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Abstract—Many unsupervised anomaly detection (UAD) meth-
ods for ICT systems that use only normal data collected from
routers or servers, such as traffic volumes and text logs, have
been developed to detect anomalies. Since the normal states
of the ICT systems change due to the addition or deletion of
devices, configuration changes, and OS updates, system operators
need to collect enough normal data to learn various normal
states whenever there is a change. Therefore, UAD methods
cannot be applied until new data is gathered and a new normal
state is identified. Using fine-tuning, one of the transfer learning
techniques might reduce the duration of collecting normal state
data. However, most of the existing papers focus on transferring
knowledge of supervised models on image classification tasks,
which are completely different from UAD in ICT systems. This
paper analyzes a fine-tuning architecture to improve UAD in an
ICT system with a small amount of normal data. By preparing
five datasets, comprehensive experiments were conducted, and it
was found that the fine-tuning architecture has the possibility to
improve the accuracy of anomaly detection with a small amount
of data for the ICT system dataset and scenarios.

Index Terms—Unsupervised anomaly detection, Fine-tuning,
Deep learning, ICT system

I. INTRODUCTION

Anomaly in an ICT system, such as communication net-
works or application systems needs to be detected immediately
by its providers since stopping the ICT system causes a
significant impact on peoples’ daily lives [1]. To detect the
anomaly in the ICT system, many Unsupervised Anomaly
Detection (UAD) methods [2]–[4] that use only normal data
such as traffic volumes, Central Processing Unit (CPU) usage,
memory usage, and text logs from routers or servers, have
been developed since the anomalies rarely occur, and even
when they occur, system operators will take action to prevent
recurring anomalies. This means that label data of anomalies
cannot be collected.

Because the normal state of the ICT system changes with
the addition or deletion of devices, configuration changes, and
OS updates, it is necessary to re-collect normal data and train
an UAD method for each change. Therefore, if the duration
of re-collecting data in the normal state of the ICT system
increases, UAD methods cannot be used to monitor the system
during data collection.

Transfer leading such as fine-tuning or Domain Adaptation
(DA) technique can reduce the data collection time for UAD
after an ICT system change (i.e., target domain) by using data
from before the system change (i.e., source domain), which

leads to increasing the available time for anomaly detection.
However, the existing DA methods cannot be applied to
anomaly detection methods in ICT systems. This is because,
the problem setting of DA is that the data in the source
domain has a label, while anomaly labels cannot be collected
in the ICT system. The fine-tuning technique can be applied
to UAD in the ICT system because it can be applied to
unsupervised learning or when the number of dimensions
differs between domains. However, most of existing papers
about fine-tuning technique focus on computer vision research
or natural language tasks. Therefore, it is unclear whether
fine-tuning technique can reduce the data collection time and
improve UAD in the ICT system with small amount of data
in normal state.

In this paper, we analyze the performance of the fine-tuning
technique for UAD in an ICT system with a small amount of
normal data. Especially, we focus on the availability of fine-
tuning when the operators need to collect the normal state
data due to the addition or deletion of devices, configuration
changes, and OS updates, which has not been considered in
previous papers. First, we develop the fine-tuning architecture
for UAD methods in the ICT system. Then, we evaluated
the anomaly detection accuracy of each UAD method for the
scenarios requiring fine-tuning using ICT system datasets. The
datasets are prepared by using public datasets and developing
web service system. Finally, a detailed investigation of the
fine-tuning for UAD is provided. The UAD with fine-tuning
technique is evaluated using two types of ICT system data
which are network security data and web service system.
Compared with the baseline methods, experimental results
show that fine-tuning can improve the Area Under the ROC
Curve (AUC) of UAD in the target domain.

Contributions of this paper are as follows.
• This paper focus on the applicability of the fine-tuning

for UAD which is needed to increase the available time
of UAD in the ICT system.

