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Abstract—QUIC is a new transport protocol aiming to en-
hance web connection performance and security. It was gaining
popularity quickly in recent years and has been adopted by
a number of prominent tech companies, including Facebook,
Amazon, and Google. However, the resilience of QUIC Protocol
against various cyber attacks has not been fully tested yet.
In this paper, we investigate the resilience of QUIC Protocol
against handshake flood attacks. We conducted comprehensive
experiments to evaluate the resource consumptions of both the
attacker and the target during incomplete handshake attacks,
including CPU, memory, and bandwidth. The DDoS amplification
factor was measured and analyzed based on the results. We
compared the results against TCP Syn Cookies under Syn flood
attacks. We show that the QUIC Protocol design has a much
larger DDoS amplification factor compared to the TCP Syn
Cookies, which means QUIC is more vulnerable to handshake
DDoS attacks. Also, the CPU resource of QUIC servers is most
likely the bottleneck during the handshake flood attacks. To
the best of our knowledge, this is the first study to thoroughly
investigate resilience of QUIC to handshake DDoS attacks.

Index Terms—QUIC, TCP, DDoS, Amplification Factor, Syn
Cookies, Syn Flood Attacks

I. INTRODUCTION

The emergence of the QUIC protocol represents a significant
milestone in Internet communication, which offers enhanced
performance and reduced latency compared to the traditional
TCP protocol [1]. Its capability of facilitating secure and
efficient data transmission across unreliable networks has
attracted much attention from both academia and industry [2].
However, as with any innovative technology, it is impera-
tive to scrutinize its potential vulnerabilities. One such area
that deserves rigorous investigation is the resilience against
handshake flood attacks [3]. The handshake flood attack is
a type of Denial-of-Service (DoS) attack, which poses a
significant threat to network infrastructure [4]. The handshake
flood attack exploits the handshake mechanism inherent in
many protocols, enabling attackers to amplify their traffic and
potentially trigger service outages and resource exhaustion
[5]. While the implications of handshake flood attacks have
been extensively studied in protocols such as the Domain
Name System (DNS) [6] and Network Time Protocol (NTP)
[7], a comprehensive understanding of their impact within
the QUIC protocol remains absent in the current body of

literature. Given the growing use of QUIC including many
well-known tech companies such as Google and Amazon, this
knowledge gap is alarming. Our paper addresses this critical
gap in our understanding by providing a practical analysis of
QUIC’s susceptibility to handshake flood attacks. To address
the critical need for a thorough security assessment of the
QUIC protocol, we experimentally explored QUIC’s resilience
against handshake flood attacks.
We constructed a realistic testbed with a QUIC server and
a QUIC attacker client that generates spoofed handshaking
requests. We conducted exhaustive experiments to measure the
resource consumption of both the attacker and the targeted
server during incomplete handshake attacks, containing CPU,
memory, and bandwidth. Our results reveal that the QUIC
protocol design has a significantly larger DDoS amplification
factor compared to TCP Syn Cookies [8], indicating a higher
vulnerability to handshake DDoS attacks. In contrast to previ-
ous studies [9]–[12], we have identified the CPU resource of
QUIC servers as the most likely bottleneck during handshake
flood attacks. Our findings will provide valuable insights for
future QUIC protocol development.
The major contributions of this work can be summarized
as following: 1) We are the first to investigate the QUIC
protocol resource consumption during handshake flood attack;
2) We compared the resource consumption of QUIC proto-
col with TCP Syn Cookies under handshake flood attacks;
3) We measured the DDoS amplification factors of QUIC
protocol and revealed a critical vulnerability of the QUIC
protocol design. The remainder of this paper is organized as
follows: Section II delves into the existing body of research
pertinent to our study. After that, we discuss QUIC and TCP
handshake process, packet structure and others in section
III. Subsequently, Section IV presents the empirical findings
of our investigation, focusing on aspects such as CPU and
Memory Usage. We then discuss the broader implications of
our research and its contributions to the field in Section V.
Finally, we conclude our discourse with concluding remarks
in Section VI.
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II. RELATED WORKS

QUIC has emerged as a promising alternative to TCP, gaining
significant attention due to its design for low latency, security,
and reliability over UDP [3], [13]. The protocol’s design
emphasizes a quick initial connection setup, mitigating state
exhaustion and amplification-related attacks [5], [10], [14]. In
this section, we briefly go over some related works including
QUIC handshakes attacks and mitigation techniques.

