
DEFT: Distributed, Elastic, and Fault-tolerant State
Management of Network Functions
Md Mahir Shahriyar, Gourab Saha, Bishwajit Bhattacharjee, Rezwana Reaz

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology
Dhaka, Bangladesh

Email: {1605024, 1605053, 1605003}@ugrad.cse.buet.ac.bd, rezwana@teacher.cse.buet.ac.bd

Abstract—Network function virtualization is the key to devel-
oping elastically scalable and fault-tolerant network functions
(e.g. load balancer, firewall etc.). By integrating NFV and SDN
technologies, it is feasible to dynamically reroute traffic to new
network function (NF) instances in the event of an NF failure or
overload scenario. The fact that the majority of network functions
are stateful makes the task more challenging. State migration and
state replication are common approaches in achieving elasticity
and fault tolerance. The majority of the studies in the literature
either emphasize fault tolerance or elastic scalability while de-
signing a state management system for network functions. In this
paper, we have designed a complete state management system,
called DEFT, that meets both elasticity and fault-tolerance goals.
Our system also supports strong consistency on global state
updates. While existing designs rely on a central controller
or remote central storage to achieve strong consistency on
state updates, DEFT utilizes distributed consensus mechanism
to achieve the same. We have done a proof of concept imple-
mentation of DEFT and extensively tested DEFT under several
model conditions to evaluate its scalability and performance. Our
experimental results show that DEFT is scalable and maintains
a considerably high throughput throughout. It incurs minimal
performance overhead while achieving strong consistency on state
updates.

Index Terms—Network function virtualization, Software de-
fined networking, Distributed computing, Fault tolerant systems

I. INTRODUCTION

Network Function Virtualization (NFV) has replaced the
dedicated hardware for implementing network functions with
virtual machines (VMs) that run on physical servers. Sig-
nificant benefits of NFV include scalability, elasticity, fault-
tolerance, and cost-efficiency. In the rest of this article, a
virtual processing unit implementing a network function is
referred to as an NF.

A network function is called stateful when the processing
of a current packet depends on the packets that have been
processed earlier. This dependency is carried out by updating
a predefined set of parameters while processing packets, called
network function states or simply states. We can categorize
states into the following two types.

• Per-flow states: States that are updated by a single flow
are called per-flow states, also known as local states.

• Global states: States that are updated by multiple flows
are called global states. For example, the number of
flows originating from a particular source IP address at a
particular time interval is an example of a global state.

NFs can be distributed across different physical servers.
Traffic can be distributed on a per-flow or per-packet basis
on NFs. Elastic scaling of NFs occurs when one or more
NFs become overloaded, leading to the relocation of traffic
to new NF instances. Failure of an active NF also requires
redistribution of traffic to other (replica) NFs.

State management of network functions includes state shar-
ing among the NFs, state migration under scaling operation if
states are not shared across NFs, and state recovery due to NF
failure. Some pioneering efforts to design NF state manage-
ment systems are OpenNF [1], Split-Merge [2], StatelessNF
[3], S6 [4] and so on.

OpenNF [1] supports state-sharing across NFs through a
central controller and provides a loss-free and order-preserving
state migration mechanism. Failures of NFs can be handled
through replication. However, dependency on the central con-
troller to facilitate state synchronization and state-sharing can
lead to a single point of failure and limit scalability.

StatelessNF [3] and S6 [4] avoid state migration during
scaling events. In StatelessNF [3], states reside in a low-
latency, resilient remote server, eliminating the need for migra-
tion during regular or scaling events. However, this approach
necessitates remote state access for per-packet processing and
presents challenges in maintaining a consistently low-latency
and resilient remote server. S6 [4] also avoids state migration
as states are stored in a distributed object space and accessible
to all NFs. However, read-heavy states may be exported to
requesting NF. Thus, S6 does not eliminate state migration
completely. The current design of S6 does not consider NF
failure.