• The comprehensive experiments are conducted to eval-
uate the performance of the fine-tuning for UAD using
tow types of ICT system datasets. The results show that
the fine-tuning for UAD can improve AUC in the ICT
system for a specific scenario. In terms of reducing the
data collection time with the proposed architecture, the
collection time was at most 1/20 for network security
datasets.
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II. RELATED WORK

A. Anomaly Detection for ICT systems
Various anomaly detection methods have been investigated

for managing the ICT systems [2], [4], [8]–[11] using metrics
such as CPU usage, memory usage, traffic volume, and/or sys-
tem logs. USAD [8] combines generative adversarial network
(GAN) and AutoEncoder (AE) to generate fake data which is
close to normal data for reducing the false anomaly detection
when the anomaly data is similar to the normal data. For
monitoring application systems with a cloud computing plat-
form, Diamanti et al. [2] collect metrics on host servers and in
the cloud computing platform and extract hidden relationships
between anomalies and metrics using long short-term memory
(LSTM) based AE. LogAnomaly [10] is a framework to model
an unstructured log stream using a word2vec approach based
on natural language processing and simultaneously detect se-
quential and quantitative log anomalies. In Zhang et al. [4], the
method which extracts temporal dependency and relationship
among multivariable is proposed by combining convolutional
neural networks (CNN) and LSTM to detect anomalies and
diagnose and present the degree of anomalies. In Zhao [11], a
graph neural network is used to extract temporal dependency
and relationships among multivariable.

However, these methods require a massive number of nor-
mal data to be trained in the normal state of their systems.

B. Domain Adaptation and Fine-tuning
Papers using Domain adaption for application classification,

network performance prediction, and anomaly detection are
published [12]–[17]. Authors [12], [13] proposed DA methods
that treat network traffic in the real world with no labels as
the target domain and network traffic in open-dataset with
labels as the source domain since collecting the label which
indicates applications type is complex in real-world due to
the privacy, encryptions of the traffic. The proposed method
in paper [14] predicts network performance such as RTT by
extending the method [6] using the labels in the source and
target domains. Since this paper assumes using DA based
method when the network system dynamics are changed due
to the re-configurations, the dimension of used data in both do-
mains is the same. Although papers [15], [16] about anomaly
detection of traffic data do not use the DA based methods,
authors propose techniques to accommodate differences in
data distribution between domains. Anomaly detection method
using DA for network logs is also proposed [17] by embedding
the log data with transformer [18], in which the anomaly log
data in the source domain are used.

Although DA based methods for tasks in ICT systems’
operations are proposed, these methods assume that data in
the source domain data have labels and/or dimensions of data
in both domains are the same. However, for anomaly detection
in the ICT system, collecting labels is hard, and the dimension
of data in the target domain differs from that in the source
domain.

Anomaly detection methods using fine-tuning are also pro-
posed in various research fields [19]–[23]. Papers [19], [20]

propose a feature selection method for anomaly detection in
images and the survey of fine-tuning for video surveillance,
respectively. H. Liu et al. [21] proposes an anomaly detection
method for transportation systems using sensing data. In this
paper, although there is enough data, fine-tuning is used to
reduce the training time of Deep Neural Network (DNN).
The anomaly detection in ICT systems is also proposed in
papers [22], [23]. In paper [22], fine-tuning is used to adapt
the pre-trained large language model to log text for detecting
anomalies in system logs. M. Sun et al. [23] pre-trains a UAD
model for embedding the high dimensional monitoring data in
the ICT system into the latent space. Then, embedded data are
clustered to reduce the dimensions of monitoring data. Finally,
the pre-trained model is fine-tuned for anomaly detection in
clustered monitoring data.

III. FINE-TUNING ARCHITECTURE FOR UAD

We describe the fine-tuning architecture and implemented
DNN based UAD methods for our performance analysis. This
analysis aims to clarify whether the fine-tuning technique can
reduce the data collection time and improve UAD in the
ICT system with a small amount of data in normal state.
Therefore, this section first explains the implemented DNN
based and other UAD methods. Then, we develop the fine-
tuning architecture for UAD methods.

A. UAD Methods

To analyze the fine-tuning performance for UAD methods,
DNN based anomaly detection methods are implemented. We
explain each method briefly in this section.