A. QUIC Protocol Handshake Attacks and Mitigation

The QUIC handshake incorporates Transport Layer Security
(TLS) within its protocol handshake, which begins with a
client sending an Initial, and the server responding with its own
Initial and a Handshake packet, all of which can be coalesced
into a single UDP datagram [3]. To protect against state
exhaustion, servers can utilize RETRY packets, although this
practice is not commonly implemented [3]. To mitigate the risk
of handshake flood attacks, QUIC limits the server’s response
data until the client’s IP address is verified [15]. As specified
by RFC 9000, the server can only send three times the data
bytes received from the client’s Initial, inclusive of padding
and resent bytes [13]. This three-fold data limit is minimal
compared to the amplification potential of other protocols [5],
[14]. In addition, Nawrocki et al. [3] introduce QUICsand, a
novel congestion control algorithm for network traffic manage-
ment. The algorithm dynamically adjusts the pacing rate and
congestion window size to optimize latency and throughput.
Their experimental results demonstrate QUICsand’s superior
performance over other congestion control algorithms across
different network scenarios.

B. QUIC Performance and Potential Security issues

Despite these security measures, QUIC has demonstrated
excellent performance and even surpassed TCP in some cases
[16]–[19]. However, security compromises have been made to
enhance latency [20], and handshake latency may be an issue
if there’s a version disagreement between the client and server
[21]. QUIC incorporates TLS 1.3 to ensure authenticated
confidentiality and integrity [22], [23]. The TLS 1.3 handshake
commences with a client relaying its supported cipher suites,
key parameters, and other metadata via the first Initial mes-
sage. The server reciprocates with its parameters and an X.509
certificate to authenticate its identity [23], [24]. Deployment
studies have primarily focused on QUIC service availability.
The protocol’s adoption started before its standardization [25]–
[27], with major tech companies leading the charge [28],
[29]. However, DNS over QUIC has seen lacklustre adoption
and weak handshakes due to large certificates if Session
Resumption is not employed [6], [30].
This paper is the first to systematically study the influence
of TLS certificates on QUIC performance, drawing upon
comprehensive measurements. Furthermore, it is also the first
to investigate the resilience of QUIC Protocol against hand-
shake flood attacks, providing a comprehensive analysis of
the resource consumption of both the attacker and the target

during incomplete handshake attacks, including CPU, memory,
and bandwidth.

III. HANDSHAKE PROCESSES OF QUIC AND TCP

This section provides an overview of the handshake processes
for TCP and QUIC protocols. Knowing these handshake
processes is crucial for understanding their vulnerabilities
to handshake flood attacks. We start with an introduction
of QUIC handshake process, followed by TCP handshaking
process. A comparison of the QUIC and TCP handshake
procedures is shown in Figure 1.

A. QUIC Handshake Process

The QUIC protocol, designed to enhance web connection
performance and security, combines the transport and TLS
1.3 handshakes into a single step, thereby reducing latency
[13]. As shown in Figure 1 (a), the QUIC handshake begins
with the client sending an Initial packet containing the Client’s
Hello message. The server responds with its Initial packet,
which includes the Server Hello message and other necessary
information.

Following this, the client sends a client finished packet to
indicate it has completed the handshake. Note that the first
data packet is sent out at the same time to save the roundtrip
time. The server responds with its first data response packet to
confirm the validity of the handshake process. Note that, only
one additional round trip time is needed for the handshake
process. That is the reason it is called QUIC 1-RTT handshake
process [23].

It is worth noting that QUIC facilitates an even faster con-
nection establishment with a 0-RTT (zero Round Trip Time)
mechanism. This feature leverages the client’s previous com-
munication with the same server, allowing the client to send
data to the server in the first round trip of the protocol
handshake. This is accomplished by the client storing some
information about the server after the first connection, which
can then be used to establish subsequent connections without
needing a full handshake.