Fault-tolerance of NF failures can be achieved by replicating
NF states. Pioneering efforts that deal with NF failure by
NF replication are Pico replication [5], FTMB [6], REIN-
FORCE [7]. In these works, for each NF there exists a replica
NF and states are replicated from the active NF to the replica
NF. These works do not consider elastic scaling. Since states
are not shared across all replicas, explicit state migration is
required in the event of elastic scaling and load balancing.

Unlike most of the previous works that primarily focus
either on elasticity or NF failure, we aim to integrate both NF
failures and elastic scaling while designing a state management
system for stateful network functions.

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP



A. Motivation of Our Work

• Distributed State Management under Elasticity: Most
existing works focus on techniques to manage NF states
(i.e., how the states are shared and migrated during
scaling events) that rely on a central controller or remote
storage. Therefore, there is a need for state management
systems reliant on distributed mechanisms.

• State Management under NF Failure: Existing works
ignore NF failures or simply refer to NF replication to
recover from failure. Hence, there exists a need for de-
vising detailed mechanisms showing how state replication
should work under a chosen consistency model.

• Integration of Elasticity and NF Failure: Elastic scaling
requires to deal with active flow migration from one NF
to a non-replica NF during scaling events. On the other
hand, fault-tolerance requires to deal with replication
mechanism to meet the consistency requirement of the
system. Thus, there exists a need for a complete state
management system that meets both elasticity and fault-
tolerance goals.

B. Design Challenges

1) Elasticity Challenges:
E1. Loss Free State Migration: When an active flow is

migrated from a current instance to a new instance, the
new instance must have the necessary states to process
the incoming requests. Any in-flight traffic that reaches
the source instance after the migration has started needs
to be processed.

E2. Order Preserving State Migration: Per-flow state updates
must be done in the order in which packets are received
by the switch despite active flow reallocation. Global
state updates must be done in the same order across all
NFs despite flow migration.

2) Fault-tolerance Challenges:
F1. Loss Free Failure Recovery: State preservation must be

guaranteed in the event of NF instance failure or node
failure by performing state replication during normal
operation. Any in-flight traffic that reaches failed NF
instance needs to be processed.

F2. Order Preserving Failure Recovery: Per-flow state up-
dates must be done in the order in which packets are
received by the switch despite active flow relocation due
to NF failure. Global state updates must be done in the
same order across all NFs despite NF failure.

C. Our Contribution

In this paper, we have designed a complete NF state
management system, called DEFT, that addresses both elastic
scaling and NF failures and holds the following properties.

Before we explain the properties of DEFT, we define the
consistency model for our system.

Strong Consistency: State updates are seen by all NFs in
the same global order and the global update order of a state is
consistent with the local update order of that of a state with
respect to an NF.

DEFT Properties: DEFT holds the following properties.

P1. Replicated Global States: Global states are replicated
across all NFs in the system.

P2. Distributed State Management: The tasks related to
state management are performed without involving any
central entity. The update order of global states is
solely determined by NFs. Moreover, state migration and
failure recovery are done peer-to-peer.

P3. Strongly Consistent Global States: Global states are
strongly consistent across NFs.

P4. Order preserving Per-flow State Update: Per-flow states
are updated in the order in which the corresponding
packets were received by the system irrespective of the
flow migration between NFs due to scaling events or NF
failure.

P5. Loss-Free and order-preserving state migration and fail-
ure recovery.

P6. Loose Flow-Instance Affinity: An instance keeps record
of per-flow states while the instance is actively process-
ing the flow. When an instance fails, it only exhibits
fail-stop behavior.

II. LITERATURE REVIEW

We divide the literature into two groups. One group of work
deals primarily with elastic scaling, and the other group of
work focuses on fault-tolerance of network functions.

A. Elastic State Management

State management during scaling events follows two strate-
gies: state migration and migration avoidance.

1) State Migration Strategy: Among different studies that
deal with state migration, Split/Merge [2] and OpenNF [1]
align with DEFT the most. Split/Merge [2] introduced the
concepts of partitioned and coherent NF states. Coherent state
updates are periodically merged, and so remain eventually
consistent across replicas. However, any in-flight traffic that
arrives at the source NF during NF state migration is dropped.
OpenNF [1] uses move, copy, and share operations to achieve
different levels of consistency in NF states sharing. (specially
share operation which manages to achieve strong [8] or strict
[9] consistency). However, they all require central controller
in order to operate.

