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Abstract—Fog computing is emerging as geo-distributed and
connected edge-to-cloud ecosystems, spanning multiple domains
operated by different entities. Consequently, fog-compatible ap-
plications need to support distributed operations and decen-
tralized management. This promoted the adoption of the mi-
croservices architecture, to facilitate application modularity and
autonomy. Transitioning to fog-native applications, i.e., running
distributed microservice workflows over multiple domains, is
a challenging endeavor. On one hand, distributing workflows
require awareness of the intents and dependencies of microser-
vices, as this may impact the supply of data and the perceived
Quality of Service (QoS). On the other hand, the variant
capacities and energy supply, coupled with limited information-
sharing across fog autonomies, hinders the prospect of end-to-
end optimization. To tackle such problems, we propose a novel
federate optimisation algorithm for multi-domain scheduling of
fog-native microservice workflows. The algorithm incorporates
workflow intents in decision-making by combining Bender’s
decomposition with Alternating Direction Method of Multipliers
(ADMM) to provide optimized workflow placement, mapping,
routing and admission. The performance of the algorithm is eval-
uated analytically and compared to state-of-the-art intent-based
ADMM (iADMM). The results show performance trade-offs with
the proposed iBADMM (direct), with the latter improving the
fraction of workflow greenness by « 15%.

Index Terms—fog-computing, fog-native, microservices, work-
flow placement, optimisation

I. INTRODUCTION

The proliferation of cloud services has prompted the cloud-

native paradigm, referring to the development of applications

for intrinsic operation on distributed cloud resources. This

has demanded greater modularity, and in turn incentivised

adoption of the microservices architecture in developing ap-

plications. So far, cloud-native applications have run within

the boundaries of central clouds. Meanwhile, edge-to-cloud

autonomous and connected systems are emerging as a geo-

dispersed and decentralised ecosystem, spanning multiple do-

mains of different actors in the field [1]–[3]. The coexistence

of multiple autonomies coupled with variant constraints on

their resources increases the likelihood of application dis-

persion. That is to distribute application’s components over

different fog clusters and interconnect them to compose the

application. Provisioning dispersed, yet intent-compliant, ap-

plications with state-of-the-art solutions is not straightforward.

Specifically, variation of actors’ intents, infrastructure ca-

pacities, and energy supply introduce non-trivial trade-offs.

Actors’ intents may sometimes conflict. For instance data-

sharing intents of end-users may conflict with operational

intents of cloud providers. Added to that, capacity constraints

increase the likelihood of congestion, which ultimately impact

the perceived QoS. The structure of energy supply in terms

of cost and greenness may vary the operational costs and

introduce a trade-off with environmental intents of any of

the actors. Current indicators [4], [5], show that smaller data

centers have higher energy prices and worse power usage effi-

ciency (PUE). This not only translates into higher operational

costs, but further means poorer utilisation of green energy.

Notably, the variation in supply of green energy to data centers

remains unclear. Current indicators show the purchase of green

energy to correlate with the size of cloud providers, with ultra-

large providers having the biggest share [6], [7].

The above creates different attraction forces, which impact

compliance with actors’ intents while meeting QoS thresholds

and optimizing system operations. For geo-distributed appli-

cations, such forces can interplay with each other and may

create a ripple effect that impacts the end-to-end application

performance. Furthermore, to deliver “need-to-run-close-to-

user” applications, there is a need for efficient utilization of

the sparse edge. This includes conserving small, edge clusters

for such applications while pushing counterparts to cheaper

clusters, within QoS bounds. Hence, to facilitate an intent-

based application scheduling, taking into account the limited

sharing of information across autonomies, there is a need for

an optimisation solution that: 1) has knowledge of actors’

intents; and 2) can act on the underlying heterogeneity given

limited information sharing among actors.

This work proposes a novel federated optimization algo-

rithm for scheduling geo-distributed fog-native applications,

referred to as microservice workflows, in a multi-domain

edge-to-cloud ecosystem. For simplicity, we refer to this

ecosystem as the “fog ecosystem”. The proposed algorithm

jointly solves the problem of workflow placement, mapping,

routing and admission. It does so by combining Bender’s

decomposition [8] with ADMM [9], to decompose the problem

and distribute the solving tasks to the corresponding actors.