As shown in Figure 2 (a), a QUIC packet structure comprises
a UDP packet header and a QUIC packet header containing
various fields. The UDP packet header includes the source
port, destination port, checksum, and length. The QUIC packet
header contains flags, a connection ID, and a packet number,
all encrypted for security. The QUIC payload, which is also
encrypted, contains a flow control frame, a stream frame
header, an ACK frame, and a stream frame payload. The QUIC
Packet has a simpler structure, with a connection ID (0 to 20
bytes), packet number (1 / 2 or 4 bytes), version (4 bytes),
and payload (variable size). The connection ID identifies the
connection, the packet number orders the packets, and the
version indicates the version of the QUIC protocol used. The
payload carries the actual data, which is organized into frames.
Importantly, it is important to note that the packet structures
can vary based on the specific protocols versions and the
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Fig. 1: Overall Handshaking Process of (a) QUIC and (b) TCP

connections’ configurations. Two types of structures of QUIC
packets are given below:
1) QUIC ClientHello Packet Structure: The ClientHello
packet contains several fields, including Version, Connection
ID, Length, Packet Number, and the Payload containing the
client’s public key for key exchange, and the HTTP/2 SET-
TINGS frame for the connection. The client hello packet
is typically larger as it includes a list of cipher suites and
extensions that the client supports and can be around 200-300
bytes.
2) QUIC ServerHello Packet Structure: The ServerHello
packet contains Version, Connection ID, Length, Packet Num-
ber, and the Payload containing the server’s public key for key
exchange, and the HTTP/2 SETTINGS frame that outlines
the server’s preferences and constraints for the connection.
TheServerHello packet is generally smaller than ClientHello,
as it only needs to include the chosen cipher suite and com-
pression method, and may be approximately 100-200 bytes.

B. TCP Handshake Process

As shown in Figure 1 (b), The TCP handshake, on the other
hand, is a three-step process. The client sends a SYN packet to
the server to initiate the connection. The server responds with
a SYN-ACK packet, acknowledging the request. The client
then sends an ACK packet to confirm the connection. This is
followed by multiple rounds of communication for TLS and
HTTP requests, which can add to the connection’s latency.

• SYN: It is the first step in establishing a reliable connec-

tion between the client and the server. The SYN packet
has a randomly generated sequence number (Sc), the
SYN flag turned to 1, and no payload.

• SYN-ACK: Upon receiving the SYN packet, the server
responds with a SYN-ACK packet. This packet serves
two purposes. Firstly, it acknowledges the receipt of
the SYN packet from the client. It authenticates itself
by setting the acknowledge number equivalent to the
sequence number of the SYN packet (As = Sc). Sec-
ondly, it carries a new Sequence Number Ss. The server
generates Ss randomly in a stateful handshake, and stores
the number for the verification of the subsequent ACK
packet. However, under SYN flood attacks, the server’s
backlog fills up quickly and cannot accept more SYN
requests, which leads to the denial of service.

To address this issue, the server can use a stateless hand-
shake solution called SYN Cookies [31], where the new
sequence number Ss is specially generated based on the
client’s IP address, port number, and other information.
It enables the server to verify the legitimacy of the final
ACK in the handshake without storing every sequence
number it generates. This mechanism does not require any
backlog on the server and therefore enhances its resilience
against TCP SYN flood attacks.

• ACK: After receiving the SYN-ACK packet from the
server, the client sends back an ACK packet. This packet
acknowledges the receipt of the SYN-ACK packet from
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(a) QUIC Datagram or Packet with Encryption
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Fig. 2: Illustration of the packet structures, highlighting the size and Encrypted areas

the server by sending back the received sequence number
as an acknowledgment number Ac = Ss. The server
verifies the validity of the ACK packet by comparing
the received acknowledgment number with the expected
number. A TCP connection is established when the ACK
packet passes the verification process.