2) Migration Avoidance Strategy: An alternative option to
state migration is migration avoidance. Two notable studies
that follow this strategy are StatelessNF [3] and S6 [4] to
various degrees. StatelessNF [3] manages to achieve this by
making states accessible to all NFs (global states) through data
store. This adds to the latency of the system and makes the
data store a single point of failure. In S6, the states reside in
distributed shared object (DSO) space and are tied to NFs
through a concept called state-instance affinity. While this
does not completely eliminate state migration, it minimizes
the issues that might arrive with extensive state migration and
thus achieves eventual consistency.

2023 19th International Conference on Network and Service Management (CNSM)



B. Fault Tolerant State Management
Pico Replication [5] utilizes frequent checkpointing [10] for

failure recovery while FTMB [6] does the opposite. Packets
are processed in batches and released after the successful
completion of a checkpointing. The model followed by Pico
Replication [5] allows it to avoid packet replay during recovery
from failure. On the other hand, FTMB [6] manages to achieve
high throughput during normal operation following its strategy.
Both systems utilize backups to handle the failure of primary
NF. Backup restores to the last saved checkpoint upon failure
of the primary NF. Pico [5] does not handle in-flight packets
which may arrive at the primary during checkpointing.

REINFORCE [7] proposed a fault-tolerant system with
frequent batch processing similar to Pico Replication [5] and
infrequent checkpointing with packet-replay similar to FTMB
[6]. Packets are buffered at a predecessor node and replayed to
the backup node in case of failure. After a batch of packets are
processed at the primary, only the values of Transmit Times-
tamp (TxTs) table are transmitted to the backup node and after
that, the processed batch is released. Strict checkpointing [10]
is imposed instead of lazy checkpointing when the processed
batch contains non-deterministic [11] packets.

III. DEFT DESIGN

In our system, a node comprises multiple NF instances, and
each NF works either as a primary NF or as the backup of a
primary NF. We call the later ones secondary NFs.

We design our system based on the following assumptions.
• An NF instance or a node hosting an NF instance may

fail. However, we do not consider any communication
link failure.

• Our system tolerates fail-stop but no byzantine failures.
• Packets may get reordered but no packet is lost in the

communication channel.
• Traffic distribution, load balancing, and detection of NF

failures are handled by an SDN controller. The handling
mechanism and the failure recovery of the SDN controller
are out of the scope of this paper.

• We assume per-flow distribution of packets among the
primary NFs.

We will discuss more on our failure model in Section VI.
The SDN controller includes a Failure Detection Unit

(FDU) responsible for identifying NF failures in the network.
When a primary NF failure is detected, the FDU instructs the
corresponding secondary NF to assume the primary role.

An NF instance is comprised of the following major compo-
nents: input buffer, output buffer, network function processing
unit, state manager, transaction coordinator, and a client to
an NF cluster. All NFs in the network form this cluster. We
present the architecture of an NF instance of our system in
Figure 1.

An input buffer stores the incoming packets until they are
processed and the output buffer holds the processed packets
until they are released. The network function processing (or
simply the processing unit) implements the underlying net-
work function and processes input traffic. The state manager

Fig. 1: Detailed Architecture of an NF

of a primary NF delegates the responsibility of sharing state
updates with the secondary NF to the transaction coordinator.
Whenever the primary NF fills the output buffer, the trans-
action coordinator initiates an atomic commit between the
primary and the secondary NF to share the corresponding state
updates. The responsibility of sharing global state updates is
delegated to a client in the NF cluster. Whenever an NF wants
to update any global state, it initiates a consensus protocol
informing all other NFs within the cluster about the update.