Let xi be a l-dimensional vector whose elements are metrics
at time i, where l is the number of kinds of metrics collected
from the ICT system and yt is a label of the ICT system at
time i, which takes 1 if the data is normal and -1 otherwise.
Let Dtrain be a set of tuples, {(xi, yi)}Ni=1, which is training
dataset and N is the number of training data. Similarly, let
Dtest be a set of tuples, {(x́íýí)}Ńí=1

} which are test dataset
and Ń is the number of test data. Here´denotes data in the
test dataset, yi in the training dataset Dtrain always takes 1,
and ýí in the test dataset Dtest takes 1 or -1 depending on
the application system state. In the training phase, weights of
UAD methods are trained using a training dataset Dtrain, and
in the test phase, the anomaly score of x́í is calculated to
estimate whether ýí is a normal or abnormal state.

1) AE: AutoEncoder (AE) is an unsupervised encoder-
decoder-based method in which parameters are trained by a
normal state dataset so that input data and output data by AE
are the same. In AE, for the encoder, weight parameters W j

AE

in the j-th layer are trained by the following equation.

zj = σ(W j
AEz

j−1 + bj), (1)

where z0 is xt, and σ is activation function, and bj are bias
functions. For the decoder, weight parameters W̃ j

AE in the j-th
layer are trained by the following equation.

z̃j = σ(W̃ j
AEz̃

j−1 + b̃j), (2)
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where z̃0 is zJ , and J is the number of AE layers. Then,
AE is trained so that the reconstructed vector x̂t equals xt as
follows.

L(x1, . . . , xN ) = min
W,W̃

N∑
i=1

∥xi − x̂i∥2. (3)

where x̂i is calculated by encoding xi and decoding zJ . To
calculate the anomaly score for test data x́í, the difference be-
tween x́í and predicted x̂í is calculated by using Equation (3).
More details can be found in Sakurada and Yairi. [24].

2) VAE: Variational AutoEncoder (VAE) [25] is a method
to model the probability distribution P (X|Z) using the latent
variable Z by estimating the posterior distribution P (Z|X),
where X is a random variable and xi, x́í is the observation
of X . In the VAE, the encoder qφ(Z|X) and the decoder
pθ(X|Z) which are DNN and the φ and θ are the trained
parameters, are trained to estimate the probability distribution
P (Z|X) and P (X|Z), respectively. This training process
is done by minimizing the reconstruction and regularization
errors so that the encoded data through qφ(z|x) obey the
normal distribution as follows.

L(x1, . . . , xN ) =min
φ,θ

N∑
i

∥xi − x̂i∥2

+KL[qφ(Z|X)||pθ(X)], (4)

where, KL is a Kullback–Leibler divergence [26]. To calculate
the anomaly score for test data x́í, the difference between x́í

and predicted x̂í is calculated by using Equation (4). More
details can be found in Kingma and Welling [25].

3) DeepSVDD: Deep Support Vector Data Description
(DeepSVDD) [27], which is a one-class classification using
DNN. DeepSVDD is trained using normal state data so that
these normal data are embedded into the hypersphere with
center c as follows.

L(x1, . . . , xN ) =min
W

1

N

N∑
i=1

||ϕ(xi,W )− c||2

+
λ

2

L∑
l=1

||W l||2F , (5)

where the ϕ is the DNN and W is the trained weight param-
eters of ϕ. The anomaly score of test data x̃í is calculated as
the distance between the hypersphere center c and embed test
data x̃ĩ using Equation 5. More details can be found in L. Ruff
et al. [27].

Additionally, Local Outlier Factor (LOF) and Isolation
Forest (IF) are implemented for the comparison. LOF is a
density-based method in which the anomaly score of a certain
data point is calculated using the average distance of the k-
nearest neighbor. IF is a machine learning method to find the
outlier in the dataset by constructing the trees. More details
of LOF and IF can be found in Breunig et al. [28] and F. T.
Liu et al. [29], respectively.
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Fig. 2. Fine-tuning for DeepSVDD

B. Fine-tuning for UAD

The motivation of this paper is to know if it is possible to
transfer the trained model from the source domain, in which
there are enough training data, to the target domain, in which
there are small amounts of data, by using fine-tuning. These
situations occur when the data dimension changes due to the
addition or deletion of the device or the characteristic of the
normal state change due to an update of configurations, which
requires the collection of the data in normal state again.

To enable the fine-tuning for UAD, we propose to add the
layer into DNN based methods described above to adapt the
data dimension changes between source and target domains. In
the following, we describe the problem setting of the analysis
and the fine-tuning architecture.