As shown in Figure 2 (b), A TCP packet structure consists of a
TCP packet header and a TCP payload. The TCP packet header
includes the source port, destination port, sequence number,
ACK number, receive window length, flags, checksum, and
the option field. The TCP payload contains encrypted HTTP
data, a TLS MAC, and a TLS payload.
1) TCP SYN Packet Structure: A TCP SYN packet typically
includes Source Port, Destination Port, Sequence Number,
Acknowledgment Number, offset, flags (with the SYN flag
set to 1), Receive Window, Checksum and Urgent Pointer. A
TCP SYN packet is typically 40 bytes long.
2) TCP SYN-ACK Packet Structure: A TCP SYN ACK packet
typically includes Source Port, Destination Port, Sequence
Number (SYN Cookie), Acknowledgment Number, offset,
flags (with the SYN flag and ACK flag set to 1), Receive
Window, Checksum and Urgent Pointer. A TCP SYN ACK
packet is typically 40 bytes long.
3) Types of TCP Handshaking: In TCP, there are two types of
handshaking: stateful and stateless TCP handshaking. Stateful
and stateless handshakes refer to whether or not a server
maintains state information during the TCP handshake process.
In a stateful TCP handshake, the server retains information
about each client’s connection requests during the handshake
process. For instance, after receiving a SYN packet from a
client, the server keeps a record of the pending connection

before it receives the final ACK packet. This record, known
as a Transmission Control Block (TCB), includes the client’s
IP address and port number, the server’s sequence number, and
more. The TCB allows the server to keep track of each client’s
connection status. However, maintaining this state information
for every connection request requires significant memory re-
sources, especially for servers handling an important number
of connections.
On the other hand, in a stateless TCP handshake, the server
does not keep a record of each client’s connection requests.
Rather, the server uses mechanisms such as SYN Cookies to
manage connections. A SYN Cookie, included in the SYN-
ACK packet sent by the server, is a cryptographic token
derived from the client’s IP address, port number, and other
data. When the server receives the final ACK packet from the
client, it uses this SYN Cookie to verify the legitimacy of the
client’s connection request. This stateless approach mitigates
the risk of SYN flood attacks, in which an attacker overwhelms
the server with many SYN packets but never completes the
handshake. The stateless TCP handshake significantly reduces
the memory resources required on the server, enhancing its
ability to handle a high volume of connections and resist DoS
attacks.

IV. EVALUATION

In this section, we evaluate the resilience of QUIC protocol
against handshake flood attacks. We first present our exper-
imental design, followed by the evaluation results on CPU,
memory, and bandwidth.

A. Experimental setup

The experiments were performed between two basic Linux
devices, one acting as a client, the other acting as the server
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Fig. 3: Experimental Setup

as shown on Figure 3. One device was a Raspberry PI Model
3B having 1GB of RAM available and a Quad Core 1.2GHz
CPU, the other was a laptop with 16GB of RAM and Intel
i7 1.8GHz CPU. The roles of server and client were reversed
between every measurement to ensure no dependence on the
hardware for our results. Following the same idea, the base
resource usage of processes present on the machine should
not influence the measure. To that effect, the measures were
conducted on the process running the server and client to
isolate the resource consumption.
The goal of the experiments is to evaluate the resilience
of QUIC Protocol against handshaking flooding attacks. We
compare its resource consumption under attack with another
protocol. TCP being the most popular transport protocol, it
is interesting to use it as a comparison. However, to ensure
a fair comparison in terms of resilience and resource usage,
it was necessary to deploy the stateless version : TCP SYN
Cookies [31]. Then we estimated the amplification factor of
both protocols to assess the lever an attacker has on its victim.
The different resources monitored were the Memory Usage,
CPU Usage and Bandwidth. Note that amplification factor is
the ratio between the resource consumption of the server to
process the packets and the needs of the attacker to craft those.
The version of QUIC used is aioquic [32], it is implemented
in Python. The attack code is a modified version of aioquic
itself. It only contains the code to create a packet to be as
lightweight as possible, the part leading the attack was written
from scratch. The TCP SYN Cookie code is implemented in
Python to have a more relevant comparison. It was written
from scratch but following the guidelines given in TCP SYN
Cookies Linux implementation.

B. CPU Usage

Due to the stateless characteristic of both QUIC and TCP SYN
Cookie, the server does not store the status of each connection
request. Therefore the storage need is not impacted by the
attack volume. However, in order to verifiy the legitimacy of
the incoming connection initialization requests, both QUIC
and TCP servers need to do some calculations as specified
in Section III. To measure the CPU consumption of QUIC
server, we increase the number of hello-client packets from
1 packet/second to 50 packet/second and observe the CPU
usage on the server side. The CPU usage over time was also
estimated to monitor the behavior of the server during an
attack. The CPU consumption was obtained with Linux built-
in tools ps to measure the resources used by a specific process.

