
A Lightweight Heuristic for Micro-services
Placement and Chaining in Low Latency Services

Hichem Magnouche∗, Guillaume Doyen†, Caroline Prodhon∗
∗LIST3N, University of Technology of Troyes, Troyes, France, {first.last}@utt.fr

†SOTERN - IRISA (UMR CNRS 6074), IMT Atlantique, Rennes, France, guillaume.doyen@imt-atlantique.fr

Abstract—The rise of novel Low-Latency (LL) applications,
such as cloud gaming or the metaverse, imposes rigorous end-to-
end LL constraints. Decomposing Virtualized Network Functions
(VNFs) into micro-services has proven its effectiveness to reduce
the Service Function Chaining (SFC) latency thanks to key
characteristics: lighter entities, less resource consumption, and
a strong capacity to operate in parallel. However, to make
such a promising technology actually deployed in real operated
networks, novel dedicated placement and chaining methods are
required. Current solutions either do not fit with tied LL
constraints or exhibit a prohibitive computation time by relying
on exact resolution methods. In this paper, we propose a heuristic
method dedicated to the placement and chaining of micro-
services. Its purpose is to maximize the deployment of SFCs
while respecting the required LL by considering intrinsic features
of micro-services and integrating suitable load balancing, which
makes it highly scalable. A comprehensive evaluation campaign
highlights that generated solutions achieve results that are at
most a factor of 1.1 to the optimal with an execution time up to
20,000 times faster.

Index Terms—Heuristic, Micro-Services, Placement and Rout-
ing, Optimization, Orchestration

I. INTRODUCTION

The rise of novel internet applications, such as tele-surgery,
cloud gaming and the Metaverse, has led to new latency
requirements, which must not exceed a few milliseconds. This
imposes unprecedented challenges on the global telecommu-
nication infrastructures for both traffic forwarding and pro-
cessing, and various means are leveraged to date to minimize
the traffic latency. Regarding traffic forwarding, mitigating
congestion points with dedicated active queue management
[1] strategies coupled with adapted congestion control algo-
rithms such as TCP-Prague [2] enable end-to-end LL. Besides,
traffic processing implemented by VNFs offered a significant
advancement to allow flexible and customizable deployment
of network services. However, while numerous studies [3]
addressed Service Function Chains (SFCs) orchestration ap-
proaches to optimize the placement and chaining of VNFs,
they either do not consider LL requirements at the core of their
operation. Additionally, many rely on monolithic VNFs, which
aren’t ideal for LL services. To overcome these limits, the
micro-services approach, initially applied in the cloud domain
[4], has been introduced in the context of VNF. This architec-
tural pattern functionally decomposes monolithic VNFs into
smaller components called micro-services, thereby facilitating
the placement of SFCs. By mutualizing redundant functions
and parallelizing certain packet processing operations, they
significantly contribute to the latency reduction.

Given this set of novel features (i.e. mutualization and
parallelization), state-of-the-art orchestration solutions become
obsolete as they do not integrate them into their computation
algorithms. In a previous work [5], we proposed a Mixed-
Integer Linear Programming (MILP) model for the placement
and chaining of micro-services, which leverages the mutualiza-
tion of redundant processing and adaptive parallelization de-
pending on the network infrastructure setup. Although exhibit-
ing relevant results regarding the meeting of LL constraints
and success rate of micro-service placements, the exact method
considered for the model resolution exhibited an extremely
long time. This is not compatible with operational constraints
of a telco even in small case scenarios.

To overcome this scalability issue, this paper presents an
innovative heuristic approach for micro-service placement and
chaining, effectively pooling redundant services and optimiz-
ing parallelization. By leveraging lightweight algorithms, it
proves to be efficient even for large-scale scenarios. Lever-
aging a Waterfilling approach [6] and an online learning
method, our method especially optimizes placement load bal-
ancing to enhance the respect of LL requirements, while avert-
ing potential bottlenecks related to server saturation leading
to scaling issues. To assess our approach, we examine the
gain and cost induced by its features in a step-by-step manner
and compare them to the exact resolution method results. We
also demonstrate that the computation time of our solution is
low making it appropriate for large-scale operational scenarios
while maintaining a satisfying balancing quality.

The paper is organized as follows. Section II provides a
review of recent literature on SFCs orchestration approaches,
VNF parallelization, and load balancing. Section III details the
proposed heuristic and the various algorithms that compose
it. Section IV benchmarks our heuristic method through a
comprehensive series of evaluation tests performed on its
different features along with their respective analysis. Finally,
Section V concludes the paper by summarizing our main
observations and findings.

II. RELATED WORK

The issue of SFCs placement and chaining has been ex-
tensively studied in the literature with various optimization
models leveraging the exact solution method, via solvers, or
approximate methods, using heuristic algorithms, for their
resolution. Besides, several improvements dedicated to LL
applications have been developed: VNF decomposition into

2023 19th International Conference on Network and Service Management (CNSM)

978-3-903176-59-1 ©2023 IFIP

micro-services, parallelization, and load balancing during de-
ployment. Thus, in the following, we review each aspects.

A. Micro-services: Architectures and Orchestration

The benefits of micro-services have been demonstrated in
[7] as a solution to the limitations of monolithic VNFs, such
as overlapping functionalities, light weightiness, loss of CPU
cycles, and lack of flexibility in scaling. As a result, several
micro-services architectures have been developed and imple-
mented [8], [9], which primarily use lightweight container
virtualization and zero-copy of packets with DPDK [10] to
enhance performance. In [11], the authors examine the impact
of container scaling and identify a latency increase when using
multiple containers due to packet flow between them. In [12],
the authors discuss the pros and cons of using micro-services
and evaluate their execution latency in comparison to the
monolithic approach. They subsequently propose an AI-based
architecture to determine the reuse, creation, or duplication
of micro-services during deployment. [13] proposes MicroNF,
a framework that utilizes the benefits of micro-services to
address the performance degradation caused by monolithic
NFV by leveraging three elements: (1) SFCs reconstruction
to re-factor micro-services when possible; (2) micro-services
placement to consolidate them on the same node; and (3)
scaling approach to balance the load between network nodes.

