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Abstract—Today’s networked systems face significant secu-
rity challenges due to sophisticated attacks. Several Machine
Learning (ML) and Deep Learning (DL) models are employed
to combat these diverse attacks. Adversarial attacks, which
can evade detection by AI-based intrusion detection systems
(IDS) through small alterations to network attack traffic, pose
a significant concern. These AI-synthesized adversarial attacks
must adhere to network constraints to seem plausible. In this
work, we explore the validation criteria for such adversarial
attacks and propose a methodology for analyzing their quality.
We evaluate adversarial attack samples synthesized by state-of-
the-art generative DL models such as Variational autoencoder
(VAE), Conditional Variational autoencoder (CVAE), Generative
Adversarial Network (GAN) and compare the performance
with our CVAE-Adversarial Network (CVAE-AN) model. Results
indicate the effectiveness of CVAE-AN in synthesizing realistic
adversarial attacks.

Index Terms—Attack quality, Deep Learning, Generative mod-
els, Intrusion detection, Realistic adversarial attacks

I. INTRODUCTION

Artificial Intelligence (AI) is revolutionizing the functioning
of present-day networks and security systems. Nevertheless,
adversarial attacks present a significant danger to intrusion
detection systems that use AI. Research shows that an AI-
based IDS can easily be evaded by making slight modifications
to the original training data which generates an attack un-
known to the IDS [1], [2]. The goal of an adversarial attacker
is to manipulate an attack instance in such a way that it is
deceptively classified as benign. These attacks can exacerbate
potential damage to the organizations that employ such IDS
for securing their networks.

The network security research community has shown con-
siderable interest in synthesizing adversarial attacks using DL
models [3]–[5]. Multiple defense strategies are employed to
enhance the robustness of a model. Adversarial training, for
instance, is employed to improve the performance of AI-
based IDS against adversarial attacks. This method includes
generating adversarial attacks and adding these attacks into the
training of an AI-based IDS to improve its robustness against
such attacks [2].

However, in the cybersecurity domain, the generated adver-
sarial attacks must resemble realistic network attack traffic.
The “quality” of adversarial attacks is determined by their
ability to emulate the pattern of values of features for original
data while preserving the functional network attack traits.
High-quality adversarial attacks closely resemble realistic
data samples while introducing small variations in feature

values that can evade detection by the IDS. If adversarial
perturbations are added to alter the feature values without
maintaining the network constraints, the adversarial attack
becomes insignificant from a cybersecurity domain viewpoint.

In this particular context, we define a “polymorphic at-
tack” as an atypical attack that mutates its characteristics
or feature profile continuously to generate different variants
of the same attack to bypass a network’s detection systems
while maintaining the functional nature of the attack [2],
[6]. When using ML/DL techniques to generate polymorphic
adversarial network attacks, care must be taken to ensure
the feature values generated by AI are consistent because
current AI-based attack generation algorithms do not often
take features’ correlations into account. For instance, changing
the value of “packet mean interarrival time” to generate a
new attack without changing the “packet transmission rate”
is not feasible, as the two features are correlated. Similarly,
changing the features representing the statistical characteristics
of network traffic is not always possible without considering
their correlations.

Attack functionality is also another important factor. A
Denial-of-Service (DoS) attack must include a sufficiently high
volume to cause resource exhaustion at the target. An AI-
generated attack that does not take this fact into account, may
generate an attack that is insufficiently impactful to cause any
substantial consequence. When considering polymorphic ad-
versarial attacks in which the attacker must change the attack
features consistently to evade an AI-enabled IDS, one possible
solution is to create a valid attack baseline and then compare
subsequent generated attacks with this baseline. The argument
is that the modifications in attack features must be significant
enough to evade a trained IDS, yet statistically close to the
original attack to maintain attack feasibility and functionality.
Training a DL model with impractical adversarial data can
compromise the model since it learns invalid characteristics
and can eventually degrade its robustness and generalization
capability for real network scenarios [7]. Therefore, further
investigation into the synthesis of better-quality adversarial
attacks that resemble realistic network traffic is of utmost
importance.

This work is mainly focused on generating realistic adver-
sarial evasion attacks for a network intrusion detection system
(NIDS) using generative deep learning. We explore several
criteria for ensuring the validity of synthesized adversarial
network attacks. Our aim through this research is to develop a
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framework to assess the quality of adversarial attacks and use
it to evaluate our synthesized attacks. The main contribution
of this research includes:

• A methodology to investigate polymorphic adversarial
attack realism based on several syntactic and statistical
techniques.