Let DS
train = {(xS

i , y
S
i )}N

S

i=1 and DT
train = {(xT

i , y
T
i )}N

T

i=1

be the training dataset in source domain S and target domain
T . Here, we assume NS is much larger than NT . Using these
datasets, first, AE, VAE, and DeepSVDD models are trained
using enough amount of data DS

train. Then, to adapt the trained
model in the source domain to the data characteristics and
data dimension in the target domain, we add another layer
to the first layer of the encoder and the last layer of the
decoder in AE and VAE. The illustration of the fine-tuning
architecture for AE and VAE is shown in Figure 1. Similar to
AE and VAE, another layer is added into the first layer of the
trained DeepSVDD model as in Figure 2. This added layer is
trained using the data in the target domain to adapt the data
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TABLE I
DATASETS SUMMARY

Name D Ntrain Ntest RA

NSL-KDD 114 67343 22544 0.57
CICIDS 71 50000 50000 0.40

Web system 1 638 119 116 0.32
Web system 2 659 119 118 0.31
Web system 3 660 119 117 0.31

distribution and data dimension in the target domain.

IV. EVALUATIONS

In this section, first, we describe dataset information and
the preprocessing procedure for experiments. Then, the ex-
perimental setting is explained. Finally, we evaluate the fine-
tuning performance for UAD by comparing it with the baseline
method in which only the target domain data are used for the
training.

A. Datasets and Scenarios

For our analysis, we prepared two data types in the ICT
system, i.e., network security data and web service system.
The summary of datasets is described in Table II. Ntrain and
Ntest represents the number of the samples in the dataset used
for NS or NT , and the number of the dataset used for NT

test,
respectively. D represents the number of dimensions of the
datasets. Each data point in the datasets is preprocessed as
described in the following subsections and normalized by min-
max normalization. RA represents the ratio of anomaly data
in the test data.

1) Network Security Datasets: We prepared two network
intrusion datasets, NSL-KDD [30] and CIC (Canadian Institute
of Cybersecurity) IDS 2017 [31]. All datasets contain infor-
mation about packed size, source IP addresses, destination IP
addresses, port numbers, and other information. However, the
number of kinds of collected data and the duration of the
collection differ. Each data at each time is preprocessed to the
vector. Then, the vectors are input to UAD methods to train
or evaluate UAD methods using normal or abnormal labels.

2) Web system Datasets: We built two web systems with
several routers and servers to collect normal and abnormal data
for the evaluations. The details of the web system topology and
collected datasets in our experiments are shown in Figures. 3
and 4, and Table II, respectively. In these web systems, we
collect the data in normal state for two hours to train UAD
methods as an offline process. Then, test data are collected
for two hours as an online process. During the online process,
anomalies such as high CPU usage, high memory usage, or
packet drop are injected once every five minutes at each router
or server.

The Web system 1 dataset contains the data collected from
tree topology in Figure 3, and the Web system 2 and 3 datasets
contain the data collected from full mesh topology in Figure 4.
In the experiments, we conduct all patterns of source and
target datasets using Web systems 1, 2, and 3, and each of
the experiments represents a case where fine-tuning for UAD

Traffic 
generator Router 1

Router 3

Router 2
Web server 1

Web server 2

Fig. 3. Web system topology 1 in experiments

Traffic
generator 1 Router 1

Traffic 
generator 2 Router 2

Web server 2Router 4

Web server 1Router 3

Traffic 
generator 5 Router 5

Fig. 4. Web system topology 2 in experiments

TABLE II
WEB SYSTEM DATASET INFORMATION

Experimental environment Condition
Topology

(# Equipment) Tree (6), Full mesh (10)

Collected data CPU usage, memory usage,
syslog, traffic data

Injected anomalies high CPU usage, high memory usage,
or packet drops

Degree of injections low (20%), middle (60%), or high (80%)
Anomaly frequency Once every five minutes

Duration Training data: two hours
Test data: four hours

is required in the operation of an web system. For instance,
the experiment with the Web system 1 dataset used as source
dataset and Web system 2 or 3 datasets used as target dataset
represent the scenarios when the device is added to the web
system and configurations are updated or when the new full
mesh web system is built. The case with the Web system 2
dataset as the source dataset and the Web system 3 dataset as
the target dataset represents when the data characteristics are
changed due to configuration updates.