Mutualization is the process of grouping two or more
identical micro-services belonging to the same SFC into a
single one to reduce its length and latency while saving
memory and CPU resources. This concept has been studied in
[13], [14] as part of the functional decomposition of VNFs into
micro-services, which show that mutualization of two identical
micro-services is not always possible. It requires checking the
set of micro-services from the original SFC to ensure that the
processing of packet data will not be affected by leveraging
a mutualization table, as proposed in [13]. Besides, [14] also
exposes a micro-services framework including a mutualization
algorithm. However, it does not propose any solution for their
placement and chaining, which is mandatory to make this
contribution operational.

B. VNF Placement and Chaining Heuristics

The VNF placement and chaining problem is mainly tackled
by two strategies. Exact methods, like the Simplex algorithm
[15], offer precise results but require long computation times.
By contrast, approximate methods, based on heuristics or
metaheuristics, offer near-optimal quicker solutions. Despite
potential sub-optimality, the faster results of approximate
methods make them often preferred in practice.

Existing heuristics for VNF placement and chaining often
break down the problem into more manageable steps. For
example, [3] tackles it by modeling the problem as a multi-
tiered graph and then utilizing the Viterbi algorithm [16]
to deploy VNFs. However, these methods face a significant
challenge: the dynamic parallelization of VNFs, which is
unknown before deployment, complicates the creation of a
multi-level graph. By contrast, Askari et al. present in [17]

a shared-use approach. Their heuristic examines each VNF
placement of existing instances, chooses the closest to source
and destination, or, if absent, calculates the shortest path and
deploys a new one. This method may however lead to non-
optimal solutions, increasing the traffic latency.

Besides, most studies propose a per SFC approach to deploy
VNFs on the shortest path. Notably, [18], [19], follows this
idea by using Dijkstra’s algorithm to calculate the shortest
path. In cases where the deployment is not possible on some
nodes, they propose to recalculate another one and attempt
the deployment again. Similarly, Hirewe et al. [18] suggest
to remove the most overloaded node, while Gadre et al. [19]
suggest to remove the highest latency arc before recalculating
the new shortest path. However, the latter may not necessarily
be the next shortest path, which is a limitation of this ap-
proach. Several optimal methods for k shortest path calculation
exist too: the modified Dijkstra algorithm, A*, Bellman-Ford-
Moore, and Yen or Eppstein algorithms [20], [21]. The latter
extends the Dijkstra algorithm and stands out by its lower
complexity. It identifies the k shortest paths in a non-negative
graph using a priority queue to store them. It first calculates the
shortest paths from each node to the destination node using
Dijkstra. After that, it proposes a new representation of the
original graph, which facilitates efficient traversal either on
the shortest path with zero-cost or via an auxiliary node, with
the cost corresponding to the forwarding latency.

C. VNF Parallelization

The challenge of SFC latency reduction has sparked many
innovations, including the parallelization of VNFs. In [22],
the authors proposed a VNF parallelization algorithm through
a dependency graph, enabling both internal and external par-
allelism. However, external parallelization can impact latency
due to packet copying and merging. Conversely, the internal
VNF parallelization can efficiently use shared memory, as
suggested by DPDK [10]. [23] introduced internal parallelism
for all SFCs located on the same node, mitigating copy/merge
time through specific techniques. Meanwhile, [24] tackled the
restrictions of [22], [23] by permitting node-level parallelism
without conditions on the complete SFC, thus enhancing
agility. In [25], a dual-phase approach was proposed to manage
internal and external parallelization and minimize the latency
of SFCs. The findings highlight that partial parallelism can
decrease latency by up to 25% as compared to a serial deploy-
ment. However, establishing parallelization through heuristic
methods in either pre- [22] or post-deployment [24], limits its
optimization since it may not adapt to network capabilities.
This could be overcome by considering the parallelization of
VNFs during deployment.

D. Load Balanced Deployment of SFCs

The growth of low-latency services has encouraged load
balancing research for SFC placement and chaining, which
brings improved latency, increased stability, and traffic conges-
tion prevention. Existing studies are divided into two groups:
(1) leveraging VNF replication for load balancing on nodes

2023 19th International Conference on Network and Service Management (CNSM)

and arcs, and (2) achieving network-wide load equilibrium
without VNF replication or flow splitting.

For instance, [26] and [27] use packet flow division for load
balancing. The former introduces a hash-based method that
may lead to corrupted packets due to improper reassembly.
The latter introduces two heuristics adjusting flow distribution
based on network node load changes. Similarly, [28] addresses
load balancing by optimizing VNF replication through an
ILP model to minimize costs. Nevertheless this optimization,
while supporting network balancing, might affect latency due
to VNF duplication, risking network congestion and resource
consumption surge. Furthermore, SFC flow handling between
VNF replications can increase latency and impose technical
limits. In the second group, [29] proposes a MaxMin-based
placement heuristic deploying many VNFs on least loaded
nodes. Despite balancing efficiency, this can cause topological
mismatch leading to non-optimal SFC latency since least
loaded nodes may be far from each other. Finally, the authors
of [30] use a Waterfilling problem-based [6] heuristic for
efficient VNF placement on pre-calculated network paths. It
computes a non-exceedable limit of memory usage for each
node, redistributing placement requests upon limit reach. This
non-duplicative approach overcomes the topology mismatch
effect of [29]. However, the authors consider that the nodes
should not be used at 100% to allow for certain limit over-
stepping during balancing.