IV. WORKFLOW OF DEFT

A. Packet Stamping and Duplication

All incoming packets pass through the stamper module
before reaching NFs. The stamper module has multiple stamp-
ing units and a stamper manager. The stamper manager is
responsible for distributing incoming packets to the appro-
priate stamping units based on a predefined hash calculated
from the packet’s header. This process ensures that packets
belonging to the same flow are processed by the same unit.
The task of a stamping unit is to assign a unique identifier
consisting of two integers (flow ID, per-flow packet counter),
to the packet’s payload and forward the packet to the switch.
Each stamping unit assigns flow ID-s from a disjoint subset
of natural numbers. The stamped packet is then forwarded to
a primary NF from the switch. The packet is also duplicated
and forwarded to the corresponding backup NF.

B. Packet Processing

We want to achieve order-preserved per-flow state updates
and strongly consistent global state updates. To achieve this,
we want an NF to process the packets of a particular flow
in the order they were received by the stamper module. But a
packet might get reordered on the path to NF. The architecture
in Figure 1 shows that the packets will reside in an input buffer
before entering the processing unit. The input buffer can be
considered as a FIFO queue.

The processing unit maintains a HashMap called
nextExpectedPktID to select the packet to process

2023 19th International Conference on Network and Service Management (CNSM)



from the input buffer. The nextExpectedPktID is a
HashMap with flow ID as the key and one plus the count of
the processed packets so far from the corresponding flow as
the value.

A packet with an identifier (flow ID, per-flow packet
counter) matches nextExpectedPktID if there is an entry
in the corresponding HashMap with flow ID as its key and per-
flow packet counter as its value.

The following steps describe the workflow of the packet
processing unit.

Step 1: If there is no space in the output buffer, then no
packet is retrieved from the input buffer to process.

Step 2: If there exists space in the output buffer, then a
packet p is popped from the queue. If the packet identifier of
p matches with nextExpectedPktID, then p is processed
and placed into the output buffer. Also, the value of the corre-
sponding entry in the nextExpectedPktID is incremented.

Otherwise, p is placed in a HashMap called pendingList
with flow ID as the key and a priority queue as the value. The
priority queue stores the packets that cannot be processed now.
The priority queue is sorted by the value field (i.e. per-flow
packet counter) of the packet identifier.

Step 1 and Step 2 are repeated. Each time a packet
from a particular flow is processed, the pendingList is
checked whether any subsequent packet from the same flow
is pending to be processed. If the identifier of a packet
p of that flow matches with nextExpectedPktID, then
p is processed and removed from the pendingList and
nextExpectedPktID is updated accordingly. The process
is repeated until there is no pending packet of that flow that
can be processed now. After processing and updating the states
of a packet, primary NF will store that packet in the output
buffer. The size of the output buffer is denoted as the batch
size.

C. State Update

A packet might update both per-flow states and global states
in the system. We can also term the per-flow state updates as
local updates.

1) Global Update: Whenever a global update is encountered
for any packet p, the primary initiates the consensus
protocol with other NFs with state update along with
the packet identifier of p. This identifier will only
be remembered by the corresponding secondary NF.
This is required because if the primary fails before
completing the current batch, the secondary will repro-
cess the corresponding batch and update local states
skipping the global updates up to the last received
packet identifier. A successful return from a consensus
protocol marks the end of processing of packet p and
the nextExpectedPktID is updated accordingly.

2) Local Update: DEFT achieves order-preserving local
state updates. The primary NF processes the packets
of a flow in the same exact order in which the switch
receives them. All the packets that leave the processing

unit reside in the output buffer and are not immediately
released.

D. State Replication

When a batch is full, the primary NF shares two pieces
of information with the secondary NF: packet clock and
state clock. packet clock consists of the most recent
HashMap nextExpectedPktID after processing a batch
and a batch ID t, where t is an integer value. packet
clock is shared with secondary NF via two-phase commit
protocol (2PC) [12]. Packet processing is halted during this
time. Upon committing, the primary NF will release the
batch from the output buffer. state clock consists of three
elements: the most recent HashMap nextExpectedPktID,
corresponding state updates, and a batch ID t, where t is an
integer value.