Fig. 4: CPU Usage over time

The experiment was conducted multiple times and the result
plotted is the mean of all the values. It also contains the 95%
confidence interval to show the variability from one row of
experiment to the other.
1) Usage over time: We observed the resource consumption
and the server behavior over time during handshake attacks.
This experiment was conducted to observe the CPU Usage
over time during attacks at different rates. An attack was
started at different rates and the CPU percentage was taken
every second. The experiment was performed 3 times with
the different rates to ensure a smooth output. However, it was
pretty stable and the results were very close from one row of
experiment to the other.
On the QUIC server-side of Figure 4 (b), we can observe
the increase of CPU shows inertia before stabilizing. It also
appears that higher rates create more inertia than lower one.
On the QUIC client-side, as shown in Figure 4 (a), a slight
decrease happens in the first seconds. Then the CPU usage
is quickly stabilized to its final value which is also close to
the one found previously. The inertia is caused by the queue
of packets. At first the server proceeds to the verifications
needed to process the packet. It checks the different values of
the flags corresponding to the parameters of the connection
inside the header. It also needs to verify if the address was
validated. Then it starts preparing the Server Hello [13] packet.
During the first minutes it falls behind, it is the time for the
server to allocate more resources and process the different
packets. This inertia can be a double-edged characteristic for
the system. It gives more time to a potential DDoS Detection
system to notice the attack and to potentially prevent further
harm. However, this stack filling up also means that potential
clients might encounter additional delay during this period of
time.
The experiment was performed under the same conditions for
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TCP SYN Cookie. The resource consumption is instantly the
one it stabilizes to. Both on the server-side and the client-
side, we can observe the same values around the beginning of
the experiment as in Figure 4 (c)(d). The CPU usage is low
compared to the one obtained with QUIC.
This stability is mostly explained by the low resource con-
sumption. It never goes above 1.5% of the total device capac-
ity. The performance of this protocol is obviously a benefit
and a key feature of the SYN Cookies.

In the rest of the experiment in this paper, we use the stablized
resource usage values to represent the usage on each data rate.

Fig. 5: QUIC and TCP SYN Cookie CPU Usage

2) CPU Consumption: Figure 5 (a) shows the average and
confidence interval of additional CPU usage of the QUIC
server and attacker client when the attacker increases the
attack volume. The x-axis corresponds to the attack rate
in packets per second. We can see that under the QUIC
handshake flood attack, the CPU consumption for both the
client and server increase almost linearly with the attack
volume. The server’s CPU usage reaches its capacity when
the attack volume is close to 50 packet/second. Note that 50
packets per seconds is not the rate limit of the DDoS attack
volume since attacker still has a lot of room to increase its
attack volume. However, 50 packets was the limit of our
server as it reaches 73% of CPU usage (almost 100% with the
base usage). Higher values are not relevant as the overloaded
server causes noise in the measures. The experiment shows
that during an QUIC-Flooding attack, CPU is the bottleneck.
During the QUIC handshake process, the client uses much
less CPU resource than the server.
Figure 5(b) was obtained by leading the same experiment as
Figure 5 (a) with the TCP SYN Cookie protocol. First of
all, it appears that the CPU consumption of sending/handling
the same number of TCP handshake requests is significantly
lower than QUIC both for server and client. For example,

Fig. 6: QUIC and TCP SYN Cookie CPU Amplification Factor

the TCP server only consumes less than 1% CPU resource
compared to the 30% consumed by QUIC server when attack
volume is 20 packet/second. This is mainly due to the design
complexity of QUIC packets and verifications compared to
TCP SYN Cookies. Actually TCP SYN Cookie is very similar
to usual TCP where the connection ID is just a verifiable
hash instead of being a fixed number stored on the server.
On the other hand, QUIC packets have a lot of fields that are
used for verification purposes. The size of the packets and
the verifications themselves are costful in terms of resource
consumption.

