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Abstract—Vehicle-to-Everything (V2X) communication
standards, which mainly rely on the 5G New Radio (NR)
technology, can be subject to attacks such as Distributed Denial
of Service (DDoS), which flood the network with non-expected
control information. This causes network performance
degradation and leads to accidents involving vehicles and/or
vulnerable road users. A potential approach to mitigate DDoS
attacks is to isolate the hijacked vehicular users in
sinkhole-type slices that contain a small amount of network
resources. Nevertheless, DDoS attacks may be unpredictable
since it can modify its communication protocol for example,
which makes it difficult to determine the proper moment to
release mitigated users from the sinkhole-type slices once the
security breach ceases to exist. In such a context, we propose a
Reinforcement Learning-based approach that evaluates multiple
types of DDoS attacks on sinkhole-type slices and estimates the
optimal time to keep a mitigated user in such a slice before
releasing it. The proposed approach is trained and tested with
a dataset collected from a 5G-V2X testbed. Results show that
our approach outperforms a benchmark of random actions, in
terms of the mean cumulative reward and error over time.

Index Terms—5G-V2X, attack mitigation, reinforcement
learning.

I. INTRODUCTION

Vehicular systems integrated into slice-powered
fifth-generation (5G) and beyond networks bring a new set
of applications and network services to mobile users. The
communication channels between vehicles and roadside
infrastructure, as well as vulnerable road users (VRUs) are
particularly important to ensure their safety and improve the
overall efficiency of our roads. Vehicle-to-Everything (V2X)
communication standards come to fulfill these
requirements [1], and an important ally to V2X is the use of
network slicing, which creates multiple logical instances of
the physical network, called “network slices”.

From a security perspective, 5G-V2X communications can
be prone to cyberattacks such as Distributed Denial of
Service (DDoS), which floods V2X communication
interfaces with different communication protocols (e.g., TCP,
UDP and ICMP) that are not expected by any entity in the
5G-V2X network. Network performance degradation in
terms of throughput, delay, or service availability, may
happen as a consequence of such attacks.

Based on our previous work [2, 3], a potential approach to
mitigate DDoS attacks is isolating the attack sources in
sinkhole-type slices, where a small amount of physical
resource blocks (PRBs) is reserved, thus limiting the
attackers’ actions. However, a smart DDoS attack behavior
prevents network entities from easily estimating the proper
time to release users from sinkhole-type slices, in cases
where the mitigated device is used as a victim by external
malicious entities. DDoS attacks have been widely discussed
in the literature, however, their application in the 5G-V2X
context has not been thoroughly explored [2–4].

To this end, we propose in this paper a Reinforcement
Learning (RL)-based solution to evaluate multiple types of
DDoS attacks in 5G-V2X networks, in the context of
mitigated users in a sinkhole-type slice. Specifically, by
evaluating the mitigated users’ behavior, our RL agent
defines the optimal time to release them from the
sinkhole-type slice, once they do not represent a threat to
benign users anymore. To do so, we first collect a dataset
using our 5G-V2X testbed that is mainly focused on
detecting and mitigating cybersecurity attacks, such as radio
jamming and DDoS [2, 3]. Then, based on the obtained
dataset, we train different RL agents. Our approach has
shown promising results, outperforming a benchmark of
random actions in terms of the mean cumulative reward and
error over time, thus showcasing better convergence and
stability through time.

The remainder of this paper is organized as follows.
Section II discusses the related work. Section III elaborates
on the 5G-V2X testbed used to collect data and train the RL
agents. Section IV describes the methodology adopted to
collect our dataset and provides details about the RL
environment and the investigated algorithms. Finally,
Section V illustrates the performance results, while
Section VI concludes the paper.

II. RELATED WORK

Several works have been proposed in the literature to
optimize security solutions whilst considering 5G network
requirements. However, there is a lack of works that rely on
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slice-powered 5G-V2X networks and RL-based approaches
to detect and mitigate cyberattacks, such as DDoS.

Authors of [5] proposed an optimization model to
proactively mitigate DDoS attacks in the 5G Core Network
(CN) through on-demand intra/inter slice isolation, to
guarantee network performance requirements for 5G CN
slices. This work focuses only on protecting 5G CN slicing,
where an on-demand network service/function distribution
between slices occurs. In our work, we rather consider
slicing on the Radio Access Network (RAN), where physical
resources could be shared between users. Similarly, authors
in [6] proposed DeepSecure, a framework that used a Long
Short Term Memory (LSTM) Deep Learning (DL)-based
model to classify users’ network traffic as DDoS attack or
benign, as well as a model that predicted the appropriate
slice for users previously classified as benign. The main
drawback of the proposed method is the use of a dataset that
is not directly related to a 5G-based environment. Finally,
in [7], the authors proposed a hierarchical RL-based
cooperative attack detection system to protect 5G wireless
systems from advanced attacks such as jamming and DDoS
attacks. The detection system is spread across key network
components like access points, base stations, and servers. It
is designed to identify the key characteristics associated with
these attacks and detect them.