Reason for sending packet clock: In case of primary
NF failure, secondary NF will replay buffered packets to
retrieve states. Since packet clock indicates the last batch
of packets that the primary NF has released, the secondary NF
will not release the same packets.

Reason for sending state clock: When the secondary
receives state clock with batch ID t, it can be guaranteed
that the last state updates with which it is consistent with the
primary NF correspond to the updates by batch t of packets.
So, upon failure, the secondary can process packets from the
next batch to avoid duplicate updates of the same states.

V. ELASTIC SCALING

When any NF A gets overloaded, some flows need to be
directed to a different NF B. Only relocation of flows is not
enough as NF B does not possess all the states related to these
flows. We discuss the scaling procedure below.

We consider that packets of a particular flow will be directed
to a particular NF i.e. no packet of the same flow will be
distributed among multiple primary NFs. So, if we want to
scale, we require some set S of flows that were forwarded
towards A to be now directed towards B. Let, s be a flow and
s ∈ S. We now describe the methodology we follow while
migrating flow s from NF A to NF B.

First, we start buffering the packets of flow s at NF A.
Then we migrate the states pertinent to flow s to NF B via
2PC. After the migration is complete, both NF A and B have
the necessary states to process the packets of flow s. The
SDN controller then changes the flow rule at the switch so
that the packets of flow s are now forwarded towards NF B.
So, all new packets of flow s will now arrive at B instead
of A. Finally, NF A will forward the buffered packets of s
towards the switch and these forwarded packets too will be
sent towards NF B. If there are any in-flight packets of flow
s, they will be forwarded to B after reaching A.

We can show that no packet will be lost during or after
state migration and per-flow state updates preserve the order in
which the corresponding packets were received by the switch.
The first proof is trivial because none of the packets that arrive
at A are dropped and directed towards B later on. For the

2023 19th International Conference on Network and Service Management (CNSM)



second proof, we have to understand that the new packets
of flow s which are sent from the switch to B have higher
identifiers than the packets of flow s that are forwarded from
A to B. So, even though the new packets of flow s sent
from the switch to B arrive before the packets forwarded
from A to B, these packets would reside in the NF B’s
input buffer. NF B will process a packet of flow s if the
identifier of that packet matches the nextExpectedPktID
of NF B. Note that during the state migration, NF A will also
share its nextExpectedPktID to B and B will update its
own nextExpectedPktID accordingly. As a result, NF B
knows the count of the last packet of flow s that has been
processed by NF A.

VI. FAULT TOLERANCE

Achieving fault tolerance is a prime objective of DEFT
design. Studies have shown that middlebox-failure [13], [14]
and software-failure [15], [16] happen quite often in a system.
In our system, we consider both NF instance failure (software
failure) and node failure.

Before getting into failure recovery we need to clarify some
of the assumptions we make in our architecture.

• The failure detection unit (FDU) frequently checks for
any form of NF failure. Handling the failure of the FDU
unit is out of the scope of this work.

• Primary NF and the corresponding secondary NF do
not reside on the same physical node and do not fail
simultaneously.

• We only consider the crash failure of NFs in our system.
Now we discuss our failure recovery mechanism.

A. NF Failure Recovery

When a primary NF fails, the corresponding secondary NF
takes over and continues packet processing. First, the FDU
unit acknowledges primary NF A failure and informs the
corresponding secondary NF B. Next, it assigns NF B as the
new primary and NF C as the new secondary NF. Now, NF B
has to migrate the state updates along with the last received
nextExpectedPktID from NF A and the buffered packets
to NF C so that the new secondary NF becomes consistent
with the new primary NF. Note that, we would not incur any
packet loss here as duplicate packets are always forwarded
to the corresponding secondary NF and in this case, all the
packets that already reached (or in-flight) to NF A but have
not been processed due to the failure of A are also sent to NF
B. Now, NF B needs to process these buffered packets. The
SDN controller changes the flow rule at the switch such that
all the packets related to that flow would now be forwarded
to NF B and duplicate packets would be sent to the newly
assigned secondary NF C.

Let the last received packet clock by NF B from NF A
has a batch ID i. Also, let the last received state clock by
NF B from NF A has a batch ID j. Now, one of the following
two cases occurs.