Our review identifies a gap in the scalable and efficient
placement and chaining of micro-services. Existing monolithic
heuristics fall short due to the inherent characteristics of
micro-services, such as their large quantity, small size, asyn-
chronous operation, and robust parallel processing capability.
Furthermore, most of them sub-optimally calculate shortest
paths, compromising the solution performance. Finally, load
balancing is often addressed in separated works, despite its
potential benefits in terms of optimising latency. Consequently,
we propose a two-step heuristic using an optimal algorithm to
(1) compute the k shortest paths, before (2) deploying micro-
services to promote efficient micro-services management and
optimized load balancing.

III. A MICRO-SERVICES PLACEMENT AND CHAINING
HEURISTIC

In this section, we present the micro-services placement
and chaining problem that we tackle as well as the dedicated
heuristic method we propose. The latter aims to: (1) place and
chain the micro-services, (2) manage adaptive parallelization,
(3) maximize the number of SFCs that meet the prescribed
latency, and (4) optimize load balancing. To reach these objec-
tives, our lightweight heuristic integrates several optimization
techniques, exploiting the intrinsic characteristics of micro-
services, which are introduced subsequently in a step-by-step
approach.

A. Problem Statement

The micro-services placement and routing problem we
investigate is defined by a network graph G = (N , L), where

Functions Definition
EppRep(sq ,
dq , G)

Gives Eppstein representation for paths from Sq to
dq in G

NeShPa(ERq) Finds next shortest path using Eppstein rep. ERq

AvaiSpace(p) Computes available memory on a path p
P lace(m,n) Assigns micro-service m to node n
Para(m1,m2) Checks if micro-services m1, m2 can run in parallel
Cont(n,m) Checks if micro-service m is on node n
IsCritical(q) Checks if SFC q length is less than its rlq
Move(m,n) Migrates micro-service m to node n
TwiceDecr(q) Checks if SFC q score decreased twice consecutively
Sets Definition
q ∈ Q Set of SFCs
m ∈ M Set of micro-services
m ∈ PMmn Set of micro-services operating in parallel to mn

Parameters Definition
G Network infrastructure for SFC deployment
ERq Eppstein representation for SFC q
NbIt Number of iterations for the online learning process
∆s Constant to adjust SFC q score
N Factor to amplify SFC q score deterioration
sq Source node of SFC q
dq Destination node of SFC q
Variables Definition
spq Shortest path for SFC q
as Available space
mr Space left on p post q deployment
mpn Space left on p post q deployment per node
rm Residual space on p post deployment
can Memory capacity of node n
m− Precedent of micro-service m
scq SFC q score
rlq Required Latency of SFC q
elq Effective latency of SFC q

TABLE I: Functions, sets, variables, and parameters consid-
ered in our heuristic method

N represents a set of nodes n, characterized by a memory
capacity Mn. L represents a set of links between two nodes
ni, nj ∈ N characterized by a latency link δninj . Q is a set
of SFC requests, with each request, q ∈ Q, characterized by
a source and destination represented respectively by sq , dq ∈
N , a required latency rlq .Additionally, each request has a set
of micro-services, represented as m ∈ M , where M is the set
of all types of micro-services that an edge flow must traverse.
The objective of this problem is to:

• Place the micro-services for each SFC;
• Chain micro-services together.

Subject to :
• Memory capacity constraints on the nodes;
• Micro-services forwarding and execution latency con-

straints;
• Micro-services execution order constraints;
• Parallelism execution constraints.

B. Algorithm Overview

The heuristic (Algorithm 1), accepting pre-processed SFC
set Q and network infrastructure G as inputs, generates a
placement solution for all SFCs within the infrastructure
capacity. Pre-processing involves mutualizing and identifying
parallelizable micro-services, as detailed in our previous work
[5]. Composed of three key algorithms, the heuristic utilizes
EppRep() and NeShPat() for k shortest path calculation,
and Algorithm 2 for a load-balanced SFC deployment, which

2023 19th International Conference on Network and Service Management (CNSM)

itself employs Algorithm 3 to deploy micro-services while
managing parallelization.

This section elaborates on the heuristic primary steps, spe-
cial attributes, shortest path calculation, parallel placement and
chaining procedures, and it introduces an online learning ap-
proach enhancing the heuristic performance. Table I provides
a comprehensive overview of all parameters and variables we
consider in the following.

1) Main steps of the heuristic: As shown in Algorithm
1, to optimize the deployment of a set of SFCs, our heuristic
starts by ordering the SFCs in ascending order of the margin
between their required latency and the SFC length (line 1).
Indeed, the smaller the latency gap, the more critical the SFC.
Next, for each SFC q ∈ Q (loop on line 2–11), the method
executes two first operations: it computes a modified Eppstein
representation, which enables the calculation of the k loop-free
shortest paths (line 3) and sets the flag depq to false indicating
that the SFC remains undeployed (line 4). Then, while SFC
q is not deployed and a kth shortest path is available (line
5), the heuristic determines the kth shortest path based on the
computed Eppstein representation (line 6). Subsequently, it
checks whether the memory capacity of the path is adequate
for the deployment of SFC q (line 7). If the memory capacity is
found to be sufficient, the heuristic attempts the deployment of
SFC q by invoking Algorithm 2 with the SFC q and shortest
path spq parameters (line 8).