Consensus is reached through iteration that reduces the gap

between partial solutions to an acceptable level. The algo-

rithm is compared with our earlier state-of-the-art algorithm
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iADMM from [10]. The proposed algorithm is referred to as

intent-based Bender’s decomposition with ADMM with direct

paths or iBADMM (direct) as the ADMM component differs

from [10] by incorporating end-user intents in data upload,

as well as solving the routing problem for direct cluster-to-

cluster paths. Accordingly, the contributions of this work are

three-fold: 1) model the multi-domain ecosystem describing

different actors with examples of their intents; 2) formulate the

problem of intent-based workflow placement, mapping, rout-

ing and admission; and 3) propose the federated optimization

algorithm iBADMM (direct) to jointly solve the problem and

evaluate its performance, compared to state-of-the-art.

The remainder of this paper is structured as follows: Sec-

tion II reviews state-of-the-art related work, while Section III

describes the multi-domain ecosystem. Section IV models the

ecosystem, including interactions among actors, and formu-

lates the problem of intent-based workflow placement, map-

ping, routing and admission. Section V describes the proposed

iBADMM (direct) algorithm, while Section VI evaluates the

performance of the algorithm. Finally, Section VII draws the

conclusions and proposes future work.

II. RELATED WORK

Edge-to-cloud ecosystems have been studied extensively

with sample summarizing efforts that include [1], [2]. Several

studies focus on the orchestration of scientific workflows in fog

computing The work of [11] proposes a solution that combines

Discrete Moth-Flame Optimization with Differential Evolution

(DMFO-DE) to reduce energy consumption for task execution

in scientific workflows. Other approaches to workflow schedul-

ing include: an agent-based approach optimized through a

genetic algorithm [12], and swarm-based methods such as the

hybrid fireworks algorithm of [13]. While these efforts address

relevant challenges, they assume global knowledge of the state,

limiting their applicability to centrally managed ecosystems.

The work of [14] proposes an ADMM-based distributed

algorithm that decomposes the service mapping and routing

problems to node-level sub-problems. Although the solution

assumes global knowledge of actors; it provides a baseline

to newer approaches. The work of [15] proposed a Bender

decomposition approach for solving the problem of cloudlet

placement and task allocation. Their approach allows for

decoupling the placement problem from the task allocation

counterpart. However, they still solve each problem globally.

The work of [16] proposes a distributed algorithm for solving

the problem of graph embedding in Service Function Chaining

(SFC), based on a combination of Bender decomposition and

ADMM. While their solution lacks consideration of latency

and has different cost factors, it has strong potential in enabling

multi-domain workflow orchestration.

Orthogonally, increasing efforts are focusing on the role of

green energy in operating cloud infrastructure and services.

The work of [17], reviews studies of energy usage in the cloud,

in combination with an overview of use of green energy in

fog computing for 6G enabled IoT. The work of [18] intro-

duces a Mixed Integer Linear Programming (MILP) model

to reduce the carbon footprint in cloud architectures. Finally,

our earlier work in [10] proposes iADMM, a decentralised

algorithm for intent-based mapping and admission based on

ADMM. iADMM solves parts of the problem tackled in

this work, while tolerating path routing sub-optimality and

ignoring the intents of end-users. Overall, the reviewed efforts

offer different perspectives of confronting the addressed prob-

lem. Nevertheless, while their contributions provide a strong

foundation for the work at hand, they fall short in either

enabling autonomous decision-making or incorporating intent

awareness of different actors.

III. A MULTI-DOMAIN ECOSYSTEM

A. The ecosystem, actors and information exposure

A metropolitan fog ecosystem is illustrated in Figure 1.

A metropolitan fog ecosystem (illustrated in Figure 1) may

follow the OpenFog reference architecture of [3] and similar

definitions [19]. It is comprised in the minimum of: access

gateways (nodes), connecting end-users to the ecosystem; a

set of geo-distributed and autonomous edge-cloud data centres

and/or clusters (fog nodes) of variant capacities; application(s)

offered as services over said clouds; and a programmable

network that connects all aforementioned parts. Within such

an ecosystem, multiple actors of different intents may co-

exist and interact: application provider(s), clouds providers(s),

network operator(s) and end-user(s). State information sharing

is foreseen to be limited by virtue of competitiveness across

the different actors in the ecosystem. Edge-cloud clusters and

network elements are managed by their respective Manage-

ment and Orchestration systems (MANOs).