3) Amplification Factor: This experiment highlights the CPU
amplification factor for both QUIC and TCP SYN Cookie.
The attacker crafts packets in the most economical way to
ensure an optimal amplification. He does not wait for the
server responses and does not process those, he also does not
close the handshake as it would be useless resource usage.
The QUIC amplification factor plotted on Figure 6 (a) seems to
stabilize around 4.6 meaning that for every unit of computation
needed by the attacker, the server will deploy 4.6 times more
resources to process the packets. This high amplification factor
can be explained by multiple aspect of QUIC design. First the
server has to validate the parameters provided by the client. If
not, the server might send a Retry Packet. Then the server has
to craft the Handshake packet depending on the information
contained in the header of the client’s one. An amplification
factor over 4 is potentially a serious vulnerability. With the
adequat infrastructure, an attacker can take down systems with
more than 4 times its computing power reducing drastically
the complexity and the cost of an attack. The amplification
factor of TCP SYN Cookie presented in Figure 6 (b) is notably
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lower, it stabilizes around 1.28 meaning the server has to
do 28% more work than the client to process the packet.
It is mainly due to the design of the protocol. During the
handshake, the server only has to compute a hash based on
informations from the incoming packet and the time when it
received it. This hash will be the cookie sent back to the client
to identify the connection without storing any connection
ID. Siphash [33] is the pseudorandom function used to hash
these informations. It was designed specifically for TCP SYN
Cookie with performance in mind to make sure the server is
able to process the incoming packets without overloading the
computation resources.
This low amplification reduces the lever an attacker has on
its victim. It means an attacker must have at least 80% of its
victim resources to ensure the sucess of its attack.

C. Memory Usage

The second resource we measure is the memory usage. During
this experiment, we applied the same conditions as in the
measure of CPU Amplification and CPU usage over time. The
ps tool used to get the CPU also allows to monitor memory
so the same protocols were followed to optimize relevance of
the results and enhance comparability.

Fig. 7: Memory usage over time

1) Usage over time: Even if it was established that memory
would not be the bottleneck when the system reaches stability,
it is important to study memory over time to make sure there
is no behavior that could be a vulnerability for the server. For
instance, an important memory peak caused by the attacker
in a short amount of time before reaching stability could be
harmful to the system.
We can observe that the memory follows the behavior of the
CPU for the QUIC protocol. There is inertia in the first seconds
but the memory usage increases before reaching the stabilized
value. There is no resource consumption peak at the beginning
of the attack. TCP SYN Cookie was also plotted on this graph
as a comparison but memory usage is so low the measure were
not accurate on the client-side and on the server-side for rates

Fig. 8: QUIC Memory Usage and Amplification Factor

under 50pps. The highest usage reached is 0.06% of the device
total capacity. The small jumps in the graphs can be explained
by the very low usage and the accuracy of the tool when the
memory usage is below 1%.
These results confirms the fact that memory is less likely the
bottleneck under handshake flood attacks. It also highlights
how low the memory usage for TCP SYN Cookie is.
2) Memory Consumption: As shown in Figure 8, on the
QUIC client-side, memory usage remains stable when the
attack rate increases. The confidence interval is very tight
meaning the results obtained during the different rounds of
the experiment provided very similar results. The value is low
around 0.1% of the device total capacity. On the server-side,
there is an increase in memory usage along with the attack
rate. The confidence interval is also close to the curve meaning
the impact of this type of attack on resource is relatively
predictable. The highest value reached is below 2% which
is low compared to the CPU usage for a similar attack rate.
Compared to CPU usage, the memory usage of QUIC server
is much lower and CPU is much more likely to be exhausted
first under handshake flood attack.
3) Memory usage and Amplification Factor: As shown in
Figure 8, the memory amplification factor increases along with
the attack rate following the drift of the server memory usage
reaching 8.6. It is worth noting that the amplification factor
may keep on increasing with the attack rate. However, since
the CPU resource on the QUIC server has already reached its
capacity, a larger attack rate is not meaningful.
We can see that the server memory usage increases linearly
with the number of packets because of the asynchronous
functions used to handle multiple packets and connections at
a time. However once the packets are processed the memory
usage falls down to 0 as everything is dumped. Even if the
amplification reaches high values, these metrics are not very
relevant considering the fact that CPU is a bottleneck before
memory could be an issue. In addition to that, it is easy to add
memory to an infrastructure but adding CPU is more difficult
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Fig. 9: Bandwidth usage comparison

and certainly more costful.