Algorithm 1 Overall heuristic method for micro-service SFC
placement and chaining

Input: Set of SFC Q, infrastructure G
Output: Placement and chaining solution for all SFCs

1: Order SFCs according to latency gap value
2: for all SFC q ∈ Q do
3: ERq ← EppRep(sq , dq , G)
4: depq ← false
5: while ¬depq and NeShPa(ERq).exist() do
6: spq ← NeShPa(ERq)
7: if Capacity(SPq) ≤ Length(q) then
8: depq ← SFCDeployment(q, spq) // Algorithm 2
9: end if

10: end while
11: end for

2) Shortest Path Computation: In a micro-service SFC
placement and chaining scenario, determining only one short-
est path per SFC may be insufficient due to bounded node
memory. This necessitates the identification of the k shortest
paths where, if the (k − 1)th path lacks sufficient memory
capacity, we deploy the SFC on the kth path, maintaining flex-
ibility and robustness. To optimally address this, we leverage
the Eppstein algorithm [21], an efficient solution for graphs
without negative loops, which fits with our context where edge
latency cannot be negative. Eppstein algorithm complexity is
O(m + n log(n) + k log(k)), with m, n, and k representing
the number of edges, nodes, and calculated paths, respectively.
The algorithm operates according to the following steps: (1)

it starts with Dijkstra’s algorithm calculating the shortest
paths between each node and destination; (2) it forms a unique
graph, which allows a direct transit to the subsequent node,
or a detour to an auxiliary node, with latency variation; (3)
it outputs the shortest path, while empty auxiliary node sets
represent direct paths. For each node on the shortest path, (4)
it forms sets of shortest paths and adds feasible paths to a
heap. Finally, (5) it extracts the minimum-cost set from the
heap, computes their shortest path, and repeats until all paths
are explored.

When graphs contain positive loops, shortest paths can be
infinite due to possible loop traversals on each path calcula-
tion. Since repeated node traversal does not affect the path’s
micro-service deployment capacity, we need loop-free paths.
Consequently, we modified the Eppstein algorithm at two
points to exclusively produce k shortest loop-free paths: one
at step (2) to remove edges if the auxiliary node creates
a loop with the original path, and at step (3) to eliminate
looping paths. These modifications ensure paths are loop-free,
maximizing Eppstein algorithm’s efficiency in our context.
In our method, the EppRep() function oversees the operation
of the modified steps (1-2), while the NeShPa() function
manages the execution of the modified steps (3-5).

3) Load Balanced SFC Deployment: The deployment of
SFCs produced by Algorithm 2 consists in optimising the
placement of micro-services to maximise the number of SFCs
deployed, while respecting the prescribed latency and balanc-
ing the load on the network nodes.

Our load balancing strategy, inspired by the Waterfilling
algorithm [6], aims to fairly distribute remaining space for
post-SFC deployment on nodes. However, two challenges
arise: (1) memory allocation indivisibility, which necessitates
a strategy for managing integer division and leftover fractions;
(2) the potential resource distribution imbalance due to micro-
services parallelization, which demands an integrated approach
for system balance maintenance. To achieve this balanced
deployment, we propose to use four metrics: available space
as ; the margin mr ; the margin per node mpn and the residual
margin (rm), which are described in Table I.

The proposed procedure, described in Algorithm 2, employs
an iterative method to traverse two lists: the list of micro-
services associated with SFC q, indexed by m, and the list
of nodes within the specified path p, indexed by n. Initially,
the algorithm considers the first micro-service and node (line
1 and 2). While any SFC remains undeployed and nodes
persist within the path, the heuristic executes the ensuing
steps (line 7-16). First, it checks whether the current node can
host the current micro-service (line 7). This assessment entails
verifying if the available space surpasses the mpn metric. If
the node proves to be sufficient, the algorithm invokes the
Algorithm 3 (step 9) to deploy the micro-service m onto
node n. Subsequently, if the deployment is successful (line
10), it transits to the next micro-service while maintaining
its position at the current node (step 11). Conversely, if the
node cannot host the micro-service, the algorithm progresses
to the next node without transitioning to the next micro-service

2023 19th International Conference on Network and Service Management (CNSM)

(step 14). By implementing this procedure, the algorithm
facilitates balanced micro-service deployment on path p by
evenly distributing the remaining space among the nodes. One
can notice that rm will be used by Algorithm 3.

Algorithm 2 SFC Deployment

Inputs: SFC q, path p
Output: Deployment of SFC q

1: int n ← 0 // index for iterating over path p
2: int m ← 0 // index for iterating over SFC q
3: int as ← AvaiSpace(p)
4: int mr ← as - Length(q)
5: int mpn ← Quotient(marge/Length(p))
6: int rm ← Remainder(margin/Length(p))
7: while m ≤ Length(q) and n ≤ Length(p) do
8: if can > mpn then
9: depq ← µServicesP lacement(q, p, m, n) // Algo-

rithm 3
10: if depq then
11: m ← m + 1
12: end if
13: else
14: n ← n + 1
15: end if
16: end while

4) Micro-services Placement and Internal Parallelization:
To leverage the internal parallelization of micro-services for la-
tency reduction, we propose a strategy, described in Algorithm
3, that begins by placing a micro-service m on node n (line
1), then assess whether the preceding one m− can feasibly
operate in parallel with m. If so and if not already operating
in parallel (line 3), the algorithm checks if m−1 is deployed
on n (line 4) and if so, it integrates m−1 to the parallelizable
set PMm (line 5). If m−1 is not deployed on n, it verifies if
(i) there is enough residual margin rm that could be used to
avoid unbalancing the deployment too much, or (ii) if SFC q is
critical, meaning that the parallelization is crucial to satisfy the
latency constraint. Then the algorithm checks also if path p has
enough capacity to move m− to node n (line 6). Indeed, the
parallelizing m with m−1 involves the migration to n, which
leads to imbalances in the load deployment. In cases where the
conditions are met, the algorithm moves m− to n (line 7) and
integrates m− to PMm (line 8). In the other case when m is
parallelizable with m−1 and the latter is already operating in
parallel with another(s) micro-service(s), the algorithm checks
if all micro-services within PMm−1 are capable of running in
parallel with m (line 10). If so, and m− has already been
deployed on n (line 11), the algorithm integrates m into the
existing group PMm−1 of parallelizable micro-services of m−

(line 12). If m− is not placed on the same node (line 13), the
algorithm performs the same checks as line 6, but with the set
of micro-services operating in parallel with m−, contained in
PMm− . In cases where the conditions are met, the algorithm
moves them to n including m− (line 16) and integrates m to
PMm− (line 18).