Application (app) providers are assumed to deploy work-

flows over one or multiple fog nodes, with each microservice

having at least one Point of Presence (mPoP). App providers

have limited knowledge of the ecosystem. They do not know

of the capacities of fog nodes, nor the connectivity and

distance to end-users. To optimize deployment decisions, app

providers are advised of the cost of microservice deployment

and scaling on each fog node. Further, limited, information

may be provided to assist in meeting the intents of app

providers. We consider workflow greenness - i.e. the fraction of

workload per workflow served by green energy - as one of such

intents. Hence, cloud providers inform their app counterparts

of the fraction of green energy supply per node.

Similarly, cloud providers are aware of limited network

information including: cost of sending data traffic; end-to-end

network latency on any path between a pair of fog nodes or

between an access gateway and a fog node; and some of the

intents of app providers such as workflow resource require-

ments and QoS thresholds. The network operator is assumed

here to be responsible for access gateways, in addition to

the programmable network. The network operator knows the

cost of processing users’ requests in any of the fog nodes

along with the processing latency, but they do not know the

infrastructure capacities of fog nodes.
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TABLE I
SUMMARY OF NOTATIONS

Notation Definition

N Edge-to-cloud clusters (i.e. fog nodes)

U ,P Access gateways (nodes), network paths

W workflow graph

Sw,Rw microservices, dependencies in W

Mn other cluster (fog nodes) than n

cn, µn, en, ηn CPU capacity & speed, energy cost & green frac-
tion

bp, lp, hp bandwidth, length & hop count of path p

cs, qs, rs, τw task size, input, output data size, response time

F intent utility function

ϕs
n
, θs

n
, θs

un
, θs

nm
costs: placement, mapping, upload, routing

δ, ω workload & traffic demand

α, γ, β variables: placement, mapping, routing/admission

ζ, ρ, ϵ Lagrangian multiplier, penalty parameter, error
gaps

ψ,Υ routing dual variable, linear problem cost

IV. THE ECOSYSTEM MODEL

a) Edge-to-cloud nodes: are modeled as a set of fog

nodes, N . Each n P N is connected to other nodes Mn “
N zn by a set of paths PMn

. nodes are small-sized at the

edge (nano clusters), and expands when moving nearer to the

network core. For simplicity without loss of generality, we

assume each data centre to be comprised of a single cluster.

Hence, paths between clusters traverse outside data centre

boundaries over external network infrastructure. Similar to

[10], each n P N is defined by the tupple xcn, µn, en, ηny,

where: cn is the computing capacity, in number of CPU cores;

µn the average CPU speed, in GHz; en the energy price at the

node site, in Penny per milliCPU (mCPU); and ηn the ratio of

green energy supply. The cloud provider manging the node is

aware of all tupple information. Whilst, application providers

and the network operator may only be aware of ηn along with

the processing latency and cost per microservice.

b) Access Gateways and Network Paths: gateways are

modeled as a set of nodes, U . Each u P U , from one side,

connects a group of end-users. From the other side, u connects

to N fog nodes. An access gateway acts on the intents of the

network operator and end-users, when sharing user-generated

data and/or accessing fog services. Access and fog nodes are

connected by a set of network paths P “ tPU ,PN u, where

PU is the set of access-cloud paths and PN is the set of

inter-cluster (i.e. inter-fog-nodes) counterparts. Each p P P is

defined by the tupple xbp, lp, hpy, where: bp is the bandwidth

capacity of p, in Gbps; lp is the metric distance of p, in km;

and hp is the hop count. While the operator knows all path

metrics, cloud providers may only know the unitary cost of

traffic and end-to-end network latency.

c) A microservice workflow: is modeled as a service

graph WpSw,Rwq, whereby Sw is the set of microservices

in the workflow and Rw is the set of directional inter-

microservice dependencies. A dependency rs,t between ps, tq
microservices indicates t reliance on s. A gateway u directs

users’ requests to the first (ingress) microservice in W , while

expects a response back from the last (egress) microservice

in the workflow. u may further supply user-generated data

as input to any s P Sw. App providers may offer multiple

workflows in the ecosystem, with a set of intents, specified at

microservice and/or workflow levels or as a general policy.

d) Intents: are modeled as utility functions. Each actor

in the ecosystem defines a set of intents, which may (or

not) conflict with those of their peers. We consider workflow

greenness as a business intent for app providers as well

as other actors. We define Fpηn,Wq as the utility function

corresponding to workflow greenness, given the fraction of

green energy supply to n. App providers may further define

non-functional intents, such as resource requirements and QoS

thresholds. Similar to [10], we assume resource requirements

are defined per s by xcs, qs, rsy, whereby: cs mCPU is the

average task size; qs Mb/s is user-generated input data; and

rs Mb/s is the average size of the result of running s jobs.