Since it is possible to measure the performance of fine-
tuning in scenarios where fine-tuning is required in system
operation using the prepared dataset, we can clear the avail-
ability of fine-tuning.
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TABLE III
AUC AND STANDARD DEVIATION OF UAD METHODS WITH SOURCE DATASET NSL-KDD AND TARGET DATASET CICIDS

Target data ratio
Method 1% 5% 10% 25% 50% 100%

LoF 0.496 (0.023) 0.521 (0.040) 0.481 (0.014) 0.508 (0.028) 0.530 (0.006) 0.678 (0.000)
IF 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000)
AE 1.000 (0.000) 0.995 (0.006) 0.994 (0.007) 0.994 (0.011) 0.997 (0.005) 0.998 (0.003)

AE-FT 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
VAE 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

VAE-FT 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
DeepSVDD 0.606 (0.299) 0.566 (0.371) 0.434 (0.494) 0.778 (0.441) 0.445 (0.527) 0.751 (0.405)

DeepSVDD-FT 0.630 (0.358) 0.267 (0.275) 0.363 (0.127) 0.401 (0.098) 0.395 (0.088) 0.319 (0.025)

TABLE IV
AUC AND STANDARD DEVIATION OF UAD METHODS WITH SOURCE DATASET CICIDS AND TARGET DATASET NSL-KDD

Method Target data ratio
1% 5% 10% 25% 50% 100%

LoF 0.849 (0.007) 0.785 (0.016) 0.757 (0.010) 0.778 (0.006) 0.754 (0.025) 0.740 (0.000)
IF 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000)
AE 0.550 (0.122) 0.577 (0.100) 0.604 (0.090) 0.885 (0.055) 0.947 (0.013) 0.948 (0.003)

AE-FT 0.912 (0.041) 0.953 (0.018) 0.948 (0.012) 0.947 (0.041) 0.950 (0.015) 0.954 (0.016)
VAE 0.773 (0.054) nan (nan) 0.942 (0.001) 0.964 (0.003) 0.964 (0.000) nan (nan)

VAE-FT 0.120 (0.022) 0.122 (0.019) 0.128 (0.025) 0.115 (0.000) 0.128 (0.025) 0.122 (0.019)
DeepSVDD 0.934 (0.021) 0.937 (0.011) 0.946 (0.014) 0.929 (0.017) 0.942 (0.019) 0.936 (0.025)

DeepSVDD-FT 0.500 (0.212) 0.453 (0.229) 0.412 (0.223) 0.393 (0.240) 0.470 (0.230) 0.453 (0.226)

B. Experimental Setting

Hyperparameters of UAD methods are described here. In
AE, VAE, and DeepSVDD, a full connected neural network
is used for each layer, and the number of layers is determined
using grid search with a search range [2,3,4,5]. Rectified
linear unit (ReLU) function and batch normalization are used
as the function between layers. The number of dimensions
of the neural networks was also set using grid search with
range [20%, 30%, . . . , 70%] of the dimension of the input
vector in each domain, respectively. As learning rate and
weight decay, we prepared from 0.01 to 0.0001 and 0.001 to
0.000001, respectively. Then, a grid search is conducted and
hyperparameters of each UAD are set to achieve the highest
AUC. Every model was optimized with Adam [32], and the
epoch is set to 500.

The number of neighboring points for LOF was set to 1,
and The number of base estimators in the ensemble in IF is set
to 100, since it recorded the highest AUC in the grid search.

To investigate the characteristics of the fine-tuning in terms
of the number of data, we select the data from target dataset
with following ratio to 1%, 5%, 10%, 25%, 50%, and 100%
for network security dataset, and 10%, 25%, 50%, and 100%
for web system dataset, which represents the number of used
target data. This is because only 1% of the data for the web
system dataset is too few. All of the train data in the source
domain is used for UAD methods. We randomly select the
target data three times with set ratio and for each of sampled
data experiment was executed three times. As an evaluation
metric of anomaly detection methods, AUC is selected and the
average and variance were calculated.