Algorithm 3 µServices Placement

Inputs: SFC q, path p, micro-services m, node n
Output: optimized deployment of micro-service m

1: Place(m, n)
2: if Para(m, m−) then
3: if PMm−1 = ∅ then
4: if Contains(n,m−) then
5: PMm ← PMm ∪ m−1

6: else if rm > 0 or (IsCritical(q) and (cap -
Length(q))) > 0 then

7: Move(m−,n)
8: PMm ← PMm ∪ m−1

9: end if
10: else if ∀ µi ∈ PMm−1 , Para(m, µi) then
11: if Contains(n,m−) then
12: PMm−1 ← PMm−1 ∪ m
13: else
14: if rm > Length(PMm−) or (IsCritical(q) and

(cap - Length(q)) > Length(PMm−) then
15: for all µj ∈ PMm− do
16: Move(µj ,n)
17: end for
18: PMm−1 ← PMm−1 ∪ m
19: end if
20: end if
21: end if
22: end if

C. Ordering the SFC Processing

A notable drawback of heuristic methods over the exact one
relies in their sequential SFCs deployment, which does not
optimize the entire SFC set concurrently as in mathematical
models. This reveals that the processing order has significant
impact on the solution performance. Consequently, we em-
ployed an online learning process to optimally order the SFC
processing, as described in Algorithm 4.

The heuristic starts by uniformly assigning for each SFC in
Q a consistent score ”s” and it computes a modified Eppstein
Representation (line 1-2). Then, at the start of each iteration
it ∈ NbIt, whose upper bound has been empirically assessed
to half of the number of SFCs per instance (line 5), the
heuristic deploys them in ascending order of scores unlike
latency gap value as detailed in Section 1 (line 6). After
deployment, it checks each SFC’s latency compliance (line 8).
If an SFC meets latency requirements, its score is increased,
thus lowering its priority (line 9). If it does not, its score
is reduced, thus raising its priority (line 11). Over multiple
iterations, the solution progressively improves. However, if an
SFC consistently fails to meet latency requirements despite
its priority, its score is intentionally increased after two con-
secutive decreases, downgrading it (line 12-13). This ensures
the heuristic does not prioritize SFCs that persistently violate
latency specifications.

2023 19th International Conference on Network and Service Management (CNSM)

Algorithm 4 Online learning approach for micro-service SFC
placement and chaining

Inputs: set of SFCs, infrastructure
Output: deployment of all SFCs

1: for all SFC q ∈ Q do
2: scq ← s // assigns identical score to all SFCs
3: ERq ← EppRep(sq , dq , G)
4: end for
5: while it ≤ NbIt do
6: // Deploy all SFCs as per Algorithm 1 except that the

ordering is based on the s score instead of the latency
gap value

7: for all SFC q ∈ Q do
8: if elq ≤ rlq then
9: scq ← scq +∆s // score downgrading

10: else
11: scq ← scq −∆s // score improvement
12: if Rank(q) = 1 and TwiceDecr(q) then
13: scq ← scq+N ∗∆s // major deterioration score
14: end if
15: end if
16: end for
17: it← it+ 1
18: end while

IV. EVALUATION

To assess the performance of our heuristic method un-
der diverse scenarios, we implemented it in C++. The im-
plementation consists of 2300 lines of code accessible at:
https://www.mosaico-project.org/outcomes for replication pur-
poses. To validate our implementation, we performed com-
prehensive checks, ensuring that (1) there are no circuits,
(2) all micro-services related to each request are deployed,
(3) the sequence of micro-services is respected, (4) memory
resource consumption is respected, (5) latency computation is
accurate, and (6) parallelism and mutualization are correctly
implemented in accordance with their respective tables. All
our experiments were conducted on an 11th generation Intel
Core i7-1165g7@2.80GHz 1.69GHz computer, with 16GB of
RAM and operating on Windows 10 Professional Education.

A. Evaluation Scenarios

Our performance evaluation scenarios aim at (1) understand-
ing the performance of our model in realistic situations and (2)
comparing it with the optimal solution (CPLEX) generated
with the model we proposed in [5] and having the same opti-
mization objective, which is to maximize the number of SFCs
respecting latency constraints. We also evaluate the relevance
of the different improvements we exposed above, namely:
Heuristic without parallelization, online learning approach and
load balancing (H); Heuristic managing parallelization (H-P);
Heuristic managing parallelization and load balancing (H-PB);
(H-PLB) being the last and standing for our selected candidate,
which manages online learning approach in addition to the
version (H-PB).

Parameter Range or value
Topology DFN-Verein European Telco
VNFs Firewall, NAT, Traffic monitor, IPS
Micro-services Read (Rd), Header Classifier (HC), Modifier (Md),

Alert (Al), Drop (Dp), Check IP Header (CIH), HTTP
Classifier (HC), Count URL (CU), Payload Classifier
(PC), Output (Out)

SFC latency 5-10ms according to the SFC
Link latency 1ms
Micro-services
proc. latency

1ms

SFC length 5-14 micro-services
Node capacity 3-10 instances of micro-services
k 10
scq set to the number of SFCs in the scenario
∆s 1
N set to the number of SFCs in the scenario

TABLE II: Evaluation parameters

All the parameters we considered in our evaluation are
summarized in Table II and motivated subsequently. The
implemented topology, extracted from the SNDlib1 library, is
that of the DFN-Verein European telco. We have partitioned
it by selecting only some Point of Presence (PoP) for a given
region. Then, each region has been split into two layers: one
node acting as a regional PoP connected to other regional PoP
according to the telco topology. Additionally, this node serves
as an aggregation point for a few local nodes connected to
it through a regional loop forming a ring sub-topology. The
different SFCs we consider reflect those that can be found
in the dedicated literature [31], each of them being splitable
into micro-services. Their splits are technically realistic and
derived from the literature [13], [14]. As the core benefits
of micro-services, we have considered the mutualization and
parallelization tables illustrated in [22]. We have considered
the mutualization and parallelization tables illustrated in [22]
as the core benefits of micro-services. The initial number of
shortest paths to be computed, denoted as k, is set to 10. In
case the algorithm is unable to deploy the SFC on one of
these paths, it calculates the next 10. This process continues
until a deployment is possible or no more shortest paths are
available. As for scq , it is defined as the number of instances
per scenario. This enables a homogeneous ranking of the
SFCs. Variable ∆s is set to 1, which is enough to prioritize one
SFC over another. Finally, N is also defined as the number
of SFCs per scenario. This definition is crucial to cause a
significant deterioration in the ranking when necessary. All the
results presented subsequently are the mean of eight repetitions
bounded with 95% confidence intervals.