• A comparative analysis of the quality of adversarial
samples synthesized by several state-of-the-art generative
DL models.

The rest of the paper is organized as follows. Section II
provides the background of adversarial ML/DL and discusses
the relevant related work. Section III describes multiple criteria
for ensuring attack quality and our proposed methodology
for attack quality analysis. Section IV provides details of our
experimental settings and presents an evaluation and analysis
of our results. Lastly, section V presents the conclusion for
this paper and a brief overview of future scope.

II. LITERATURE SURVEY

Adversarial machine learning is an emerging area of re-
search that aims to assess and enhance the resilience of
ML/DL models against deceptive behaviors. Adversarial attack
examples are intentionally crafted inputs designed to evade
detection by an AI-based IDS.

Several current research works focus on generating syn-
thetic network attack traffic using generative DL models such
as Generative Adversarial Network (GAN) [3], Variational
Autoencoder (VAE) [4], Conditional Variational Autoencoder
(CVAE) [5], and their variants. While these studies emphasize
enhancing IDS detection through adversarial training, class
balancing, and data augmentation techniques, it is important
to note that most of them may not be suitable for real
network scenarios where the validity of network data is crucial.
Furthermore, there is a lack of emphasis on evaluating the
quality of generated synthetic attacks for their effectiveness.

Some recent cybersecurity research works focus on the in-
vestigation of the validity of adversarial cyberattacks. Merzouk
et al. [8], [9] provide a comprehensive analysis of adversarial
attacks synthesized using various methods such as the Fast
Gradient Sign Method (FGSM), Basic Iterative Method (BIM),
DeepFool, Jacobian-based Saliency Map Attack (JSMA) and
Carlini&Wagner’s attack (C&W). Based on several invalida-
tion criteria, their results confirm that the attacks generated
using the above techniques are likely unrealistic. Vitorino et
al. [7] introduced an Adaptative Perturbation Pattern Method
(A2PM) to generate realistic adversarial attacks based on
several network domain and class-specific constraints. Their
approach enhances the performance of Multilayer Perceptron
(MLP) and Random Forest (RF)-based IDS through adversar-
ial training. Although the authors claim that A2PM produces
valid adversarial attacks, the manual selection of features and
perturbation of feature values adds complexity and cost to the
process.

Apruzzese et al. [10] provide an elaborate survey for the
analysis of state-of-the-art research using adversarial attacks
against ML-based IDS. The authors observe that current threat

Fig. 1. A generic framework for adversarial attack quality analysis

models are invalid for real network scenarios since they are
not entirely black-box systems. To ensure the validity of
adversarial attacks, the authors highlight the importance of
maintaining the nature of the attack, interdependency among
the features, and in-range feature values. Mozo et al. [11]
employ two Wasserstein GANs to synthesize normal and
attack traffic independently enhancing data quality for training
a Random Forest (RF) IDS. However, when evaluating the
similarity between real and synthetic data using L1 distance
and Jaccard Coefficient, the performance of WGAN drops
significantly. This indicates the inefficacy of these metrics for
adversarial attack quality analysis.

Previous research has explored the validity of adversarial
attacks generated using FGSM, BIM, DeepFool, JSMA, and
C&W. However, their primary focus is to identify adversarial
attacks that are challenging to implement for practical scenar-
ios. In contrast, our research aims to introduce a framework
for analyzing the quality of polymorphic adversarial attacks
through syntactic and statistical validation techniques.

III. METHODOLOGY FOR ADVERSARIAL ATTACK QUALITY
ANALYSIS

A generic framework for adversarial attack quality analysis
using our methodology is given in Fig. 1. It consists of four
main phases as follows:

A. Network data preprocessing

Network packets are captured and passed through a flow
analyzer to extract data flows. These network flows undergo
preprocessing which includes cleaning and feature extraction
following a standard ML practice. For this work, we adopt the
data preprocessing and feature selection phases discussed in
our previous research [2], [12].