0.01 0.05 0.1 0.25 0.5 1.0
ratio

0.0

0.2

0.4

0.6

0.8

1.0

au
c

Method
Fine-tuining
Only target data

Fig. 5. Results of Fine-tuned AE with S:CICIDS and T :NSL-KDD

C. Experimental Results

The performance of the fine-tuning was evaluated using
prepared datasets. In Tables III and IV, AUC and standard
deviation of implemented UAD methods with/without fine-
tuning are illustrated, where -FT represents the UAD methods
with fine-tuning using source dataset and other methods only
use the target dataset and the number in the () is standard
deviation.

1) Results of Network Security Datasets: In Table III, each
DNN based method achieved high AUC with only a small
amount of data such as 1% or 5%. Since the ports used
for normal and abnormal data in the CICIDS dataset are so
different, the trained model, with a small amount of data, can
easily classify the test data. Regarding the performance of
the fine-tuning, AUC of the UAD methods does not deteri-
orate, and the AUC and standard deviation for AE increases.
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TABLE V
AUC AND STANDARD DEVIATION OF UAD METHODS FOR WEB SYSTEM 1 DATASET

Method Source data: Web system 2, Target data: Web system 1, ratio Soruce data: Web system 3, Target data: Web system 1, ratio
10% 25% 50% 100% 10% 25% 50% 100%

LoF 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)
IF 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000)
AE 0.595 (0.065) 0.587 (0.093) 0.599 (0.064) 0.522 (0.065) 0.595 (0.065) 0.587 (0.093) 0.599 (0.064) 0.522 (0.065)

AE-FT 0.520 (0.042) 0.484 (0.044) 0.478 (0.018) 0.476 (0.042) 0.524 (0.048) 0.556 (0.097) 0.518 (0.072) 0.466 (0.051)
VAE 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)

VAE-FT 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)
DeepSVDD 0.485 (0.053) 0.501 (0.007) 0.490 (0.026) 0.491 (0.024) 0.485 (0.053) 0.501 (0.007) 0.490 (0.026) 0.491 (0.024)

DeepSVDD-FT 0.513 (0.086) 0.461 (0.068) 0.559 (0.060) 0.538 (0.085) 0.426 (0.074) 0.503 (0.030) 0.486 (0.028) 0.493 (0.019)

TABLE VI
AUC AND STANDARD DEVIATION OF UAD METHODS FOR WEB SYSTEM 2 DATASET

Method Soruce data: Web system 1, Target data: Web system 2, ratio Soruce data: Web system 3, Target data: Web system 2, ratio
10% 25% 50% 100% 10% 25% 50% 100%

LoF 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)
IF 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000)
AE 0.502 (0.008) 0.501 (0.007) 0.495 (0.017) 0.497 (0.009) 0.502 (0.008) 0.501 (0.007) 0.495 (0.017) 0.497 (0.009)

AE-FT 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.498 (0.018) 0.477 (0.055) 0.514 (0.064) 0.483 (0.029)
VAE 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)

VAE-FT 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000) 0.494 (0.000)
DeepSVDD 0.503 (0.046) 0.493 (0.010) 0.497 (0.005) 0.470 (0.046) 0.503 (0.046) 0.493 (0.010) 0.497 (0.005) 0.470 (0.046)

DeepSVDD-FT 0.469 (0.097) 0.457 (0.086) 0.492 (0.037) 0.471 (0.029) 0.470 (0.038) 0.516 (0.088) 0.515 (0.046) 0.486 (0.022)

TABLE VII
AUC AND STANDARD DEVIATION OF UAD METHODS FOR WEB SYSTEM 3 DATASET

Method Soruce data: Web system 1, Target data: Web system 3, ratio Soruce data: Web system 2, Target data: Web system 3, ratio
10% 25% 50% 100% 10% 25% 50% 100%

LoF 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000)
IF 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000) 0.678 (0.000)
AE 0.471 (0.066) 0.448 (0.047) 0.485 (0.033) 0.456 (0.051) 0.471 (0.066) 0.448 (0.047) 0.485 (0.033) 0.456 (0.051)

AE-FT 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.486 (0.017) 0.483 (0.024) 0.474 (0.028) 0.460 (0.034)
VAE 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000)

VAE-FT 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000) 0.479 (0.000)
DeepSVDD 0.469 (0.018) 0.459 (0.058) 0.471 (0.014) 0.463 (0.019) 0.469 (0.018) 0.459 (0.058) 0.471 (0.014) 0.463 (0.019)

DeepSVDD-FT 0.490 (0.055) 0.459 (0.041) 0.466 (0.054) 0.471 (0.025) 0.397 (0.077) 0.504 (0.090) 0.519 (0.073) 0.478 (0.072)

Here, although DeepSVDD-FT decreases the AUC compared
with DeepSVDD, considering the standard deviation of each
method, the performance of DeepSVDD-FT is maintained.