B. Result Analysis

In our evaluation, we use several metrics to assess the
heuristic’s performance and its variants. Primary indicators
include the quantity of SFCs exceeding the required latency
and the mean latency per scenario. We also study the average
optimality gap, representing the heuristic solution deviation
from the optimal. We estimate the computation duration by
modifying the number of SFC instances per scenario and

1Survivable fixed telecommunication Network Design – http://sndlib.zib.de/

2023 19th International Conference on Network and Service Management (CNSM)

+10% +30% 50%
0

10

20

30

40

Extra memory

(a
)

#S
FC

s
ex

ce
ed

in
g

la
te

nc
y

CPLEX H H − P H − PB
H − PBL

4 7 10
0

10

20

30

40

#Nodes
15 30 50

0

10

20

30

40

#SFCs

+10% +30% 50%
0

5

10

15

20

Extra memory

(b
)

A
ve

ra
ge

SF
C

s
L

at
en

cy

CPLEX H H − P H − PB
H − PBL

4 7 10
0

5

10

15

20

#Nodes
15 30 50

0

5

10

15

20

#SFCs

Fig. 1: Histogram of exceeded SFC latency and average SFC latency under CPLEX and heuristic approaches, with varying
extra memory (left), infrastructure nodes (middle), and SFC per instance (right)

comparing the results to the exact approach’s (CPLEX) com-
putation duration. Additionally, we scrutinize the computation
time by adjusting the number of nodes while keeping the SFCs
instances constant. Finally, we assess load balancing with the
Jain index, an acknowledged metric in the related literature
[32], [33]. It quantifies deployment load balance with an index
varying from 0 (unbalanced) to 1 (balanced).

1) Number of SFCs Exceeding Latency: Reviewing all
scenarios of Figure 1.a highlights that, as expected, the ex-
act CPLEX method outperforms others, specifically the H
approach, which lacks optimization and neglects micro-service
peculiarities. The H − P variant shows marked improvement
due to effective parallelization during deployment. The load-
balancing version, H − PB, optimizes performance in 6
out of 9 scenarios. The remaining scenarios, constrained by
limited memory infrastructure, maintain performance levels,
since the impact of load balancing decreases. However, when
the infrastructure is not overloaded, load balancing distributes
available space efficiently across the network, facilitating SFC
deployment on the shortest paths, hence respecting latency.
Finally, online learning approach (H − PBL) enhances the
heuristic performance by countering its sequential limitations
on all scenarios. In terms of metric variation, with more extra
memory, the performance slightly improves due to increased
placement and parallelization possibilities. However, when
more nodes maintain the same total capacity, the performance
of H − P deteriorates as the possibility of parallelization de-
creases because of fixed memory capacities, which means that
less space per node is available. Nevertheless the performance
increases for H−PBL thanks to the load balancing approach.
Concerning the SFC number variation, we note that the gap
between the exact approach CPLEX and heuristic versions
(H) and (H − P) notably widens when SFCs increases.
However, our heuristic (H − PBL) maintains a consistent

difference with CPLEX , proving its robustness regardless
the number of scenarios.

2) Average Latency: As depicted in Figure 1.b, this analysis
reveals a paradoxical behavior. Indeed, the exact approach
(CPLEX) performs better when looking at the number of
SFCs that exceed latency, especially when compared to our
heuristic approach. However, when considering the average
execution times for all latencies, CPLEX has the poorest
performance. This phenomenon is explained by the fact that
in the exact approach, when an SFC exceeds the latency,
the model does not limit its exceeding value. By contrast,
the heuristic optimizes each SFC by trying to minimize its
latency, thereby enabling a more uniform deployment in terms
of latency compliance. We notice that the average latency
improves with the H − PBL approach compared to the
H −PB approach. This improvement is especially evident in
scenarios with 10 nodes and those with 50 SFCs. The reason
is that the benefits of SFC ordering are more pronounced in
these specific cases.

3) Optimality Gap: To refine the performance analysis of
the solutions generated by our heuristic method, we evaluate
the optimality gap as summarized in Table III. This metric
measures the distance between the solutions generated by
our heuristic and the optimal solution produced by the exact
method. Our method achieves a latency gap of 11%, which
is significantly commendable as compared to the literature,
where the latency gap typically ranges between 13% and
14% [34], [35]. Interestingly, each optimization, whether it is
parallelization, online learning, or load balancing, contributes
to its own margin of improvement. However, parallelization
reduces the most the optimality gap (over one half), which is
due to its strong tied to micro-services approach.