The aforementioned works did not consider the detection
and mitigation of DDoS attacks in 5G-V2X communication
interfaces. Additionally, none of them used data collected from
a realistic 5G-V2X testbed, as we propose in this work to train
our RL agent.

III. 5G-V2X TESTBED DESCRIPTION

Fig. 1 shows the base hardware/software resources
deployed in our 5G-V2X testbed. Our work mainly relies on
a 5G standalone (SA) setup consisting of a 5G CN and a 5G
base station (gNodeB) at the RAN. To emulate these
components, we use OpenAirInterface (OAI) [8].

Our prototype also makes use of FlexRIC [9], a
software-defined controller that allows users to flexibly
monitor and control the RAN components over time, mainly
allowing to share the network’s resources among users in the
shape of network slices, the latter being composed of one or
more PRBs.

On top of FlexRIC, we also developed a northbound
Software-Defined Network (SDN) application, a.k.a. “Slicing
APP” application, which enables the network administrator
to deploy network slicing policies in a user-friendly and
abstracted manner. In this work, we consider two main
policies that operate simultaneously. The first one is a
DL-based attack detection agent that allows the RAN to
detect DDoS attacks in real-time, then move the mitigated
users to a sinkhole-type slice [2, 3]. The second policy
consists of the RL-based approach proposed in this work,
which focuses on the real-time evaluation of mitigated users
within the sinkhole-type slices to decide when they can be
moved back to the benign slice.
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Fig. 1: 5G-V2X testbed’s base hardware/software resources.

The 5G CN and 5G RAN components are executed in
separate machines. Specifically, two Dell Precision 5820
(Intel Xeon W-2265 3.50GHz with 12 cores, 128GB of
RAM) are used. The RAN machine is connected to a
USRP X310 card, which is responsible for emulating the
gNodeB, thus creating a communication interface between
the 5G RAN and the User Equipments (UEs). Finally, the
UEs are represented by two JetRacer Pro robot cars based on
the NVIDIA Jetson Nano platform [10]. To connect with the
5G RAN, each robot car integrates a SIMCom
SIM8202G-M2 5G module [11].

Our experiments generate benign traffic between the 5G CN
and one of the UEs at a fixed throughput. To do that, we use
the iperf3 tool [12], where the 5G CN is set as the client,
and one of the UEs is set as the server. On the other hand,
we set up the other UE to be responsible for deploying the
DDoS attacks using the Mausezahn tool [13], which targets
the 5G CN’s User Plane Function (UPF) module.

IV. METHODOLOGY

This section presents the adopted methodology to collect the
traffic dataset, as well as to train our RL agents to evaluate
the DDoS attacks. Specifically, we describe here the created
RL environment for training, in order to estimate the duration
of a DDoS attack and release time of mitigated users from the
sinkhole-type slice. For the sake of comparison and to provide
a robust insight regarding the addressed problem, we train
multiple types of RL agents and evaluate their performances
mainly in terms of cumulative rewards, and under different
DDoS attack scenarios.
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TABLE I: Data collection parameters for the DDoS scenarios.

Parameter Value

Mausezahn’s c value (duration of one attack burst) 1, 2, 3, 4, 5, 6
Interval between Two Attack Bursts 5, 7, 10 seconds
DDoS Source IP Address Range 12.1.1.1-12.1.1.62
DDoS Source Port Range 500-1000
DDoS Destination IP Address 12.1.1.1
DDoS Destination Port 80
Benign Traffic Throughput 30 Mbps
Data Collection Duration per Scenario 1 minute

A. Dataset Collection

To provide a complete and realistic DDoS traffic dataset, we
defined several scenarios for traffic generation. Each scenario
is characterized by its specific DDoS attack behavior, which
in turn is defined by two main parameters: 1) The duration
of one attack burst, and 2) The interval between two attack
bursts. For each scenario, the UEs and the gNodeB are placed
at fixed locations, and benign traffic generation is triggered
simultaneously with the DDoS attacks. In Table I, we illustrate
the main parameters’ values defined for the different DDoS
attack scenarios.

In addition to the DDoS attack scenarios, we include in our
dataset two benchmark scenarios: 1) No DDoS attacks are
executed, i.e., only iperf3 runs between the 5G CN and the
UEs, and 2) DDoS attacks are deployed randomly, i.e., with
random burst duration and interval values.