QoS is defined by xτwy, the response time tolerance threshold

per workflow. End-user intents are represented by their access

gateway. Such intents may reflect data privacy, the cost of data

upload and risk to QoS due to network variant conditions.

Here, we focus on cost of data sharing and risk to QoS,

assuming traffic from an access gateway to a fog node incurs

network cost, borne by end-users.

Cloud providers and the network operator may define op-

erational intents, reflected in the cost of scaling a workflow

deployment. Three costs are incurred in such an ecosystem:

the placement cost of a microservice s at a fog node n, ϕsn;

the admission cost of requests for s at fog node n, θsn; and,

the transmission cost of data traffic. The latter is modeled as

two-part cost of: uploading user-generated data on access-fog

paths PU , θsun; and routing the output of s to its dependents

Sw,s on inter-cluster paths PN , θsnm. More details on the cost

and utility functions are provided on GitHub 1.

e) Workload, traffic and decision variables: Each u P U

receives requests for W at a rate of λwu . Note that the request

rate for W is equivalent to the request rate for each s P Sw,

hence λwu ” λsu. λsn is the aggregate request rate received by

n, for all U and λsnm is the fraction of s requests served by n

and the response is directed to m. Accordingly, workload per

s can be defined as:

δsu “ λsuc
s, δs “

ÿ

uPU

δsu (1)

whereas upload and inter-cluster traffic per s can be formulated

as:

ωs,q
u “ λsuq

s, ωs,r
n “

ÿ

mPN

λsnmr
s,@n,m P N (2)

To deploy a workflow in the fog ecosystem, optimal de-

cisions (illustrated in Figure 1) need to be made on: 1) the

placement of each s P Sw in one or multiple fog nodes; 2)

the mapping of requests and user data @s P Sw from u to

n; 3) routing output of s to its dependents, hosted on the

same or peer fog nodes; and accordingly, 4) admission of

workload for s at n. The workflow orchestrator makes the

placement decision centrally, while access nodes make the

mapping decision in a decentralised fashion. Similarly, cloud

1https://github.com/mfhaln/iBADMM
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Cluster
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MANO

Workflow
Orchestrator
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Cluster
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Fig. 1. Decision variables in the ecosystem

MANOs decide on admission and inter-cluster routing in a

decentralised manner. The placement decision is defined as a

binary variable:

αs
n “

#

1 if s P Sw is deployed at n P N

0 otherwise
(3)

While the mapping and admission decisions are defined as

linear variables, γsun, βs
un P r0, 1s, representing the fraction

of λsu to be mapped to n and admitted by n respectively. The

total fraction admitted by n for s is βs
n “

ř

uPU β
s
un. The inter-

microservice routing decision is defined as βs
nm, the fraction

of total requests for s admitted by n and results are routed to

dependents, hosted at m. Note that when s and its dependents

are deployed in the same node, m “ n. The admission and

routing decisions are tied by the flow conservation constraint,

in which input to s must equal its output:
ÿ

uPU

βs
un “

ÿ

mPN

βs
nm,@n P N (4)

A. Problem formulation

Now, the problem of intent-based joint scheduling of work-

flows can be formulated as a constrained optimisation of the

decision variables, given the cost and utility functions:

min
α,β,γ

ÿ

sPSw

ÿ

nPN

`

ϕsnα
s
n `

ÿ

uPU

pδsuθ
s
n ` ωs,q

u θsunqγsun`

ÿ

mPN

ωs,rθsnmβ
s
nm

˘
(5)

Subject to the flow conservation constraint of (4), and:

Cτ :
ÿ

sPi

τ sn ` τ snm ď τ�pwq, τ�pwq ď τw @i P I
w (6)

Cc :
ÿ

sPSw

αs
n

ÿ

mPN

δsβs
nm ď cn, @n,m P N (7)

Cb :
ÿ

sPSw

ωs,q
u γsun ď bpun

,
ÿ

sPSw

ωs,r
n βs

nm ď bpnm
(8)

@ u P U , n,m P N , p P P

Cγ :
ÿ

nPN

γsun “ 1, @s P S
w, u P U (9)

