possible paths (N, E, W, and S) and obtains its respective
distances to its expected location by computing the Euclidean
distance between the set of its received RSSI vales at its current

position and that of its expected position. The UAV then travels
along the path with the shortest distance. It repeats this process
until it reaches its expected position in the formation. The
scheme is light and cost-effective as it avoids using external
positioning or localization devices. However, the scheme did
not consider the formation orientation, which could cause the
fleet to move in the correct shape but in the wrong orientation,
as shown in Figure 2.

Fig. 2. Fleet of three UAVs in a wrong Orientation

In contrast to the formation depicted in Figure 1, Figure 2
shows the fleet in a wrong orientation relative to the direction
of flight. The two followers explore the same section of the
search area, causing the shaded region of the search area to
be left unexplored, consequently leading to an increase in
exploration time and cost. Also, Since the follower’s position
is strictly determined by its proximity to its neighbors, if a
follower UAV falls out of formation, the other follower also
considers itself out of formation, and this will cause an increase
in the convergence time of the learning process. To address
these problems, we propose a learning-based formation control
protocol that employs an orientation guide mechanism that
forces the follower drones into proper formation and orientation
to the direction of flight.

Fig. 3. Fleet of four UAVs in Equilateral Triangular Formation
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III. PROPOSED PROTOCOL

In our context, we adopt a four UAVs formation [7], as
shown in Figure 3. Three UAVs (the followers) occupy the
vertices of an equilateral triangle of predetermined length,
while the leader UAV is positioned at the center of the triangle.
This topology provides the followers equal proximity to the
leader. The receives control information from GCS to follow
the parallel-sweep search model shown in Figure ??. Each UAV
maintains a neighbor-RSSI table, which maps its neighbors’
IDs and received RSSI values. The record in a UAV’s neighbor-
RSSI table determines its current position at any given time
during the mission. The aim of our proposed protocol is to
make the follower UAVs autonomously follow the leader while
maintaining the initial formation configuration as it maneuvers
through the search area. To achieve this, we must address two
basic challenges: if the followers move in the same direction
as the leader, they must maintain the same velocity as the
leader to keep the formation. If the leader changes direction,
the followers must detect and align themselves consistently
with the direction of flight of the leader. For an improvable
algorithmic simplicity, we assume that the fleet moves at a
fixed altitude along eight possible directions along the yaw
axis at an angular difference of 45o, as shown in Figure 4.
We incorporate two modules into our proposed protocol to
address each of the challenges highlighted above: Q-learning-
based speed control algorithm (QSCA) and Direction Detection
and Formation Alignment (DDFA).

Fig. 4. Fleet Possible Direction of Flight

Each of these modules is triggered depending on the state of
the formation. If the fleet is in initial formation, the QSCA is
triggered by the followers to adjust its velocity of the follower
adaptively. When the formation transitions into a different state
due to a change in the leader’s direction of flight, the DDFA
is triggered to control the follower accordingly. The operation
of each module is detailed in the next sections.

A. Speed Control Phase

As mentioned in the previous Section, GCS controls the
leader UAV, and the followers autonomously follow the leader
while maintaining their initial formation. Whenever the leader’s
speed changes as shown in Figure 5, the followers must keep
up with the changes; otherwise, they automatically fall out of
the formation shape. Figure 5(a) shows the reference state of
the formation. This state is maintained if the velocity of the
leader and the follower UAVs are the same. Figure 5(b) and

5(c) show the formation topology when the leader is faster
and slower than the followers respectively. QSCA aims to
learn the optimal policy that guides the follower UAVs on the
best actions to take at any given instance of the environment
to maintain the initial formation of the mission. We model
the QSCA’s Markovian Decision Process (Markovian Decision
Process (MDP)) as follows:

System State: In every time step t, the system state sn(t)
∈ S as perceived by each UAV characterizes the environment
in terms of the proximity of the followers to the leader, as the
velocity of the leader varies. The state Sn of the environment
for ith UAV is defined as a tuple Snω(xi1, xi2, xi3) that holds
RSSI values for its connection to its three neighbors.

Action: Each follower UAV chooses an action an(t) ∈ A in
its current state sn(t) based on policy π. The action taken by
a follower in a particular state of the environment is either to
maintain velocity, increase velocity by 1 m/s, increase velocity
by 2 m/s, decrease velocity by 1 m/s, or decrease velocity by
2m/s.

Reward: Whenever a follower UAV takes an action at in a
particular state st, it receives an immediate reward R(st, at)
which we defined as:

R(st, at) =

{
100 If reference state
−1 otherwise

(4)

B. Direction Detection and Formation Alignment phase
This section discusses our Q-learning-based direction detec-

tion and formation alignment algorithm. We assume that all
UAVs move in only eight possible directions along the yaw
axis at an angular interval of 45o, as illustrated in Figure 4. We
denote the directions as dr, r={0, 2, 3, ..., 7} and the distances
between the leader UAV and f1, f2, and f3, respectively as
d01(t), d02(t), d03(t). These distances are relatively equal
whenever the fleet is in the correct formation.