B. Reinforcement Learning Environment

RL can be used to learn an optimal strategy for an
operational environment through experience and
rewards [14]. Specifically, a RL agent aims to learn an
optimal strategy ρ : S → A to obtain a maximum
reward [15, 16].

In our system, the main target is to estimate the attack
duration, denoted dt, and based on it, decide when to move
a mitigated UE from the sinkhole-type slice to its operating
benign slice. For the sake of simplicity, we assume that an
attack duration dt is within the discretized range of 1 to 100
seconds. In order to assess the RL agent’s performance in
different scenarios, we divide all possible values into four
ranges Di, ∀1 ≤ i ≤ 4, where D1 = [1, 25], D2 = [25, 50],
D3 = [50, 75], and D4 = [75, 100]. At any time, an attack
duration dt is randomly selected from a range Di based on
the uniform distribution.

Subsequently, the main components of our RL system can
described as follows:

• State: The set of states is defined as S, where a single
state, denoted as st, corresponds to the duration
between two consecutive attack bursts (in seconds). For
the sake of simplicity, we assume that st is discrete and
defined within the range 1 to 200 seconds. The value
for each state is decomposed into two time durations,
defined as st = dt−1 + nt−1, where dt−1 is the duration
of the previous attack, and nt−1 is the time spent in the

benign slice before generating the new attack. The
variable nt follows the Poisson Point Process (PPP)
with distinct values of rate λ. The value of λ defines
the cadence of the attacks and is selected within the set
{20, 40, 60, 80} for different DDoS attack scenarios.

• Action: The set of actions is denoted A, where a single
action, at, represents the agent’s decision on when to
restore the mitigated UE (victim) to the benign slice. A
is defined with a set of regularly spaced values within
the discrete range of 1 to 100 seconds. The spacing step
between the action values in this set is defined as µ,
where µ ∈ {1, 2, 5, 10}. For instance, when µ = 1, the
actions set is defined as A1 = {1, 2, . . . , 100}, while
for µ = 10, it is defined as A10 = {1, 10, 20, . . . , 100}.

• State Transition Probability: The expected probability
of transitioning from current state st to the next
state st+1 after the execution of action at, is defined
as P (st+1|st, at); This probability depends on the used
PPP with parameter λ to generate the attacks.

• Reward: After performing an action, the RL agent is
given an immediate reward rt. In our system, we define
the value of rt as follows:

rt =
1

|at − dt|+ 1
, (1)

where | · | is the absolute value operator. In other
words, rt is equivalent to the inverse of the absolute
value of the difference between action at and
duration dt, where at represents the estimated attack
duration and dt is the attack’s real duration. The
denominator is increased by 1 in order to avoid division
by zero. The reward increases when the agent’s
estimation is closer to the real duration, hence
indicating a higher efficiency. The use of a RL agent
aims to select the policy that maximizes the discounted
cumulative reward R during the observation period T . It
can be expressed by

R = max
π

E

(
T−1∑
t=0

γtrt

)
, (2)

where π is the selected policy (action), E(·) is the
expectation function, and γ ∈ [0, 1] is the discount
factor that determines the importance of future
rewards [17].

C. Reinforcement Learning Algorithms

In this work, we based our solutions on four RL
algorithms, in combination with variations of the
environment parameters λ, µ, and Di. The considered RL
algorithms are detailed below:

• Q-learning: It is a model-free RL algorithm that seeks
the optimal policy for a RL agent by learning the optimal
action-value function, or Q-function [18]. The Q-function
estimates the expected future reward of taking a particular
action in a given state.
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• Deep Q-Network: Deep-Q-Network, a.k.a., DQN, is a
model-free RL algorithm that combines Q-learning with
Deep Neural Networks (DNNs) to learn a policy for an
agent in a given environment [19]. The Q-function is
approximated by a DNN that takes the state as input
and outputs the expected future reward for each action.

• Advantage Actor-Critic: This algorithm, also called A2C,
combines policy-based and value-based methods in RL.
It utilizes two neural networks: 1) The Actor for action
selection based on the current policy, and 2) The Critic for
estimating action quality through a value function [20].

• Proximal Policy Optimization: This algorithm, also
called PPO, is an iterative method that collects data
through interactions with the environment, computes
benefits for each action and optimizes the policy using
multiple updates. It creates a balance between
exploration and exploitation, resulting in effective
learning and policy convergence over time [21].

V. PERFORMANCE RESULTS

In this section, we present the performance results of our
solutions based on the previously defined RL algorithms,
given different environment conditions. We also realize a
performance comparison with a benchmark solution defined
with an agent that randomly selects actions, i.e., without any
learning, training, or decision criteria.