4) Computation Time as a Function of SFC Number: Fig-
ure 3.a illustrates the evolution of computation time according

2023 19th International Conference on Network and Service Management (CNSM)

101 102
0

0.2

0.4

0.6

0.8

1

(a) Extra Memory %

Ja
in

’s
In

de
x

H-P H-PB

101 102 103
0

0.2

0.4

0.6

0.8

1

(b) #Nodes
102 103 104

0

0.2

0.4

0.6

0.8

1

(c) #SFCs

Fig. 2: Jain index for micro-services deployments as a function of (a) the extra allocated memory, (b) number of nodes and
(c) number of SFCs

H H − P H − PB H − PBL
Optimality gap (%) 43 19 17 11

TABLE III: Optimality gap for different versions of heuristics

102 103 104

10−3

10−1

101

103

105

(a) #SFCs

CPLEX

H

H-P

H-PB

H-PBL

101 102 103

10−1

100

101

102

(b) #Nodes

H − PBL

Fig. 3: Computation time (seconds) as a function of the
number of (a) SFCs and (b) nodes

to the SFC number, ranging from 25 to 10,000, considering
different versions of our heuristic as well as the exact method
CPLEX . For the latter, the results are limited in range due to
the exponential increase in computation time. The evolution
of the computation time follows a logarithmic shape as the
size of the instances increases. It is worth noting that the
heuristic approach H − PLB is on average 20,000 times
faster than the exact method CPLEX . We can also observe
that two distinct categories of computation time also emerge:
the H , H − P and H − PB approaches, which present
a computation time, on average, 40 times faster than the
H − PBL approach. This difference is due to the integration
of online learning in H − PBL, which requires multiple
deployment iterations to optimize the deployment order. As
for the impact of parallelization in the H − P version and
load balancing in the H − PB version, they seem to have a
minimal, if any, impact on the computation time as compared
to the H and H − PL versions, respectively.

5) Computation Time as a Function of Node Number:
Figure 3.b presents the evolution of the computation time as
a function of the infrastructure size, defined by the number
of nodes, from 8 to 1024. For this representation, the number
of SFCs is kept constant, set at 30. Additionally, the available

space is also constant, set to +150% of the number of micro-
services. We observe here a clear increase in computation time,
which is due to the modified Eppstein algorithm used for
computing the k shortest paths, whose complexity depends
on the number of nodes in the infrastructure. It is worth
noting that although this increase is linked to the size of
the infrastructure, our approach outperforms that of the exact
method of three orders of magnitude, being about 20,000 times
faster for the scenario involving 128 nodes. Even when we are
on very large infrastructure instances (512 or 1024 nodes) the
execution time, roughly a few tens of seconds, proves to be
acceptable for an operational deployment and highly scalable.

6) Load Balancing Quality: Figure 2 illustrates the Jain’s
fairness index for the two approaches H−P and H−PBL ac-
cording to the Extra memory, Node number and SFC number.
A clear distinction in terms of load balancing is observed in
favor of the H−PBL approach for all scenarios. Nevertheless,
we note a convergence of the index in cases where the
scenarios are restricted: (i) when the extra memory is low,
and (ii) when the number of SFCs increases. Indeed, in this
scenario where the infrastructure is highly constrained, load
balancing becomes a challenging task, especially considering
the stringent latency requirements for all SFCs. This limits
our algorithm ability to balance, thus prioritizing latency
compliance. Finally, as the number of nodes rises, Jain’s
indices of both approaches converge. Indeed, an infrastructure,
composed of significantly large node numbers and a static
capacity, can still achieve more balanced deployment without
specific techniques.

V. CONCLUSION AND FUTURE WORK

The relevance of the micro-services approach in LL ap-
plications has been acknowledged in literature, emphasizing
its benefits such as deployment flexibility, scalability and
reduced latency. However, traditional monolithic placement
and chaining algorithms no longer fit with these features and
novel dedicated solutions have to be proposed. As such, in
this paper, we presented a heuristic method based on four key
processes: the optimal computation of the k shortest paths,
parallelization during deployment, load balancing, and the
optimization of the SFCs processing order. The combination
of these optimizations enable our solution to reach, on av-
erage, 1.1 times the optimum. Our evaluation demonstrated

2023 19th International Conference on Network and Service Management (CNSM)

a significant improvement in computation time, being up to
20,000 times faster than the exact approach. It also showed a
linear correlation between computation time and the number of
nodes and SFCs, underscoring our approach effectiveness on
larger instances. Regarding load balancing, when the network
is not over-stressed, it improves performance by at least 2
points, prevents congestion and makes it easier to scale up.
Overall, being lightweight and deterministic, our method is
highly suitable for a real deployment scenario. Our future
research investigates metaheuristic methods to move closer
to optimality by leveraging the various solutions generated
by different heuristic versions and cross-referencing them to
produce more efficient offspring solutions.

ACKNOWLEDGMENT

This work is partially funded by the French ANR MO-
SAICO project, No ANR-19-CE25-0012 and the European
Regional Development Fund FEDER, No OPE-2020-0031.

REFERENCES

[1] S. Nádas, G. Gombos, F. Fejes, and S. Laki, “A congestion con-
trol independent l4s scheduler,” in Proceedings of the Applied
Networking Research Workshop, 2020, pp. 45–51.

[2] B. Briscoe, K. D. Schepper, O. Albisser, O. Tilmans, N. Kuhn,
and G. Fairhurst, “Implementing the ’ prague requirements ’ for
low latency low loss scalable throughput (l 4 s),” 2018.

[3] J. Sun, Y. Zhang, F. Liu, H. Wang, X. Xu, and Y. Li, “A survey
on the placement of virtual network functions,” JNCA, vol. 202,
p. 1033, 2022.

[4] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature
review on microservices,” in ICCSA 2017, 2017, pp. 203–217.

[5] H. Magnouche, G. Doyen, and C. Prodhon, “Leveraging micro-
services for ultra-low latency: An optimization model for ser-
vice function chains placement,” in 2022 IEEE 8th International
Conference on Network Softwarization (NetSoft), 2022, pp. 198–
206.

[6] Z.-Q. Luo and J.-S. Pang, “Analysis of iterative waterfilling
algorithm for multiuser power control in digital subscriber
lines,” EURASIP JASP, vol. 2006, pp. 1–10, 2006.

[7] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and
R. Boutaba, “Re-architecting nfv ecosystem with microservices:
State of the art and research challenges,” Network, vol. 33, no. 3,
pp. 168–176, 2019.