B. Adversarial attack generation

The preprocessed network attack flows along with random
Gaussian noise are fed as inputs to a generative DL model.
We employ a Conditional Variational Autoencoder Adversarial
Network (CVAE-AN) for this purpose. CVAE-AN is the
polymorphic adversarial attack generation and detection model
that we introduced in our previous work [2]. The CVAE-AN
model builds upon a Semi-supervised GAN (SGAN) by incor-
porating a CVAE generator in place of a standard Deep Neural
Network (DNN) generator of SGAN. During the active phase
of an attack, the CVAE attack generator, which is conditioned
on the class label produces diverse and evasive adversarial
variations of an input attack by changing the feature profile
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to successively bypass detection. Further information on the
generation of polymorphic adversarial attacks is given in our
previous research [2].

C. Adversarial attack quality analysis

Our methodology for analyzing the quality of adversarial at-
tacks comprises two stages: syntactic and statistical validation.
Here is a detailed overview of these techniques:

1) Syntactic validation of adversarial attacks: The quality
of our synthesized adversarial network attacks is first validated
using several syntactic constraints such as range coverage
for feature values, validity of binary values, and validity
of category membership. Range coverage assessment is per-
formed for synthesized features in comparison with original
features to make sure they fall within similar ranges to align
with network constraints. We scrutinize the validity of binary
features which can assume only two values represented by 0
and 1. For instance flags, such as ’Fwd PSH Flags’ and other
flags in our synthesized dataset are analyzed. This ensures
that non-binary values are not erroneously assigned to binary
features. Furthermore, the categorical features are examined to
check that non-zero values should not be assigned to multiple
categories at a time for a given instance. For example, the
protocol cannot be set to 1 for both TCP and UDP at the
same time.

2) Kolmogorov-Smirnov hypothesis test: A two-sample
Kolmogorov-Smirnov test [13] is a nonparametric statistical
test for comparing the similarity between two datasets. It
involves two hypotheses. The null hypothesis H0 states that
the two samples from the two datasets belong to the same
distribution. The alternate hypothesis H1 states that the two
samples belong to different distributions.

First, the KS statistic is calculated, measuring the distance
between two empirical distributions for all the values of x.
Then, the p-value (critical value) is determined, indicating the
probability of either rejecting or accepting H0. The statistical
significance level α is typically set to 0.05. If p-value is equal
to or greater than α, H0 is accepted; if it is less than α, H1

is accepted.
3) Hellinger Distance: Hellinger distance measures the

distance between the two probability distributions ranging
from 0 to 1 [14]. A value closer to 1 indicates dissimilar
distributions, while closer to 0 indicates high similarity.

The Hellinger distance Dh is defined in eq.(1).

Dh =
1√
2
||
√
P1−

√
P2||2 (1)

Here, P1 and P2 are the probability distributions for the
two data samples respectively.

4) Correlation Analysis: Pearson’s correlation-based sim-
ilarity metric [15] measures the pairwise feature correlation
between two data distributions indicating their semantic re-
semblance, with values ranging from 0 to 1. A score of 1
signifies identical pairwise correlations, while 0 implies no
resemblance. The similarity between the two correlations is
calculated using the eq.(2).

Similarity = 1− |Ap,q −Rp,q|
2

(2)
Here, Ap,q and Rp,q represent the correlation value for the

first and second data distribution respectively for a pair of
features p and q.

D. NIDS classification and performance evaluation

We identify and choose synthesized adversarial attacks that
meet syntactic constraints and closely resemble real network
attacks for an in-depth evaluation by our AI-based NIDS.
These synthesized flows can also be employed for data
augmentation aiding in class balancing and enhancing our
system’s performance against adversarial attacks.

IV. EXPERIMENTAL SETTINGS AND PERFORMANCE
EVALUATION

A. Dataset

We employ the Canadian Institute for Cybersecurity In-
trusion Detection System (CICIDS2017) benchmark dataset
for this work. This dataset was generated using a variety
of realistic network traffic scenarios. It consists of over 80
features with benign records and multiple categories of attack
such as DDoS, DoS Slowloris, DoS Slowhttptest, DoS Hulk,
DoS GoldenEye, PortScan, Web attack, Bot, SSH-Patator, and
FTP-Patator. A more detailed overview of this dataset is given
by Sharafaldin et al. [16].

B. Generative DL Models and their configuration

For this work, we employ several DL generative models
such as VAE, CVAE, and GAN to synthesize polymorphic
adversarial attacks using the methodology provided in our pre-
vious work on CVAE-AN [2]. The summary of configuration
parameters for state-of-the-art generative models such as VAE,
CVAE, GAN, and CVAE-AN are sourced from [4], [5], [3],
and [2] respectively.