Table IV represents the results with CICIDS used as the
source dataset and NSL-KDD used as the target dataset.
Comparing with the AUC for the case 100% data are used, the
AUC for 1%, 5%, and 10% of each UAD method are lower.
In this case, the results show that the fine-tuning for DNN
based UAD improves the AUC. Figure 5 shows the AUC of
the AE with and without fine-tuning. In this figure, when the
ratio is 1%, fine-tuning improves the AUC by approximately
0.4 points. In terms of shortening the data collection time, the
data collection time can be reduced to 1/20 because the AUC
is about the same when using 5% of the data with fine-tuning
as when using all the data.

However, in VAE, the AUC decreases much with fine-
tuning. In AE, the added layers in the encoder and the encoder
could learn the characteristics of the KDD data. However,
since VAE estimates the input data’s probability distribution,

only adding one layer for the encoder and decoder might not
be enough to adapt the trained model when calculating the
KL divergence. This deterioration might be solved by adding
more layers.

2) Results of Web system datasets: Tables V, VI, and VII
show the AUC and standard deviation of each method, with
two results are given in a table for each case where one dataset
is used as the target dataset, and the other two datasets are used
as the source datasets.

First, the AUC values are lower than the AUC for the
network security dataset. This is because when an anomaly is
inserted into the web system, the time of insertion is labeled
as the anomaly. However, the effect of injected anomaly
propagates not only to the device that inserted the anomaly
but also to other adjacent devices. Therefore, returning to the
data in normal state takes time after the anomaly insertion is
stopped. Also, the number of samples in each dataset might
be small for DNN based UAD methods even if all of the
samples are used in Ntrain since each dataset includes only
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119 samples. As a result, it makes it difficult for UAD methods
to estimate the anomaly in web system datasets. In contrast,
IF can detect the anomaly if the anomaly data is far from the
data in normal state, even if the number of samples is small.

Table V shows the results of the scenario when the device
is removed and the routing of the network changed from full
mesh type to tree type. In this case, DeepSVDD improved
the AUC by approximately 0.07 points at most except 25%
with Web system 2 used as the source dataset and 10% Web
system dataset used as the source dataset. When the Web
system 1 dataset is used as the source data and the Web
system 3 dataset is used as the target data in Table VII,
AUC for 1% and 100% were improved by approximately 0.02
points by fine-tuning. For the VAE, the AUC is maintained.
However, the AUC for AE decrease by approximately 0.1 at
most. When the number of devices or configuration, such as
routing, changes, the encoder-decoder-based methods, such as
AE, may have difficulty handling significant changes in input
data. On the other hand, embedding in a given hypersphere,
as in DeepSVDD, is more straightforward than reconstructing
the input data, increasing AUC.

Right-hand side in Tables VI and VII include the results
for the case when the data characteristics are changed due to
configuration update. The AUC of DeepSVDD is improved
by fine-tuning except for 1% case in Tables VI and VII. The
AUC of AE is improved in Table VII except the 50% case.

The results show that fine-tuning has the ability to improve
the AUC in the scenarios in web system operations.

V. CONCLUSION

In this paper, we analyzed a fine-tuning architecture to
improve UAD in an ICT system with a small amount of
normal data. The performance of the fine-tuning architecture
is evaluated using two types of ICT system data, which are
network security data and web service system. By preparing
five datasets, comprehensive experiments were conducted, and
it was found that the fine-tuning architecture has the possibility
to improve the accuracy of anomaly detection with a small
amount of data for the ICT system scenarios.

Future work includes changing the number of fine-tuning
layers, applying fine-tuning to other datasets and analyzing
their performance, and investigating other effective transfer
methods when the shape of the data changes significantly.
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