[8] G. Liu, Y. Ren, M. Yurchenko, K. K. Ramakrishnan, and
T. Wood, “Microboxes: High performance nfv with customiz-
able, asynchronous tcp stacks and dynamic subscriptions,” in
SIGCOMM, 2018, p. 504–517.

[9] A. Bremler-Barr, Y. Harchol, and D. Hay, “Openbox: A
software-defined framework for developing, deploying, and
managing network functions,” in SIGCOMM. ACM, 2016.

[10] L. S. Foundation. Data plane development kit. [Online].
Available: https://www.dpdk.org/

[11] D. Shadija, M. Rezai, and R. Hill, “Microservices: Granularity
vs. performance,” 12 2017, pp. 215–220.

[12] M. Nekovee, S. Sharma, N. Uniyal, A. Nag, and R. Neja-
bati, “Towards ai-enabled microservice architecture for network
function virtualization,” in 2020 ComNet, 2020, pp. 1–8.

[13] Z. Meng, J. Bi, H. Wang, C. Sun, and H. Hu, “Micronf: An
efficient framework for enabling modularized service chains in
nfv,” JSAC, vol. 37, no. 8, pp. 1851–1865, 2019.

[14] S. Chowdhury, A. Rahman, H. Bian, T. Bai, and R. Boutaba,
“A disaggregated packet processing architecture for network
function virtualization,” JSAC, vol. 38, no. 6, 2020.

[15] H. Nabli, “An overview on the simplex algorithm,” Applied
Mathematics and Computation, vol. 210, pp. 479–489, 2009.

[16] G. Forney, “The viterbi algorithm,” Proceedings of the IEEE,
vol. 61, no. 3, pp. 268–278, 1973.

[17] L. Askari, F. Hmaity, and M. Tornatore, “Virtual-network-
function placement for dynamic service chaining in metro-area
networks,” 05 2018, pp. 136–141.

[18] A. Hirwe and K. Kataoka, “Lightchain: A lightweight optimi-
sation of vnf placement for service chaining in nfv,” in IEEE
NetSoft Conference and Workshops (NetSoft), 2016, pp. 33–37.

[19] A. Gadre, A. Anbiah, and K. Sivalingam, “Centralized ap-
proaches for virtual network function placement in sdn-enabled
networks,” EURASIP JWCN, vol. 2018, 08 2018.

[20] S. M. Kumari and N. Geethanjali, “A survey on shortest path
routing algorithms for public transport travel,” Global Journal
of Computer Science and Technology, vol. 9, pp. 73–76, 2010.

[21] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on
computing, vol. 28, no. 2, pp. 652–673, 1998.

[22] Y. Zhang, B. Anwer, V. Gopalakrishnan, B. Han, J. Reich,
A. Shaikh, and Z.-L. Zhang, “Parabox: Exploiting parallelism
for virtual network functions in service chaining,” in SOSR.
ACM, 2017, pp. 143–149.

[23] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling
network function parallelism in nfv,” in SIGCOMM. ACM, 08
2017, pp. 43–56.

[24] S. Xie, J. Ma, and J. Zhao, “Flexchain: Bridging parallelism and
placement for service function chains,” TNSM, vol. 18, no. 1,
pp. 195–208, 2021.

[25] I.-C. Lin, Y.-H. Yeh, and K. C.-J. Lin, “Toward optimal partial
parallelization for service function chaining,” IEEE/ACM Trans-
actions on Networking, vol. 29, no. 5, pp. 2033–2044, 2021.

[26] P.-C. Lin, Y.-D. Lin, C.-Y. Wu, Y.-C. Lai, and Y.-C. Kao,
“Balanced service chaining in software-defined networks with
network function virtualization,” Computer, vol. 49, no. 11, pp.
68–76, 2016.

[27] M.-T. Thai, Y.-D. Lin, P.-C. Lin, and Y.-C. Lai, “Towards
load-balanced service chaining by hash-based traffic steering
on softswitches,” JNCA, vol. 109, pp. 1–10, 2018.

[28] F. Carpio, S. Dhahri, and A. Jukan, “Vnf placement with replica-
tion for loac balancing in nfv networks,” in IEEE international
conference on communications (ICC). IEEE, 2017, pp. 1–6.

[29] C. You et al., “Efficient load balancing for the vnf deployment
with placement constraints,” in IEEE ICC 2019, 2019, pp. 1–6.

[30] A. Zamani, B. Bakhshi, and S. Sharifian, “An efficient load
balancing approach for service function chain mapping,” Com-
puters & Electrical Engineering, vol. 90, p. 106890, 2021.

[31] M. C. Luizelli, W. L. Da Costa Cordeiro, L. S. Buriol, and
L. P. Gaspary, “A fix-and-optimize approach for efficient and
large scale virtual network function placement and chaining,”
Computer Communications, vol. 102, no. C, pp. 67–77, 2017.

[32] M. Dianati, X. Shen, and S. Naik, “A new fairness index
for radio resource allocation in wireless networks,” in IEEE
Wireless Communications and Networking Conference, 2005,
vol. 2, 2005, pp. 712–717 Vol. 2.

[33] G. Bartoli, F. Chiti, R. Fantacci, and B. Picano, “An efficient re-
source allocation scheme for applications in lr-wpans based on a
stable matching with externalities approach,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 6, pp. 58–59, 2019.

[34] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C.
M. B. Duarte, “Orchestrating virtualized network functions,”
IEEE Transactions on Network and Service Management,
vol. 13, no. 4, pp. 725–739, 2016.

[35] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and
B. Akbari, “Joint energy efficient and qos-aware path allocation
and vnf placement for service function chaining,” IEEE Trans-
actions on Network and Service Management, vol. 16, no. 1,
pp. 374–388, 2019.

2023 19th International Conference on Network and Service Management (CNSM)