Cβ :
ÿ

mPN

βs
nm “ 1, @s P S

w, n,m P N (10)

Ce : βs
un “ γsun, β

s,t
nm “ γs,tnm (11)

@ s, t P S
w, rst P R

w, u P U , n,m P N

Cv : αs
n, β

s
un, β

s
nm, γ

s
un ě 0 (12)

Where: Cτ ensures that latency on the diameter of the work-

flow graph, τ�pwq, does not exceed the maximum response

time tolerance. Cc ensures that CPU allocation does not exceed

capacity, at any fog node. While, Cb ensures the upload and

inter-cluster traffic do not exceed the bandwidth capacity of

their paths. Cγ ensures all demand of an access node is

allocated, while Cβ ensures that all results of s are routed

to its dependents, or back to the end user if s is the egress

microservice. Ce and Cv ensure: a) consensus is reached on

the fraction of demand mapped from u to n and admitted for

processing by n; and b) all decision variables are positive.

The problem is NP-hard with added non-trivial chal-

lenges [20]. First, problem terms have different dimensions:

γ P R
UˆN , while β P R

NˆN . This does not lend to straight-

forward mapping between γ and β, to satisfy the consensus

constraint Ce. Second, the latency constraint Cτ couples all the

constraints; thereby, hinders the separation of concern of the

different parts of the problem. To address the coupling of Cτ

we adopt the constraint decomposition technique from [10],

defining the latency tolerance per microservice as τ s “ χsτw

where χs P r0, 1s is derived from the weight of s relative to

the heaviest chain in the workflow. This allows to transform

Cτ into: Cs,γ
τ , constraint on the end-to-end latency of sending

qs from u to n; Cs
nm,τ constraint on end-to-end latency of

routing s results from n to its peer, m; and Cs
n,τ constraint

on processing latency of s, respectively. While Cs,γ
τ is defined

in [10], here we define:

Cs
nm,τ : τ sn `

hpr
s

bp ´ β
s,t
nmωs,r

ď χsτw (13)

Cs
n,τ :

cscn

cnµn ´ cs
ř

uPU δ
s
uβ

s
un

` τ snm ď χsτw (14)

where βs,t
nm and βs

un are transformations of βs
nm, described in

Section V-A as we address the dimensionality challenge. bp
and hp are the bandwidth and hop count on pnm P PN .

Now, aside from the large problem space of |W| ˆ |Sw| ˆ
|U | ˆ |N |2 that renders global solving methods highly expen-

sive, none of the actors in the ecosystem possesses all the

information needed to solve the problem. This means global

solving approaches are infeasible. Hence, we propose a feder-

ated optimization algorithm to solve the problem. Notably, we

solve the routing problem first then use the solution to derive

the admission counterpart.

V. FEDERATED OPTIMISATION ALGORITHM

To solve (5) in a federated manner, we propose an opti-

misation algorithm combining Bender’s decomposition with

ADMM. First we address the dimensionality challenge by

applying aggregation and rationing techniques to transform

variables when used in different dimensions, then we decom-

pose the problem into three-parts, solve them individually and

reconcile the solutions iteratively until convergence is reached.

A. Addressing the dimensionality challenge

To decompose the linear terms of (5), there is a need

to derive γs,tnm from γsun and βs
un from βs

nm. γs,tnm is used

4
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to solve for βs,t
nm, deriving consensus on the volume of rs

routed from n to t, hosted at m. βs,t
nm is then used to

calculate βs
nm, the fraction of total volume of rs routed to

m. Equivelently, βs
un is used to solve γsun, to reach consensus

on the volume of requests mapped by u to n, and admitted

by n. Demand aggregation: to obtain γs,tnm, we first calculated

γsn “
ř

uPU γ
s
un and γtm “

ř

uPU γ
t
um, the aggregate demand

for s, t, mapped to n,m respectively. Then, we define γs,tnm “
minpγsun, γ

t
umq, rs,t P Rw. This restricts βs,t

nm to not exceed

the mapping fraction on either n or m. Then, we calculate

βs
nm “ maxptβs,t

nm | t P Sw,suq, because when multiple

dependents from Sw,s are deployed at m, n still routes one

flow of rs assuming that m deploys a proxy that rations

input to each dependent, given respective allocation decisions.