1) Case 1: If i = j. In this case, NF B starts processing
packets, updating states, and releasing packets according

to the nextExpectedPktID value in the packet
clock.

2) Case 2: i = j + 1. In this case, NF B starts
processing packets and updating states according to
the nextExpectedPktID value in the state
clock. However, packets are released according to the
nextExpectedPktID value in the packet clock.

All the newly processed packets’ per-flow states will be
shared with the newly assigned secondary NF C just like
before. By following this mechanism, we can both ensure loss-
free packet processing and achieve order-preserving per-flow
state updates even if primary NF fails at any time.

If any secondary NF fails, the SDN controller would per-
form the following. 1) Assign a new secondary NF and change
the forwarding rule at the switch such that duplicate packets
will now be forwarded to the newly assigned secondary NF; 2)
Instruct primary NF to share its states with the newly assigned
secondary NF via 2PC. Packet processing will be halted during
this transaction.

B. Node Failure Recovery

Our system distributes network function (NF) instances
ensuring primary and secondary instances of the same NF
always run on different nodes. This approach guarantees that
if a node fails along with all the NFs hosted on it, the system
will continue to operate normally.

Our system can tolerate the simultaneous failure of multiple
primary NFs residing in the same node or across several nodes.
It can also tolerate simultaneous failure of multiple nodes as
long as the failed nodes do not host the primary and backup
instances of the same NF.

C. Failure of Stamper Module

The stamper module consists of multiple stamping units and
a stamper manager. In the event of a single stamping unit
failure, only the flows assigned to that particular unit will be
impacted (incoming packets will be dropped). Suppose, the
failure of a stamping unit su impacts flow f . Upon recovery
of su, the remaining packets of flow f will reach su due to
predefined hashing. Flow f will now be recognized as a new
flow by su.

To mitigate single-point failures, we can increase the num-
ber of stamping units, distribute them across multiple nodes,
and replicate each unit as needed. If the stamper manager
fails, incoming packets will be dropped momentarily. Upon
recovery, the manager ensures that packets belonging to the
same flow are always forwarded to the same stamping unit. A
backup manager can reduce the impact of failure.

VII. EXPERIMENTS AND RESULTS

In our experiments1, we used latency, throughput, and
packet drop as our evaluation metrics.

1All of our experiments were conducted on an Intel® Core™ i7-10700K
CPU @ 3.80GHz CPU with 16 cores and 64GB RAM, Ubuntu 18.04.6 LTS.
Available at https://github.com/MahirSez/DEFT

2023 19th International Conference on Network and Service Management (CNSM)



A. Local State Update

In the following experiments, we investigate the optimal
values for batch size and buffer size in our system.

1) Small vs large batch size. Which one and why?: As our
system processes packets in batches, we first aim to determine
the optimal batch size for our system operation.

We start with a small batch size of 10 packets and send
the traffic at 10,000 packets/second to the system. When the
batch size is very low, frequent local state sharing increases
wait time in the input buffer resulting in increased latency.
As we increase the batch size, latency decreases. But after a
certain batch size limit (50 packets), DEFT’s latency starts to
increase as packets now have to stay in the buffer for a longer
period of time. Hence, we determine the optimal batch size
for DEFT is 50 at which point the system achieves its lowest
latency of 2.41 ms. We use this batch size in all successive
experiments. An illustration of this behavior can be seen in
Figure 2a.

We then try to find the effect of packet rate on this optimum
batch size. Increasing this traffic from 8,000 to 10,000 pack-
ets/second increases the rate at which DEFT processes them
from 7,950 to 9,906 packets/second respectively. This trend in
the increase in throughput retains till the packet rate exceeds
27,000 packets/second, beyond which the packet processing
rate does not seem to increase linearly as before. Figure 2b
illustrates this behavior graphically.

2) Buffer size is theoretically infinite. But do we really need
it?: We next evaluate the significance of input buffer size and
how it impacts packet drop in DEFT.