We consider two performance metrics: 1) The Mean
Cumulative Reward, which is computed by summing up the
immediate rewards over the episodes (in our case 1000
episodes), and 2) The Mean Error, or Loss Function, which
quantifies the difference between the agent’s selected action,
i.e., the estimated duration (in seconds) of the current DDoS
attack, and the real duration of the attack.

A. Simulation-based Results

We present here the results obtained with the considered
RL algorithms (described in Subsection IV-C) for several
DDoS attack scenarios, i.e., defined with different λ, µ,
or Di, ∀i ∈ [1, 4]. Unless stated otherwise, the RL-based
solutions are run for 100,000 episodes, with a discount
factor γ starting at 0.9 and then gradually decreasing to 0.1
through the episodes. Also, the replay buffer capacity is set
to 1,000 and the mini-batch size is fixed to 64. Finally, for
the DNN-based algorithms, the learning rate is set to 10−3.

In Fig. 2, we present the mean cumulative reward
performances achieved by the PPO, A2C, DQN, and
Q-learning-based solutions, as well as the benchmark
method, versus the episodes, and given A5, D2, and λ = 40.
The cumulative rewards consistently increase over time,
which shapes the convergence behavior of the solutions.
Indeed, all RL-based solutions significantly outperform the
benchmark performance, while presenting similar results.
However, among them, Q-learning stands out for its fast
convergence and superior stability through time. Given that
the context of 5G-V2X is very dynamic, stability is an

Fig. 2: Mean cumulative reward vs. episodes (different
solutions).

Fig. 3: Mean error vs. episodes (different solutions).

important criterion to consider for deploying adequate RL
solutions in a real environment.

Fig. 3 shows the mean error performance (in seconds) for
the same approaches and system conditions as Fig. 2. As it
can be seen, for any method, the mean error is very high at
first, then it decreases exponentially to be stabilized after
approximately 40,000 episodes. Indeed, the benchmark
stabilizes at a mean error value of 14 seconds, while the
RL-based solutions are capable of reducing the mean error to
approximately 3.8 seconds. Since the considered scenario
uses D2 with a mean attack duration of 37.5 seconds, then
the error represents an average 10% for the RL-based
approaches, but more than 37% for the benchmark.

In the aforementioned experiments, we built the RL
environment, in particular the states, by generating the latter
based on the PPP for the time of arrival of a new DDoS
attack (nt) and based on the uniform distribution in Di for
the attack duration (dt). In contrast, in the remaining, we
will base our experiments on the collected data from our
5G-V2X testbed. For the sake of simplicity, we decided to
deploy only the Q-learning-based approach, given its proven
superior performances, stability, and suitability for the
dynamic 5G-V2X environment.
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TABLE II: Attack duration estimation in 5G-V2X testbed (in
seconds).

Estimated attack duration 5G-V2X attack

of RL-based method real duration

6.1 5.7

10.4 10.6

8.5 8.1

12.1 12

11.6 11.4

5.0 4.9

3.0 3.3

14 13.8

11.3 11.5

9.7 9.6

B. 5G-V2X Testbed-based Results

Next, we built an experiment where ten bursts of DDoS
attacks with random durations are sequentially generated by
a malicious UE in the 5G-V2X testbed. With our
Q-learning-based solution deployed on the platform
(D1, µ = 0.1), we attempt to estimate the attacks’ real
durations and trigger the moving of the mitigated UE back
to the benign slice. Obtained results are presented in
Table II. Clearly, the Q-learning-based approach is capable
of accurately estimating the attack duration. On average, the
error is less than 3.2%. Hence, the proposed approach is
suitable for practical deployments in 5G-V2X environments.

VI. CONCLUSION

In this work, we introduced novel RL-based solutions to
mitigate DDoS attacks in 5G-V2X networks, which consider
users isolated in sinkhole-type slices as victims of external
attack sources. To evaluate the effectiveness of our proposed
methods, we built an OAI-based 5G-V2X testbed to collect the
necessary dataset for training and testing our approaches. The
performances of the RL-based solutions were compared with a
benchmark of randomly selected actions, in terms of the mean
cumulative reward and mean error. The obtained results show
that our RL-based methods outperform the benchmark and that
the Q-learning-based approach exhibits high stability in action
selection for different environment parameters. Hence, the Q-
learning-based solution is seen as the optimal choice for real
5G-V2X environments.

In future work, we intend to explore novel DL and
RL-based techniques to detect and mitigate inter-slice and
intra-slice DDoS attacks. We also plan to extend the scope
of the proposed RL-based solution by making it distributed
using Federated Learning. Finally, we will extend our dataset
by adding new features and DDoS-based scenarios, then
make it publicly available to enable the research community
to reproduce our experiments.
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