Hence βs
nm should accommodate the dependent of the largest

allocation at m. Response rationing: upon obtaining a solution

for tβs
nm|@m P N u, the fraction of aggregate demand for s

that n is willing to route to each m, βs
un is derived by rationing

βs
n “

ř

mPN βs
nm by the ratio of access-node demand tγsunu

to the aggregate demand γsn. This is justified as it obeys the

constraint of (4) and does not violate any other constraint. This

is described as:

βs
un “ βs

n

tγsun | u P Uu

γsn
(15)

Note that (15) constitutes deriving the per access node admis-

sion decision from the aggregate routing counterpart.

B. Two-stage problem decomposition and solution

First, we decompose the problem using principles of Ben-

der’s decomposition into an integer (placement) and a linear

part. The latter is then decomposed into two linear problems,

mapping and routing. All three are then solved in two-stage

iterations: 1) an inner loop, k P 1, 2, . . . , that solves the linear

sub-problems using intent-based ADMM for direct inter-clus-

ter routing paths - iADMM (direct), given a feasible solution

of the integer problem; and, 2) an outer loop, j P 1, 2, . . .

that solves the integer problem given an optimal solution of

the linear sub-problems. The routing solution obtained in the

inner loop is further utilized to derive the admission solution.

1) Solving the linear sub-problems: given βs
un and an

initial solution for the placement problem, α̂, the augmented

Lagrangian of the mapping problem is formulated as:

Lpγ, β, λq “
ÿ

sPSw

ÿ

nPN

α̂s
n

ÿ

uPU

pδsuθ
s
n ` ωs,q

u θsunqγsun`

ζsunpγsun ´ βs
unq `

ρ

2
pγsun ´ βs

unq2
(16)

Where ρ ą 0 is the penalty parameter of L and ζsun is the

Lagrange multiplier of the difference between the mapping

and admission solutions. Notice that the penalty term renders

the augmented Lagrangian strictly convex, irrespective of the

original form of the problem. The mapping problem can be fur-

ther reduced and posed as a per-access-node per-microservice

set of sub-problems in the form:

min
γs
un

α̂s
n

ÿ

uPU

γsun

´

δsuθ
s
n ` ωs,q

u θsun ` ζsun `
ρ

2
pγsun ´ βs

unq2
¯

(17)

Subject to: Cs,γ
τ referenced in Section IV-A from [10], Cγ ,

Ce and Cv . Since the network operator can ensure sufficient

bandwidth and include the cost of reliable data upload within

θsun, we omit Cb. Now, γsnm is derived from γsun.

Given γsnm and α̂, the Lagrangian of the routing problem

is defined as:

Lpβ, γ, λq “
ÿ

nPN

α̂s
n

ÿ

mPN

ÿ

tPSw,s

α̂t
m

`

ωs,rθsnmβ
s,t
nm`

ζs,tnmpβs,t
nm ´ γs,tnmq `

ρ

2
pβs,t

nm ´ γs,tnmq2
˘

(18)

where αt
m is the current placement solution of the dependent

t P Sw,s on m. The problem can be simplified and posed as

a per-microservice per-fog-node set of sub-problems:

min
β
s,t
nm

α̂s
n

ÿ

tPSw,s

α̂t
m

ÿ

mPN

βs,t
nm

`

ωs,rθsnm´ζs,tnm`
ρ

2
pβs,t

nm´γs,tnmq2
˘

(19)

The problem of (19) is subject to: Cs
nm,τ , Cs

n,τ , Cs , Cβ ,

Ce and Cv . To solve (17) and (19), we adapt a novel version

of iADMM proposed in [10] and name it iADMM (direct),

corresponding to direct inter-cluster routing. At iteration k of

the inner loop, each access node u solves its instances of the

mapping problem first to obtain γs,k`1
un and share it with the

respective n. The latter utilises tγs,k`1
un |u P Uu to calculate

γs,t,k`1
nm , use it to solve n instances of the routing problem and

obtain βs,t,k`1
nm . This is then used to calculate βs,k`1

nm , βs,k`1
n

and βs,k`1
un , as described earlier in Section V-A. Finally, γs,k`1

un

and βs,k`1
un are used to calculate the dual variable ζs,k`1

un , while

βs,t,k`1
nm and γs,t,k`1

nm are used calculate ζs,t,k`1
nm . The iterations

continue until the residual parameters are below the primary

and dual error gaps, ϵpri, ϵdual. iADMM (direct) is described

in Algorithm (1).