With a input buffer size equals to the batch size (50 packets),
when we send the traffic at 14,000 packets/second, the system
drops 257 packets out of the 50,000 packets it processed (about
0.51%). DEFT manages to process the whole traffic without
dropping any packets at a buffer size equals 5 times of the
batch size. This concludes that 5 batches of packets per input
buffer are sufficient for the system to encounter zero packet
loss. Figure 2c illustrates this behavior.

From Figure 2c, we can also see that with an increase in
buffer size for any given packet rate, the number of packets
dropped starts to reduce. This is because more packets can
be accommodated in the buffer. Additionally, for any given
buffer size, with an increase in the packet rate, the number of
packets dropped starts to increase.

B. Global State Update

In this section, we showcase DEFT’s robustness in handling
global state updates and illustrate how the system performs
under the burden of running consensus algorithms of greater
magnitude.

1) How frequently should we perform global updates?:
When the input traffic is 6,000 packets/second with a sin-
gle consensus per batch, the system does not seem to get
impacted at all and processes the traffic at around 6,000
packets/second. A significant change in throughput is seen
(5,484 packets/second) when the traffic is raised to 10,000

packets/second with a global update frequency of 10 per batch.
Figure 2d illustrates this behavior in detail.

2) How well does DEFT tackle a heavy consensus?: We ex-
amine DEFT’s behavior at a micro-level, testing its resilience
to heavy global state updates. Under normal conditions, DEFT
exhibits a latency of around 2.7 ms. When subjected to 100
consecutive global state updates, it experiences a brief drop
in throughput to 1.9 kpps for 100 ms, followed by a rapid
recovery to its normal processing rate of 10 kpps. This high-
lights DEFT’s ability to quickly bounce back from temporary
latency and throughput challenges caused by intense global
state updates. We illustrate this behavior through a timelapse
graph in Figure 3.

VIII. DISCUSSION

We tested the scalability and performance of DEFT in
scenarios like amping up the packet sending rate, increasing
the rate of global updates, and imposing heavy global updates
to stress test the system.

We found the following optimal values for the system under
the current experimental setup:

• We found that a batch size of 50 is optimal for DEFT.
Decreasing the batch size from this increases the rate of
local state updates and increasing it makes the packets
wait in the buffer for a longer period of time.

• The optimal input buffer size for DEFT is 5 batches
of packets. Keeping the buffer size to any lower value
incurred packet loss in the system.

• For a moderate packet rate (4,000-6,000 packets/second),
DEFT’s throughput and latency are invariant of global
state update frequency.

IX. CONCLUSION AND FUTURE WORK

While the relevant research on state management systems
focuses on either fault-tolerance or elastic scaling, we have
designed a complete state management system, DEFT, that
is fault-tolerant and supports elastic scaling. DEFT achieves
strong consistency on global state updates in a distributed
manner. DEFT also guarantees loss-free and order-preserving
state migration and failure recovery. Our experiments show
that DEFT achieves considerably high throughput under sev-
eral model conditions. We also observe that DEFT can achieve
strong consistency with minimal performance overhead.

In this work, our primary objective was to bring down the
design goals under one roof when dealing with both elastic
scaling and fault-tolerance and present mechanisms to deal
with states without any central dependency in a comprehensive
manner. However, we understand that there are still ways to
improve, which we leave as future work. Here are some of the
ways.

1) We want to integrate practical and commercially avail-
able NFs like Bro IDS [17], and PRADS [18] in our
implementation.

2) Existing systems have different design goals and proper-
ties. We want to develop a generalized and streamlined

2023 19th International Conference on Network and Service Management (CNSM)



40 60 80 100 120 140 160 180 200
Batch Size

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
La

te
nc

y(
m

s)
Packet Rate(packets/s)

8000
10000
12000
20000
25000

(a)

8k 12k 16k 20k 24k 28k 32k
Packet Rate(packets/s)

10

15

20

25

30

Th
ro

ug
hp

ut
(k

pp
s)

Batch Size
10
20
30
40
50
80

(b)