System State: When the leader UAV changes its direction,
the state sn(t) which defines its proximity to each of the
followers changes. Since the relationship between any d0i(t)
and d0j(t) at t > 0 is either equal, less, or greater. Each
follower’s set of received RSSI values will also change, causing
the environment to transition into a different state.

Action: Since our goal is first to determine the direction of
flight of the leader UAV, our Q-learning algorithm learns the
optimal policy that guides the followers to take the best action
dr and angular displacement (θ) at an interval of 45o to change
the formation orientation towards the direction of flight of the
leader. The value of d∗0i varies with time due to environmental
effect [13], even if the geometric distance between the UAVs
is fixed. Therefore, we use Cost231PropagationLossModel in
NS3 to approximate the RSSI oscillation.

Reward: Each follower UAV receives an immediate reword
R(st, at) define in Eq. 4.

IV. SIMULATION

This section discusses the simulation setup, implementation,
and experiments carried out to evaluate our protocol’s perfor-
mance. As mentioned in section IV, we adopt the formation
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Fig. 5. Variation in the speed of the leader UAV against the followers

topology presented in [7]. The network comprises four nodes:
three followers, f1, f2 and f3, and a leader UAV f0. The
followers are positioned in an equilateral triangle with f1 at
the top vertex and f1 and f2 at the bottom. The leader is
positioned at the center. We implemented this topology and our
protocol in NS3 version 3.35. UAVs communicate wirelessly
in an ad-hoc mode using IEEE 802.11n. This is to provide
room for decentralized and flexible communication among the
UAVs. Each UAV maintains a neighbor-RSSI table, which maps
their neighbors’ ID and RSSI values. Each UAV updates and
broadcasts its neighbor-RSSI table periodically as it receives
what we will onward refer to as position-info-packets from its
neighbors. The records in a UAV’s neighbor-RSSI table at any
time of the mission determine the current state of that UAV.

Our follower flight controller continuously queries a UAV’s
neighbor-RSSI table to determine its current state. If the UAV is
in its correct position, the QSCA is triggered to keep it up with
the leader’s speed. Otherwise, it triggers the DDFA to change
the follower’s orientation towards the direction of flight of the
leader. The MDP parameters set for the training of both QSCA
and DDFA are as follows:

TABLE I
MDP PARAMETERS FOR QSCA AND DDFA

Values
Parameter QSCA DDFA

Learning Rate(α) 0.1 0.6
Discount factor(γ) 0.9 0.9
Exploration rate(ϵ) 0.8 0.8

Number of episodes 1000 1000

For QSCA, the Q-table is initialized to zero at the beginning
of the training phase. At the beginning of every episode,
the follower starts with a speed of 2m/s, while the leader’s
start speed is randomly selected between a range of 0.5m/s
and 10m/s inclusive with an interval of 0.5. The maximum
leader speed is set to 2.5m/s, 5m/s, 7.5m/s, and 10m/s for
different simulation scenarios. Each follower takes action based
on policy π. It selects the best action only 20% of the time and
randomly selects any of the five actions in the remaining 80%
of the time. It receives a reward of -1 for transiting from one

state to another and a reword of 100 when it reaches the goal
state. The Q-value for every state is computed using

Q(s, a) = Q(s, a) + α[r + γ.max[Q(s′, a′)]−Q(s, a)] (5)

where: α (alpha) is the learning rate; it determines how
often newly acquired knowledge replaces the previous one.
γ (gamma) is the discount factor, which determines how
important future rewards are compared to immediate rewards. s′

is the new state reached after taking action a. a′ is the action in
the new state that maximizes the Q-value following the optimal
policy. max[Q(s’, a’)] is the Q-value obtained for taking the best
action in the new state s′.

The current episode terminates once it reaches the goal state,
and the next episode starts until a circle of one thousand
episodes is completed.

We also trained the DDFA by initializing its Q-table to
zero. The Q-table was updated using Eq. 5 repeatedly for one
thousand training episodes. In each episode, the leader takes
any of the eight possible flight directions, as shown in Figure
4, putting the formation in a different state than the initial state
(State 0). The followers detect the new direction of flight by
exploring the eight possible directions while considering the
variations pattern of the RSSI in their neighbor-RSSI table. It
randomly selects any of the eight actions 80% of the time and
takes the best action 20% of the time. For each action taken,
the agent is penalized with a reward of -1. This is to encourage
it to avoid unnecessary actions. It receives a reward of 100 for
reaching the goal state.