Algorithm 1 Intent-based ADMM (direct): inner algorithm

1: Given: α̂j , ϵpri, ϵdual, ρ

2: Initialize: k Ð 0, γsun, β
s
un, ζ

s
un Ð t0u

3: Each n P N calculates τ sn and advertises it with θsn to U .

4: A designated network MANO calculates τ snm and publish

it with θsnm to each n P N .

5: Each u P U calculates τ sun and publish it with θsun to N .

6: while spri ą ϵpri OR sdual ą ϵdual do

7: Each u solves (16) and publish the γs,k`1
un solution to

n

8: Each n: 1) calculates γs,t,k`1
nm and uses it to solve (18),

obtaining βs,t,k`1
nm ; 2) uses βs,t,k`1

nm to calculate

βs,k`1
nm , βs,k`1

n and βs,k`1
un , and obtains the routing

dual variable ψs
n; 3) calculates the dual variables

ζs,k`1
un , ζs,t,k`1

nm ; and 4) shares βs,k`1
un and ζs,k`1

un with

u

9: N and U nodes update their respective τ sn, τ sun and τ snm.

10: U nodes calculate spri and sdual
11: k Ð k ` 1

12: end while

13: Each n P N advertises the optimal linear solution ˆβs
nm

and the routing dual ψ̂s
n to the workflow orchestrator.
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2) Solving the integer master problem: Following Bender’s

decomposition, the master problem is defined for the integer

term of the original problem given the cost of the linear sub-

problem:

min
αs

ÿ

nPN

ϕsnFpηn,Wqαs
n ` Υ̂s, @s P S

w (20)

Subject to:

Cp : 1 ď
ÿ

nPN

αs
n ď |N |, @s P S

w (21)

Cs
Υ
: Υ̂s ě Υ

s
init (22)

Where Υs
init is the lower bound on the cost of the linear

problem, defined by the conditions of the ecosystem. Cp is

the placement constraint, ensuring that s is deployed at least

in one fog node (cluster), while Cs
Υ

guarantees that the cost

of the linear problem is higher than the lower bound on cost.

At any iteration j of the outer loop, the workflow orchestrator

uses ˆβs
nm and the routing duality variable ψs

n to solve (20),

obtaining αs,j
n and the placement dual variable Πs,j . The

latter represents the optimal cost of the linear problem, which

determines the lower bound (LB) on the master problem.

Meanwhile, ˆβs
nm is used to calculate the upper bound (UB)

on the problem. Iterations of the outer loop continue until the

gap between UB and LB is reduced to acceptable margin. We

refer to the combination of Bender’s outer Algorithm (2) with

iADMM (direct) as iBADMM (direct).

Algorithm 2 Intent-based BD: the outer algorithm

1: Given: ϵplc
2: Initialize: j Ð 0, UB Ð `8, LB Ð 0, αs,j

n Ð t1u
3: while UB ´ LB ě ϵplc do

4: Solve the sub-problems using αs,j
n in Algorithm (1) and

publish ˆβs
nm, ψ

s
n to the workflow orchestrator

5: Workflow orchestrator solves the master problem of

(20) to obtain αs,j`1
n and Πs,j`1

6: Calculate UB and LB for the iteration

7: j Ð j ` 1

8: end while

9: Workflow orchestrator publishes the converged solution
ˆ

α
s,j`1
n to fog MANOs, which publish it to access nodes.

VI. EVALUATION

This section evaluates the proposed iBADMM (direct) algo-

rithm, compared to state-of-the-art iADMM [10]. For place-

ment with iADMM, we utilise Bender’s algorithm proposed

above and refer to the combination as iBADMM. iBADMM

(direct) differs from iBADMM in: a) iBADMM does not in-

corporate the cost of data transmission on upload paths; and b)

iBADMM does not solve the routing problem for direct inter-

cluster paths. Instead, it solves for anchored paths by access

nodes. The evaluation is based on analytical modelling and

extensive simulations, using simmer Discrete Event simulator

and the Abilene topology p11 nodes, 28 linksq [21]. The

topology is selected for providing a realistic setup for our

experiments [22]. The network topology provides the paths

used to connect fog and access nodes. The key performance in-

dicators (KPIs) analyzed are: Latency Residual Budget (LRB),

an indicator of compliance with the response time; Workload

Greenness, an indicator of the fraction of workload served

by green energy; mPoP replicas, indicating the number of fog

nodes having deployed a specific microservice; and, Workflow

Dispersion, indicating the spread of a workflow deployment

over fog nodes. The evaluation settings are summarised on

GitHub aforementioned repository.