� � � � � �

����������������������

�

��

���

���

���

���

�
�
�
�
�
��
��
��
�
�
�
�

����������������������

����

����

�����

�����

�����

(c)

1 5 10 15 20
Global Update Frequency

2

4

6

8

10

12

Th
ro

ug
hp

ut
(k

pp
s)

Packet Rate(packets/s)
4000
6000
8000
10000
12000

(d)

Fig. 2: (a) Increasing batch size reduces latency up to a certain threshold. (b) Batch sizes and packet rates linearly affect
throughput until a threshold. (c) Change in input buffer size affects the number of dropped packets. (d) With increasing packet
rates, global updates have a more pronounced impact on throughput, with a lesser effect at moderate rates.

����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� �����

�������

�

�

��

��

��

��

��

��

��

�
�
��
�
�
�
��

�
�

�������

�

�

�

�

�

��

��

��

�
�
��
�
�
�
�
�
��
�
�
�
�
�

����������

Fig. 3: The figure shows the impact of a heavy global update
on DEFT in a granular timescale.

evaluation mechanism to test performance of one system
against another.

3) Our current configuration has global states shared among
all the participants. However, all global states may not
be associated with every participant. As such, it adds
unnecessary overhead by having more participants than
required. We can resolve this issue by having a cluster-
based state update for the global states. In this cluster-
based design, only the NFs concerned with a given state
will be included in the cluster for that state.

REFERENCES

[1] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 163–174, 2014.

[2] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), 2013, pp. 227–240.

[3] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless network
functions: Breaking the tight coupling of state and processing,” in
Proccedings of the 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), 2017, pp. 97–112.

[4] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), 2018, pp. 299–312.

[5] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A
high availability framework for middleboxes,” in Proceedings of the 4th
annual Symposium on Cloud Computing, 2013, pp. 1–15.

[6] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishnamurthy, C. Maciocco,
M. Manesh, J. Martins, S. Ratnasamy, L. Rizzo et al., “Rollback-
recovery for middleboxes,” in Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication, 2015, pp. 227–240.

[7] S. G. Kulkarni, G. Liu, K. Ramakrishnan, M. Arumaithurai, T. Wood,
and X. Fu, “Reinforce: Achieving efficient failure resiliency for network
function virtualization based services,” in Proceedings of the 14th
International Conference on emerging Networking Experiments and
Technologies, 2018, pp. 41–53.

[8] M. Vukolic, “Eventually returning to strong consistency,” IEEE Data
Eng. Bull., vol. 39, no. 1, pp. 39–44, 2016.

[9] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:
A tutorial,” Computer, vol. 29, no. 12, pp. 66–76, 1996.

[10] P. J. S., “Libckpt : Transparent checkpointing under unix,” Proceedings
of the Usenix Winter Technical Conference, pp. 213–223, 1995.
[Online]. Available: https://cir.nii.ac.jp/crid/1573387449739290752

[11] C. Cachin, S. Schubert, and M. Vukolić, “Non-determinism in byzantine
fault-tolerant replication,” arXiv preprint arXiv:1603.07351, 2016.

[12] G. Samaras, K. Britton, A. Citron, and C. Mohan, “Two-phase commit
optimizations in a commercial distributed environment,” Distributed and
Parallel Databases, vol. 3, no. 4, pp. 325–360, 1995.

[13] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 Conference, 2011, pp. 350–361.

[14] R. Potharaju and N. Jain, “Demystifying the dark side of the middle: a
field study of middlebox failures in datacenters,” in Proceedings of the
2013 conference on Internet measurement conference, 2013, pp. 9–22.

[15] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What bugs live in the cloud? a study of 3000+ issues
in cloud systems,” in Proceedings of the ACM symposium on cloud
computing, 2014, pp. 1–14.

[16] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why does the cloud stop computing?
lessons from hundreds of service outages,” in Proceedings of the 7th
ACM Symposium on Cloud Computing, 2016, pp. 1–16.

[17] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[18] Passive real-time asset detection system. [Online]. Available:
https://github.com/gamelinux/prads

2023 19th International Conference on Network and Service Management (CNSM)