It is important to note that we have chosen these values
for rewards for both modules for the sake of simplicity. We
plan to study the Markovian hyperparameters in future works
extensively. As highlighted above, all UAVs partake in the
exchange of position-info-packet, which is necessary to keep
their formation. The followers are also configured to transmit
video packets in real-time to the leader via Unicast. We
incorporated Evalvid [18] into the NS3 simulator to simulate
the video transmission for its simplicity and validations by
many research works [19] that presented its effectiveness when
used in NS3. We used Cost231PropagationLossModel and used
the stock parameters for Evalvid.
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V. RESULTS AND DISCUSSION

In this section, we provide the simulation results to demon-
strate the effectiveness of our proposed protocol in terms of
formation stability and its effect on the QoS of transmitted
data. We conducted a pre-simulation campaign to determine ref-
erence parameters for training our machine learning protocol.
We obtained reference position parameter P (r1, r2, r3) for each
follower UAV for different formation sizes. ri is the estimated
RSSI value a follower UAV receives from its ith neighbor.

Fig. 6. Position Error at Different Speed and Formation Sizes

Figure 6 shows the position error of the formation for differ-
ent leader speeds and formation sizes. For each formation size,
we obtained the position error for different leader speeds to
determine how much impact the leader speed has on formation
stability for varying formation sizes. It can be observed that
the position error obtained for leader speeds 2.5, 5, and 7,5 are
similar for follower distances of 50, 100, 150, and 200 meters.
The error obtained from the speeds from 7.5 to 10m/s varies.
Also, for a formation size of 250 meters, there is an increase
in the error for all the speeds. However, it can be observed that
there is a consistent increase in the position error as the speed
increases. This shows that the leader’s speed negatively impacts
the formation more than the formation size. We observed that
for variation of 6 to 8 dBm, there is no observable difference
in the formation shape. Therefore, The proposed protocol is
stable at a maximum leader speed of 5m/s and for a formation
size of up to 200 meters.

In a second set of simulations, we used Evalvid with stock
parameters, i.e. sending the video without restrictions at the
application layer. Figures 7, 8 and 9 show the end-to-end
delay, jitter, and packet loss ratio incurred for transmitting
video packets to the leader by the followers at varying leader
speeds and formation sizes, respectively. Figure 7 reveals that
both the speed and formation sizes cause an increase in delay.
However, the formation size has more impact because it causes
an increase in the proximity of each UAV to its neighbors. On
the other hand, figure 8 shows that a relatively similar jitter was
recorded from all the speed and formation sizes. The maximum

Fig. 7. Average End-to-End Delay for Varying Speed and Formation Sizes

Fig. 8. Jitter incurred for Varying Leader Speed and Formation Sizes

end-to-end delay and jitter were incurred at a speed of 10m/s
and formation size of 200 and 250 meters at about 9ms and
18ms, respectively. Figure 9 shows zero packet ratio for all
speeds and formation sizes except for speed 10m/s where a
slight increase was recorded. Therefore, our proposed protocol
maintains a good Quality of Service (QoS) for varying leader
speed and formation sizes. This performance is due to the
leader’s strategic position in the formation. Even at a formation
distance of 250 Meters, the leader will still be within a good
transmission range (∼145 Meters, use Eq. 6) with any of the
followers.

Ldist = (followerd ∗
√
3)/3 (6)

where followerd is the distance between the followers

VI. CONCLUSION

We proposed a learning-based formation control protocol for
autonomous UAV-fleet. The protocol utilizes the Q-learning
principle to control multiple UAVs deployed for SAR. The
protocol leverages the RSSI values obtained by a UAV from its
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Fig. 9. Packet Loss Ratio of Video Packets for Varying Leader Speed and
Formation Sizes

neighbors during wireless ad-hoc communication to maintain
formation. Our protocol employs two Q-learning algorithms to
control the followers autonomously: QSCA and DDFA. The
QSCA is triggered to control the speed of the followers relative
to that of the leader to ensure consistency of the topology;
DDFA aligns the followers towards the direction of flight of
the leader to ensure proper orientation of the formation. We
conducted simulation experiments to evaluate the proposed
protocol’s performance to assess the fleet’s formation stability
and QoS of the video packets under varying leader speeds and
formation sizes. Results reveal that our protocol is stable under
a maximum leader speed of up to 5m/s and a formation size of
200 Meters. Also, the protocol incurred a maximum end-to-end
delay of 9ms and jitter of 18ms, which are within the tolerated
range.

In the future, we plan to extend this work to incorporate
formation reconstruction in the event of the failure of any UAV
during the mission and to conduct an extensive performance
analysis of the protocol under a more complex search environ-
ment and simulation parameters.
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