Performance is evaluated for two Hub and Spoke (H&S)

workflow settings: 24 workflows, each the size of 5 microser-

vices; and 10 workflows, each the size of 10 microservices.

The first resembles large number of workflows of small

dependencies, while the latter reflects a smaller set of work-

flows with larger dependencies. The distribution of requests

generates realistic workloads, similar to that observed in [23].

Two control scenarios have been investigated: varying the

supply of green energy between the edge and the cloud; and,

varying the non-functional intents of workflows. The latter

is achieved by varying the resource requirements (i.e. task

and input/output data) per microservice and response time

criticality of each workflow. Varying green energy supply

highlights the trade-offs between cost and utility functions,

while varying the workflow structure illustrates performance

variation given application complexity.

a) Green Energy Variation: Figure 2 shows the results

when varying the supply of green energy across fog nodes.

Figure 2a shows the LRB of H&S workflows to be lower

for iBADMM (direct) as opposite to iBADMM, with larger

workflows of 10 microservices having the lowest LRB. The

effect is higher when the supply of green energy is larger

at the edge. This is because of the upload cost in iBADMM

(direct), which results in pulling microservices towards the

edge to minimize it. When the green supply is larger at the

edge, the attraction force is higher. Because, the app provider

too prefers placement at the edge. However, given the limited

resources of the edge, the response time is higher.

Figure 2b shows when green supply is higher in the cloud,

workflow greenness is « 0.70´0.89. In contrast, when supply

is higher at the edge, the fraction is lower « 0.45 ´ 0.65,

with iBADMM (direct) having an improvement over iADMM

by « 15 ´ 17%. This is because of the direct inter-cluster

routing of iBADMM (direct), causing mid-to-large fog nodes

to favour placing all microservices of a workflow in one cluster

and routing traffic internally. This is further confirmed by the

results of mPoPs replicas and workflow dispersion; shown on

the GitHub repository instead of here due to space limitation.

b) Workflow Variation: Figure 3 shows the results when

varying the resource requirements per microservice in a work-

flow. The green supply here is lower at the edge compared

to the cloud. The LRB and workflow greeness results are

shown on Github instead, due to space limitation. Figure 3a

shows that iBADMM (direct) replicates smaller microservices

over larger number of nodes, 9 in the case of H&S 5 and an

average of 5 in case of H&S 10 workflows. This is because

6
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Workflow/Algorithm: H&S_5/iBADMM H&S_10/iBADMM H&S_5/iBADMM (direct) H&S_10/iBADMM (direct)
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(b) Workflow greenness

Fig. 2. Performance Indicators between iBADMM and iBADMM (direct),
given variation of Green Energy supply.
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(b) Workflow spread

Fig. 3. Performance Indicators between iBADMM and iBADMM (direct),
given variation of Workflow non-functional intents.

smaller workflows have less likelihood of violating any of the

constraints given the low number of dependencies and low

resource requirements. However, workflows of higher depen-

dency have higher variation of microservice requirements. This

results in tighter constraints that limit the number of mPoPs.

Figure 3b confirms this showing workflow distributability of

iADMM (direct) for process intensive and/or large workflows

to be smaller in the range of « 5 ´ 6 nodes, as opposite to

iADMM distributing workflows over all nodes.

VII. CONCLUSIONS

This work proposed a novel intent-based federated optimiza-

tion algorithm for scheduling fog-native microservice work-

flows, over multi-domain edge-to-cloud ecosystem. This in-

cluded solving the problem of workflow: placement, mapping,

routing and admission. The algorithm, iBADMM (direct),

is based on a combination of Bender’s decomposition and

Alternating Direction Method of Multipliers. It reduces infor-

mation sharing among actors to the operational cost, with no

requirement to exchange business-sensitive counterparts. This

allows for flexibility and scalability in workflow scheduling,

while preserving the autonomy of actors. The performance of

the algorithm has been evaluated analytically, and compared

to state-of-the-art iBADMM algorithm. Evaluation results il-

lustrated the superior performance of the proposed algorithm

and revealed non-trivial trade-offs between workflow intents

and the heterogeneity of green energy in the ecosystem.

This included the interplay between green energy supply and

diverse energy prices between edge and cloud, with more

expensive green edge energy reducing the gains of proximity.
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