C. Results and discussion

1) Analysis of results for CVAE-AN: After syntactic val-
idation of adversarial attacks, we employ several statistical
validation techniques such as KS-test, Hellinger distance, and
correlation analysis to compare real network attacks with
adversarial synthesized polymorphic attacks generated using
our model CVAE-AN.

We employ Python’s “scipy.stats” library and “ks 2samp”
function to measure the KS statistic and p-value for comparing
two data distributions. Since the KS test cannot be applied to
test all the features in both datasets simultaneously, we com-
pare each feature separately for the real attack and adversarial
attack datasets. We then report the average KS-test statistic and
average p-value over the entire dataset. Our experiments focus
on polymorphic adversarial attacks (Poly AA) generated by
CVAE-AN [2], with a specific emphasis on DDoS/DoS attacks
due to their severity. However, our methodology can be ex-
tended to other attack classes. Table I displays the average KS
statistic and p-values for the synthesized polymorphic attacks.
Notably, all the adversarial attacks have average p-values equal
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TABLE I
AVERAGE KS STATISTIC AND AVERAGE P-VALUES FOR POLYMORPHIC

ADVERSARIAL ATTACKS (POLY AA) USING A TWO-SAMPLE
KOLMOGOROV SMIRNOV DISTRIBUTION TEST (KS TEST).

Adversarial dataset Avg. KS Statistic Avg. p-value
Slowloris DoS Poly AA1 0.52 0.42
Slowloris DoS Poly AA2 0.52 0.42
Slowloris DoS Poly AA3 0.52 0.42
Slow Httptest DoS Poly AA1 0.41 0.50
Slow Httptest DoS Poly AA2 0.44 0.50
Slow Httptest DoS Poly AA3 0.45 0.46
GoldenEye DoS Poly AA1 0.60 0.05
GoldenEye DoS Poly AA2 0.60 0.05
GoldenEye DoS Poly AA3 0.60 0.05
Hulk DoS Poly AA1 0.42 0.42
Hulk DoS Poly AA2 0.42 0.42
Hulk DoS Poly AA3 0.42 0.42
DDoS Poly AA1 0.39 0.44
DDoS Poly AA2 0.39 0.44
DDoS Poly AA3 0.39 0.44

Fig. 2. Slowloris DoS original attack versus polymorphic adversarial attack-1
(poly AA1) for the feature “Bwd Packet Length Min” using Hellinger distance.

to or above the threshold of 0.05, indicating that adversarial
attack data follows the same continuous distribution as real
attack data.

We apply another statistical distance-based metric to com-
pare the probability distributions of real and adversarially
synthesized polymorphic attacks. Similar to the KS test, we
compare the distributions of individual features of the two
datasets separately. We calculate the distance between them
and then find the average distance to determine their similarity.
For instance in Fig. 2, we compare Slowloris DoS real attack
and Poly AA1 for the feature “Bwd Packet Length Min” using
Hellinger distance. The calculated Hellinger distance for this
feature is 0.08, indicating a close resemblance to each other.
We repeat this process for other attack features and compute
the total average distance.

Table II shows the average Hellinger Distance for the ad-
versarially synthesized polymorphic attacks with real attacks.
We observe that for most of the adversarial attacks such
as Slowloris DoS, Slow Httptest DoS, and Hulk DoS, the
Hellinger distance value is closer to 0 indicating their close
resemblance to real attacks. The Hellinger distance for attack
classes GoldenEye DoS and DDoS, however, lies in the range
of 0.31 to 0.52 indicating medium resemblance to the real
attacks.

We employ a Pearson correlation-based similarity metric
to measure the pairwise feature correlation between real at-

TABLE II
AVERAGE HELLINGER DISTANCE BETWEEN POLYMORPHIC ADVERSARIAL

ATTACKS (POLY AA) AND REAL ATTACKS.