D. Bandwidth

TCP SYN Flooding could be a threat for the stateful TCP
servers in terms of memory because it stores the Sequence
Number to verify connections. However, it can also be the
target of attacks on the bandwidth. This experiment was
conducted to monitor the bandwidth usage under flooding
attacks with QUIC and TCP SYN Cookie. As shown in
Figure 9, for both protocols, the incoming and outgoing traffic
are close. This is mainly due to the design of both protocols to
ensure a low bandwidth amplification factor with symetrical
sized packets.
Following the previous experiment protocols, we isolated the
bandwidth of the process from the base usage. We can observe
a more significant bandwidth consumption for QUIC than for
TCP SYN Cookies. This can be explained by the numerous
fields in a QUIC packet. As explained in Section III, the
QUIC Handshake contains the TLS one. The key exchange is
done during the 1-RTT handshake with the server certificate
embedded in the Server Hello message.
The symmetrical aspect of these designs ensure a bandwidth
amplification factor of 1. The client sends a packet with some
padding and the server has to send the exact same amount
of data by padding the packet as much as necessary. This
feature slightly affects performance but significantly reduces
the vulnerabilities regarding bandwidth.

V. DISCUSSION

In our experiment, our CPU was the resource that was drained
under QUIC Flooding Attack. It is intuitive as the server
needs a lot of computations to handle the packets according
to the process described in RFC9000 [13]. It could cause
complete service disruption as the server would not be able
to process any other incoming packet and would not have
enough resources available to run its other processes. The
memory also presents a high amplification factor but the usage

is much lower so that it is unlikely a threat for most of the
systems. Moreover, adding more CPU typically costs more
than adding memory. The bandwidth use is not a problem
with these stateless protocols as they were design with security
in mind to ensure neutral amplification factor. In addition to
that, the stateless design of the QUIC protocol avoids the
full backlog problem encountered during the TCP SYN flood
attack to stateful TCP servers.
The 0-RTT feature of QUIC is a good way to enhance
the performance of the server as it significantly reduces the
amount of handshakes necessary. 0-RTT is always optional for
the client and he can always request a new handshake if he
wants. Therefore it does not change the attacker perspective
who can still lead the same attack. However, it allows the
server to detect an attack more easily. Indeed, a client repeating
multiple complete 1-RTT handshake in a row while 0-RTT is
available would be suspicious. If a client has already done
the handshake recently, he still has the certificate and 1-RTT
handshake would only represent a loss of perfomance and
additional latency. Nevertheless, 0-RTT exposes the server to
other vulnerabilities inherent to this feature.
Even though QUIC has multiple RFC documents [13] [23]
[15] to provide guidelines, there are multiple different im-
plementations [34] [35] [36]. The difference in efficiency in
this variety of solutions might have an impact on the results
we found. It would be interesting to try the vulnerability
of different implementations. Our implementation was using
Python, a more resource-efficient language as C could reduce
the amplification factor. We found a high amplification factor
that can be used by an attacker as a lever on its victim. An
attacker can take down an infrastructure which has 4 times
its own computing power. This is a serious issue which was
not present in TCP SYN Cookie. The resilience of TCP SYN
Cookie is mainly due to the simplicity of its design. The
server only computes the cookie and compare it to the one
from the packet. There are no additional mechanisms. TCP
SYN Cookie [31], on the other hand seems to have only one
legitimate version, the one of its designer written for Linux
and adapted for other systems. It makes the deployments of
this protocols more homogeneous. Our work was conducted on
low to medium resources devices. The results are relevant but
could use comparison to the architecture of already deployed
QUIC servers of larger scales. Finally, the address validation
mechanism present in RFC9000 is high level and not very
specific. Therefore depending on the implementation, the
attack might need to send an acknoledgment once in a while
not to get blocked by the server. A comparison of the different
address validation mechanisms would be interesting.

VI. CONCLUSION

In conclusion, this paper presented an empirical evaluation
of QUIC against Flooding Attack. It evaluated the resource
consumption of the attacker and the victim server during an
attack. The results showed that the CPU is the main bottleneck
during the attack. The memory presents a high amplification
but remains at low level compared to CPU not making it
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a primary concern. Bandwidth is symmetrical on the client
and server-side making the amplification neutral and reducing
significantly the interest of an attacker into reflection attacks.
TCP SYN Cookie presents interesting capabilities in terms of
performance during the handshake. However the embedded
TLS handshake in QUIC provides faster RTT and therefore
better performances.
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