Adversarial dataset Average Hellinger Distance
Slowloris DoS Poly AA1 0.18
Slowloris DoS Poly AA2 0.19
Slowloris DoS Poly AA3 0.18
Slow Httptest DoS Poly AA1 0.20
Slow Httptest DoS Poly AA2 0.17
Slow Httptest DoS Poly AA3 0.30
GoldenEye DoS Poly AA1 0.48
GoldenEye DoS Poly AA2 0.48
GoldenEye DoS Poly AA3 0.48
Hulk DoS Poly AA1 0.14
Hulk DoS Poly AA2 0.15
Hulk DoS Poly AA3 0.15
DDoS Poly AA1 0.52
DDoS Poly AA2 0.43
DDoS Poly AA3 0.31

TABLE III
AVERAGE CORRELATION SIMILARITY SCORE BETWEEN POLYMORPHIC

ADVERSARIAL ATTACKS (POLY AA) AND REAL ATTACKS.

Adversarial dataset Avg. correlation similarity score (in %)
Slowloris DoS Poly AA1 86.08%
Slowloris DoS Poly AA2 86.04%
Slowloris DoS Poly AA3 85.96%
Slow Httptest DoS Poly AA1 78.79%
Slow Httptest DoS Poly AA2 81.73%
Slow Httptest DoS Poly AA3 85.69%
GoldenEye DoS Poly AA1 76.54%
GoldenEye DoS Poly AA2 76.55%
GoldenEye DoS Poly AA3 76.58%
Hulk DoS Poly AA1 84.71%
Hulk DoS Poly AA2 84.29%
Hulk DoS Poly AA3 84.29%
DDoS Poly AA1 80.60%
DDoS Poly AA2 80.77%
DDoS Poly AA3 80.71%

tacks and polymorphic adversarial attacks and analyze the
semantic resemblance between the two data distributions.
Table III shows the average correlation similarity score for
the adversarially synthesized polymorphic attacks with real
attacks. We observe that for most of the attack classes, the
correlation similarity score of adversarial attack data with
real attack data is above 80% indicating that the adversarial
polymorphic attacks generated by our system have a close
semantic resemblance to real attacks.

The overall results using several statistical validation tech-
niques described previously indicate that our CVAE-AN model
can generate polymorphic adversarial network attacks while
maintaining the quality of these attacks.

2) Comparative analysis with state-of-the-art: We show
the effectiveness of our approach in generating better-quality
polymorphic adversarial attacks compared to those synthesized
by other state-of-the-art DL models such as GAN [3], VAE
[4], and CVAE [5]. We select one representative polymorphic
adversarial attack from each category for this analysis, but
similar results are achieved with other attacks as well.

Fig. 3 provides an assessment of the quality of attacks syn-
thesized using several generative DL models such as CVAE-
AN, GAN, VAE, and CVAE. To corroborate our results, we
compare the quality of a synthesized polymorphic adversarial
attack with an original attack using three tests such as KS test,
Hellinger distance, and Correlation similarity. The results for

2023 19th International Conference on Network and Service Management (CNSM)



(a) Slowloris DoS Polymorphic AA1 (b) Slow Httptest DoS Polymorphic AA1 (c) GoldenEye DoS Polymorphic AA1

(d) Hulk DoS Polymorphic AA1 (e) DDoS Polymorphic AA1

Fig. 3. Polymorphic adversarial attack (AA) quality analysis for state-of-the-art generative DL models.

all the cases of the KS test show the p-value for our CVAE-
AN model is the highest (greater than or equal to the threshold
value of 0.05) indicating that the attacks generated using our
model have a similar distribution as that of the original attacks
and therefore are of better quality when compared to attacks
synthesized using other DL models.

The Hellinger distance graphs in Fig. 3 indicate that the
attacks synthesized using CVAE-AN have the lowest distance
from real attacks suggesting their close resemblance to original
attacks. Additionally, we observe the correlation similarity
of adversarial attacks generated using CVAE-AN to original
attacks is higher than most of the other generative models.
Overall, results indicate the effectiveness of the CVAE-AN
model in synthesizing realistic adversarial attacks.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a methodology for analyzing
the quality of AI-synthesized adversarial network attacks. We
employ syntactic validation and several statistical techniques
to validate attack realism. Moreover, we provide a compara-
tive analysis of polymorphic attacks synthesized by multiple
state-of-the-art generative DL models. Our empirical findings
suggest that CVAE-AN is the best-performing model when
synthesizing realistic polymorphic adversarial attacks.

Acknowledging the importance of addressing adversarial
attack risks and enhancing NIDS, we emphasize improving
adversarial attack quality. The proposed techniques alone may
not guarantee the validity of adversarial attack samples. For
future efforts, we aim to focus on specific network constraints
for precise and realistic attacks, such as exploring network
feature interrelationships for semantic validation.
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